This breaks the ability to use a global typename as a standard
identifier in a subsequent input file. This is otherwise backwards
compatible, including for sources which previously included conflicting
typedefs in each input file.
- Modules with a parameter without a default value will be automatically
deferred until the hierarchy pass
- Allows for parameters without defaults as module items, rather than
just int the `parameter_port_list`, despite being forbidden in the LRM
- Check for parameters without defaults that haven't been overriden
- Add location info to parameter/localparam declarations
Declaring the ports as standard module items already worked as expected.
This adds a missing usage of `checkRange()` so that headers such as
`module m(output integer x);` now work correctly.
- Standard data declarations can now use any integer type
- Parameters and localparams can now use any integer type
- Function returns types can now use any integer type
- Fix `parameter logic`, `localparam reg`, etc. to be 1 bit (previously 32 bits)
- Added longint type (64 bits)
- Unified parser source for integer type widths
This would previously complain about an undefined internal macro if the
unapplied macro had not already been used. If it had, it would
incorrectly use the arguments from the previous invocation.
This is a somewhat obscure edge case I encountered while working on test
cases for earlier changes. Declarations in generate blocks should not be
checked against the list of ports. This change also adds a check
forbidding declarations within generate blocks being tagged as inputs or
outputs.
This change set contains a number of bug fixes and improvements related to
scoping and resolution in generate and procedural blocks. While many of the
frontend changes are interdependent, it may be possible bring the techmap
changes in under a separate PR.
Declarations within unnamed generate blocks previously encountered issues
because the data declarations were left un-prefixed, breaking proper scoping.
The LRM outlines behavior for generating names for unnamed generate blocks. The
original goal was to add this implicit labelling, but doing so exposed a number
of issues downstream. Additional testing highlighted other closely related scope
resolution issues, which have been fixed. This change also adds support for
block item declarations within unnamed blocks in SystemVerilog mode.
1. Unlabled generate blocks are now implicitly named according to the LRM in
`label_genblks`, which is invoked at the beginning of module elaboration
2. The Verilog parser no longer wraps explicitly named generate blocks in a
synthetic unnamed generate block to avoid creating extra hierarchy levels
where they should not exist
3. The techmap phase now allows special control identifiers to be used outside
of the topmost scope, which is necessary because such wires and cells often
appear in unlabeled generate blocks, which now prefix the declarations within
4. Some techlibs required modifications because they relied on the previous
invalid scope resolution behavior
5. `expand_genblock` has been simplified, now only expanding the outermost
scope, completely deferring the inspection and elaboration of nested scopes;
names are now resolved by looking in the innermost scope and stepping outward
6. Loop variables now always become localparams during unrolling, allowing them
to be resolved and shadowed like any other identifier
7. Identifiers in synthetic function call scopes are now prefixed and resolved
in largely the same manner as other blocks
before: `$func$\func_01$tests/simple/scopes.blk.v:60$5$\blk\x`
after: `\func_01$func$tests/simple/scopes.v:60$5.blk.x`
8. Support identifiers referencing a local generate scope nested more
than 1 level deep, i.e. `B.C.x` while within generate scope `A`, or using a
prefix of a current or parent scope, i.e. `B.C.D.x` while in `A.B`, `A.B.C`,
or `A.B.C.D`
9. Variables can now be declared within unnamed blocks in SystemVerilog mode
Addresses the following issues: 656, 2423, 2493
This commit fixes R/R conflicts introduced by commit 7e83a51.
Parameter logic is already defined as part of `param_range_type` rule.
Signed-off-by: Kamil Rakoczy <krakoczy@antmicro.com>
This commit fixes signed/unsigned grammar in parameters as defined in SV
LRM A2.2.1. Example of correct parameters:
parameter integer signed i = 0;
parameter integer unsigned i = 0;
Example of incorrect parameters:
parameter signed integer i = 0;
parameter unsigned integer i = 0;
Signed-off-by: Lukasz Dalek <ldalek@antmicro.com>
Signed-off-by: Kamil Rakoczy <krakoczy@antmicro.com>
The chosen value shouldn't have any effect. I considered something
clearly wrong like -1, but there's no checking inside the generated
lexer, and I suspect this will cause even weirder bugs if triggered
than just setting it to INITIAL.
(parameters in systemverilog packages can't actually be overridden, so
allowing parameters in addition to localparams doesn't actually add any
new functionality, but it's useful to be able to use the parameter
keyword also)
This patch should support things like
`define foo(a, b = 3, c) a+b+c
`foo(1, ,2)
which will evaluate to 1+3+2. It also spots mistakes like
`foo(1)
(the 3rd argument doesn't have a default value, so a call site is
required to set it).
Most of the patch is a simple parser for the format in preproc.cc, but
I've also taken the opportunity to wrap up the "name -> definition"
map in a type, rather than use multiple std::map's.
Since this type needs to be visible to code that touches defines, I've
pulled it (and the frontend_verilog_preproc declaration) out into a
new file at frontends/verilog/preproc.h and included that where
necessary.
Finally, the patch adds a few tests in tests/various to check that we
are parsing everything correctly.