yosys/techlibs/xilinx/cells_sim.v

1235 lines
40 KiB
Coq
Raw Normal View History

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
2015-01-07 17:05:11 -06:00
// See Xilinx UG953 and UG474 for a description of the cell types below.
// http://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
// http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_4/ug953-vivado-7series-libraries.pdf
2015-01-16 07:59:40 -06:00
module VCC(output P);
assign P = 1;
2015-01-07 17:05:11 -06:00
endmodule
2015-01-16 07:59:40 -06:00
module GND(output G);
assign G = 0;
2015-01-07 17:05:11 -06:00
endmodule
2019-08-13 14:36:59 -05:00
module IBUF(
output O,
(* iopad_external_pin *)
input I);
parameter IOSTANDARD = "default";
parameter IBUF_LOW_PWR = 0;
2015-01-16 07:59:40 -06:00
assign O = I;
2015-01-07 17:05:11 -06:00
endmodule
2019-08-13 14:36:59 -05:00
module OBUF(
(* iopad_external_pin *)
output O,
input I);
parameter IOSTANDARD = "default";
parameter DRIVE = 12;
parameter SLEW = "SLOW";
2015-01-16 07:59:40 -06:00
assign O = I;
2015-01-07 17:05:11 -06:00
endmodule
2019-08-13 14:36:59 -05:00
module BUFG(
(* clkbuf_driver *)
output O,
input I);
2015-01-16 07:59:40 -06:00
assign O = I;
2015-01-07 17:05:11 -06:00
endmodule
module BUFGCTRL(
2019-08-13 14:36:59 -05:00
(* clkbuf_driver *)
output O,
input I0, input I1,
2019-08-28 10:28:01 -05:00
(* invertible_pin = "IS_S0_INVERTED" *)
input S0,
(* invertible_pin = "IS_S1_INVERTED" *)
input S1,
(* invertible_pin = "IS_CE0_INVERTED" *)
input CE0,
(* invertible_pin = "IS_CE1_INVERTED" *)
input CE1,
(* invertible_pin = "IS_IGNORE0_INVERTED" *)
input IGNORE0,
(* invertible_pin = "IS_IGNORE1_INVERTED" *)
input IGNORE1);
parameter [0:0] INIT_OUT = 1'b0;
parameter PRESELECT_I0 = "FALSE";
parameter PRESELECT_I1 = "FALSE";
parameter [0:0] IS_CE0_INVERTED = 1'b0;
parameter [0:0] IS_CE1_INVERTED = 1'b0;
parameter [0:0] IS_S0_INVERTED = 1'b0;
parameter [0:0] IS_S1_INVERTED = 1'b0;
parameter [0:0] IS_IGNORE0_INVERTED = 1'b0;
parameter [0:0] IS_IGNORE1_INVERTED = 1'b0;
wire I0_internal = ((CE0 ^ IS_CE0_INVERTED) ? I0 : INIT_OUT);
wire I1_internal = ((CE1 ^ IS_CE1_INVERTED) ? I1 : INIT_OUT);
wire S0_true = (S0 ^ IS_S0_INVERTED);
wire S1_true = (S1 ^ IS_S1_INVERTED);
assign O = S0_true ? I0_internal : (S1_true ? I1_internal : INIT_OUT);
endmodule
2019-08-13 14:36:59 -05:00
module BUFHCE(
(* clkbuf_driver *)
output O,
input I,
2019-08-28 10:28:01 -05:00
(* invertible_pin = "IS_CE_INVERTED" *)
2019-08-13 14:36:59 -05:00
input CE);
parameter [0:0] INIT_OUT = 1'b0;
parameter CE_TYPE = "SYNC";
parameter [0:0] IS_CE_INVERTED = 1'b0;
assign O = ((CE ^ IS_CE_INVERTED) ? I : INIT_OUT);
endmodule
// module OBUFT(output O, input I, T);
// assign O = T ? 1'bz : I;
// endmodule
2015-01-07 17:05:11 -06:00
// module IOBUF(inout IO, output O, input I, T);
// assign O = IO, IO = T ? 1'bz : I;
// endmodule
2015-02-01 10:09:34 -06:00
2015-01-16 07:59:40 -06:00
module INV(output O, input I);
assign O = !I;
2015-01-07 17:05:11 -06:00
endmodule
2015-01-16 07:59:40 -06:00
module LUT1(output O, input I0);
parameter [1:0] INIT = 0;
assign O = I0 ? INIT[1] : INIT[0];
2015-01-07 17:05:11 -06:00
endmodule
2015-01-16 07:59:40 -06:00
module LUT2(output O, input I0, I1);
parameter [3:0] INIT = 0;
wire [ 1: 0] s1 = I1 ? INIT[ 3: 2] : INIT[ 1: 0];
assign O = I0 ? s1[1] : s1[0];
2015-01-07 17:05:11 -06:00
endmodule
2015-01-16 07:59:40 -06:00
module LUT3(output O, input I0, I1, I2);
parameter [7:0] INIT = 0;
wire [ 3: 0] s2 = I2 ? INIT[ 7: 4] : INIT[ 3: 0];
wire [ 1: 0] s1 = I1 ? s2[ 3: 2] : s2[ 1: 0];
assign O = I0 ? s1[1] : s1[0];
2015-01-07 17:05:11 -06:00
endmodule
2015-01-16 07:59:40 -06:00
module LUT4(output O, input I0, I1, I2, I3);
parameter [15:0] INIT = 0;
wire [ 7: 0] s3 = I3 ? INIT[15: 8] : INIT[ 7: 0];
wire [ 3: 0] s2 = I2 ? s3[ 7: 4] : s3[ 3: 0];
wire [ 1: 0] s1 = I1 ? s2[ 3: 2] : s2[ 1: 0];
assign O = I0 ? s1[1] : s1[0];
2015-01-07 17:05:11 -06:00
endmodule
2015-01-16 07:59:40 -06:00
module LUT5(output O, input I0, I1, I2, I3, I4);
parameter [31:0] INIT = 0;
wire [15: 0] s4 = I4 ? INIT[31:16] : INIT[15: 0];
wire [ 7: 0] s3 = I3 ? s4[15: 8] : s4[ 7: 0];
wire [ 3: 0] s2 = I2 ? s3[ 7: 4] : s3[ 3: 0];
wire [ 1: 0] s1 = I1 ? s2[ 3: 2] : s2[ 1: 0];
assign O = I0 ? s1[1] : s1[0];
2015-01-07 17:05:11 -06:00
endmodule
2015-01-16 07:59:40 -06:00
module LUT6(output O, input I0, I1, I2, I3, I4, I5);
parameter [63:0] INIT = 0;
wire [31: 0] s5 = I5 ? INIT[63:32] : INIT[31: 0];
wire [15: 0] s4 = I4 ? s5[31:16] : s5[15: 0];
wire [ 7: 0] s3 = I3 ? s4[15: 8] : s4[ 7: 0];
wire [ 3: 0] s2 = I2 ? s3[ 7: 4] : s3[ 3: 0];
wire [ 1: 0] s1 = I1 ? s2[ 3: 2] : s2[ 1: 0];
assign O = I0 ? s1[1] : s1[0];
2015-01-07 17:05:11 -06:00
endmodule
module LUT6_2(output O6, output O5, input I0, I1, I2, I3, I4, I5);
parameter [63:0] INIT = 0;
wire [31: 0] s5 = I5 ? INIT[63:32] : INIT[31: 0];
wire [15: 0] s4 = I4 ? s5[31:16] : s5[15: 0];
wire [ 7: 0] s3 = I3 ? s4[15: 8] : s4[ 7: 0];
wire [ 3: 0] s2 = I2 ? s3[ 7: 4] : s3[ 3: 0];
wire [ 1: 0] s1 = I1 ? s2[ 3: 2] : s2[ 1: 0];
assign O6 = I0 ? s1[1] : s1[0];
wire [15: 0] s5_4 = I4 ? INIT[31:16] : INIT[15: 0];
wire [ 7: 0] s5_3 = I3 ? s5_4[15: 8] : s5_4[ 7: 0];
wire [ 3: 0] s5_2 = I2 ? s5_3[ 7: 4] : s5_3[ 3: 0];
wire [ 1: 0] s5_1 = I1 ? s5_2[ 3: 2] : s5_2[ 1: 0];
assign O5 = I0 ? s5_1[1] : s5_1[0];
endmodule
2015-01-16 07:59:40 -06:00
module MUXCY(output O, input CI, DI, S);
assign O = S ? CI : DI;
2015-01-07 17:05:11 -06:00
endmodule
(* abc9_box_id = 1, lib_whitebox *)
2015-01-16 07:59:40 -06:00
module MUXF7(output O, input I0, I1, S);
assign O = S ? I1 : I0;
2015-01-07 17:05:11 -06:00
endmodule
(* abc9_box_id = 2, lib_whitebox *)
2015-01-16 07:59:40 -06:00
module MUXF8(output O, input I0, I1, S);
assign O = S ? I1 : I0;
2015-01-07 17:05:11 -06:00
endmodule
2015-01-16 07:59:40 -06:00
module XORCY(output O, input CI, LI);
assign O = CI ^ LI;
endmodule
(* abc9_box_id = 4, lib_whitebox *)
module CARRY4(
(* abc9_carry *)
2019-08-23 13:21:44 -05:00
output [3:0] CO,
output [3:0] O,
(* abc9_carry *)
2019-08-23 13:21:44 -05:00
input CI,
input CYINIT,
input [3:0] DI, S
);
2015-01-16 07:59:40 -06:00
assign O = S ^ {CO[2:0], CI | CYINIT};
assign CO[0] = S[0] ? CI | CYINIT : DI[0];
assign CO[1] = S[1] ? CO[0] : DI[1];
assign CO[2] = S[2] ? CO[1] : DI[2];
assign CO[3] = S[3] ? CO[2] : DI[3];
endmodule
`ifdef _EXPLICIT_CARRY
module CARRY0(output CO_CHAIN, CO_FABRIC, O, input CI, CI_INIT, DI, S);
parameter CYINIT_FABRIC = 0;
wire CI_COMBINE;
if(CYINIT_FABRIC) begin
assign CI_COMBINE = CI_INIT;
end else begin
assign CI_COMBINE = CI;
end
assign CO_CHAIN = S ? CI_COMBINE : DI;
assign CO_FABRIC = S ? CI_COMBINE : DI;
assign O = S ^ CI_COMBINE;
endmodule
module CARRY(output CO_CHAIN, CO_FABRIC, O, input CI, DI, S);
assign CO_CHAIN = S ? CI : DI;
assign CO_FABRIC = S ? CI : DI;
assign O = S ^ CI;
endmodule
`endif
2019-08-20 20:22:58 -05:00
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLL_L.sdf#L238-L250
(* abc9_box_id=1001, lib_whitebox, abc9_flop *)
2019-08-23 13:31:20 -05:00
module FDRE (
(* abc9_arrival=303 *)
2019-08-23 13:31:20 -05:00
output reg Q,
(* clkbuf_sink *)
2019-08-28 10:28:01 -05:00
(* invertible_pin = "IS_C_INVERTED" *)
input C,
input CE,
(* invertible_pin = "IS_D_INVERTED" *)
input D,
(* invertible_pin = "IS_R_INVERTED" *)
input R
2019-08-23 13:31:20 -05:00
);
2015-01-16 07:59:40 -06:00
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_R_INVERTED = 1'b0;
initial Q <= INIT;
wire \$currQ ;
reg \$nextQ ;
2019-10-01 15:41:08 -05:00
always @* if (R == !IS_R_INVERTED) \$nextQ = 1'b0; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
`ifdef _ABC9
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC9_FF_ in abc9_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
2019-09-30 18:33:40 -05:00
// connect to the special `$currQ' wire.
// Special signal indicating clock domain
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
2019-09-30 18:33:40 -05:00
wire [1:0] $abc9_clock = {C, IS_C_INVERTED};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
2019-09-30 18:33:40 -05:00
wire [3:0] $abc9_control = {CE, IS_D_INVERTED, R, IS_R_INVERTED};
always @* Q = \$nextQ ;
`else
2019-10-01 15:41:08 -05:00
assign \$currQ = Q;
2015-01-16 07:59:40 -06:00
generate case (|IS_C_INVERTED)
1'b0: always @(posedge C) Q <= \$nextQ ;
1'b1: always @(negedge C) Q <= \$nextQ ;
2015-01-16 07:59:40 -06:00
endcase endgenerate
`endif
2015-01-16 07:59:40 -06:00
endmodule
(* abc9_box_id=1002, lib_whitebox, abc9_flop *)
module FDRE_1 (
(* abc9_arrival=303 *)
2019-08-23 13:31:20 -05:00
output reg Q,
(* clkbuf_sink *)
input C,
input CE, D, R
2019-08-23 13:31:20 -05:00
);
parameter [0:0] INIT = 1'b0;
2015-01-16 07:59:40 -06:00
initial Q <= INIT;
wire \$currQ ;
reg \$nextQ ;
2019-10-01 15:41:08 -05:00
always @* if (R) Q <= 1'b0; else if (CE) Q <= D; else \$nextQ = \$currQ ;
`ifdef _ABC9
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC9_FF_ in abc9_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
2019-09-30 18:33:40 -05:00
// connect to the special `$currQ' wire.
// Special signal indicating clock domain
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
2019-09-30 18:33:40 -05:00
wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
2019-09-30 18:33:40 -05:00
wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, R, 1'b0 /* IS_R_INVERTED */};
always @* Q = \$nextQ ;
`else
2019-10-01 15:41:08 -05:00
assign \$currQ = Q;
always @(negedge C) Q <= \$nextQ ;
`endif
2015-01-16 07:59:40 -06:00
endmodule
(* abc9_box_id=1003, lib_whitebox, abc9_flop *)
2019-08-23 13:31:20 -05:00
module FDCE (
(* abc9_arrival=303 *)
2019-08-23 13:31:20 -05:00
output reg Q,
2019-08-30 18:44:11 -05:00
(* clkbuf_sink *)
2019-08-28 10:28:01 -05:00
(* invertible_pin = "IS_C_INVERTED" *)
input C,
2019-08-28 10:28:01 -05:00
input CE,
(* invertible_pin = "IS_D_INVERTED" *)
input D,
(* invertible_pin = "IS_CLR_INVERTED" *)
input CLR
2019-08-23 13:31:20 -05:00
);
2015-01-16 07:59:40 -06:00
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_CLR_INVERTED = 1'b0;
initial Q <= INIT;
wire \$currQ ;
reg \$nextQ ;
2019-10-01 15:41:08 -05:00
always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
`ifdef _ABC9
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC9_FF_ in abc9_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
2019-09-30 18:33:40 -05:00
// connect to the special `$currQ' wire.
// Since this is an async flop, async behaviour is also dealt with
// using the $_ABC9_ASYNC box by abc9_map.v
// Special signal indicating clock domain
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
2019-09-30 18:33:40 -05:00
wire [1:0] $abc9_clock = {C, IS_C_INVERTED};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
2019-09-30 18:33:40 -05:00
wire [3:0] $abc9_control = {CE, IS_D_INVERTED, CLR, IS_CLR_INVERTED};
always @* Q = \$nextQ ;
`else
2019-10-01 15:41:08 -05:00
assign \$currQ = Q;
2019-06-03 14:37:02 -05:00
generate case ({|IS_C_INVERTED, |IS_CLR_INVERTED})
2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ;
2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ;
2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ;
2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ;
2015-01-16 07:59:40 -06:00
endcase endgenerate
`endif
2015-01-16 07:59:40 -06:00
endmodule
(* abc9_box_id=1004, lib_whitebox, abc9_flop *)
module FDCE_1 (
(* abc9_arrival=303 *)
output reg Q,
(* clkbuf_sink *)
input C,
input CE, D, CLR
);
parameter [0:0] INIT = 1'b0;
initial Q <= INIT;
wire \$currQ ;
reg \$nextQ ;
2019-10-01 15:41:08 -05:00
always @* if (CE) Q <= D; else \$nextQ = \$currQ ;
`ifdef _ABC9
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC9_FF_ in abc9_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
2019-09-30 18:33:40 -05:00
// connect to the special `$currQ' wire.
// Since this is an async flop, async behaviour is also dealt with
// using the $_ABC9_ASYNC box by abc9_map.v
// Special signal indicating clock domain
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
2019-09-30 18:33:40 -05:00
wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
2019-09-30 18:33:40 -05:00
wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, CLR, 1'b0 /* IS_CLR_INVERTED */};
always @* Q = \$nextQ ;
`else
2019-10-01 15:41:08 -05:00
assign \$currQ = Q;
always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else Q <= \$nextQ ;
`endif
endmodule
(* abc9_box_id=1005, lib_whitebox, abc9_flop *)
2019-08-23 13:31:20 -05:00
module FDPE (
(* abc9_arrival=303 *)
2019-08-23 13:31:20 -05:00
output reg Q,
2019-08-30 18:44:11 -05:00
(* clkbuf_sink *)
2019-08-28 10:28:01 -05:00
(* invertible_pin = "IS_C_INVERTED" *)
input C,
2019-08-28 10:28:01 -05:00
input CE,
(* invertible_pin = "IS_D_INVERTED" *)
input D,
(* invertible_pin = "IS_PRE_INVERTED" *)
input PRE
2019-08-23 13:31:20 -05:00
);
parameter [0:0] INIT = 1'b1;
2015-01-16 07:59:40 -06:00
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_PRE_INVERTED = 1'b0;
initial Q <= INIT;
wire \$currQ ;
reg \$nextQ ;
2019-10-01 15:41:08 -05:00
always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
`ifdef _ABC9
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC9_FF_ in abc9_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
2019-09-30 18:33:40 -05:00
// connect to the special `$currQ' wire.
// Since this is an async flop, async behaviour is also dealt with
// using the $_ABC9_ASYNC box by abc9_map.v
// Special signal indicating clock domain
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
2019-09-30 18:33:40 -05:00
wire [1:0] $abc9_clock = {C, IS_C_INVERTED};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
2019-09-30 18:33:40 -05:00
wire [3:0] $abc9_control = {CE, IS_D_INVERTED, PRE, IS_PRE_INVERTED};
always @* Q = \$nextQ ;
`else
2019-10-01 15:41:08 -05:00
assign \$currQ = Q;
2015-01-16 07:59:40 -06:00
generate case ({|IS_C_INVERTED, |IS_PRE_INVERTED})
2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ;
2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ;
2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ;
2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ;
2015-01-16 07:59:40 -06:00
endcase endgenerate
`endif
2015-01-16 07:59:40 -06:00
endmodule
2015-01-07 17:05:11 -06:00
(* abc9_box_id=1006, lib_whitebox, abc9_flop *)
module FDPE_1 (
(* abc9_arrival=303 *)
2019-08-23 13:31:20 -05:00
output reg Q,
(* clkbuf_sink *)
input C,
input CE, D, PRE
2019-08-23 13:31:20 -05:00
);
parameter [0:0] INIT = 1'b1;
initial Q <= INIT;
wire \$currQ ;
reg \$nextQ ;
2019-10-01 15:41:08 -05:00
always @* if (CE) Q <= D; else \$nextQ = \$currQ ;
`ifdef _ABC9
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC9_FF_ in abc9_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
2019-09-30 18:33:40 -05:00
// connect to the special `$currQ' wire.
// Since this is an async flop, async behaviour is also dealt with
// using the $_ABC9_ASYNC box by abc9_map.v
// Special signal indicating clock domain
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
2019-09-30 18:33:40 -05:00
wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
2019-09-30 18:33:40 -05:00
wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, PRE, 1'b0 /* IS_PRE_INVERTED */};
always @* Q = \$nextQ ;
`else
2019-10-01 15:41:08 -05:00
assign \$currQ = Q;
always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else Q <= \$nextQ ;
`endif
endmodule
(* abc9_box_id=1007, lib_whitebox, abc9_flop *)
module FDSE (
(* abc9_arrival=303 *)
2019-08-23 13:31:20 -05:00
output reg Q,
(* clkbuf_sink *)
(* invertible_pin = "IS_C_INVERTED" *)
input C,
input CE,
(* invertible_pin = "IS_D_INVERTED" *)
input D,
(* invertible_pin = "IS_S_INVERTED" *)
input S
2019-08-23 13:31:20 -05:00
);
parameter [0:0] INIT = 1'b1;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_S_INVERTED = 1'b0;
initial Q <= INIT;
wire \$currQ ;
reg \$nextQ ;
2019-10-01 15:41:08 -05:00
always @* if (S == !IS_S_INVERTED) \$nextQ = 1'b1; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
`ifdef _ABC9
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC9_FF_ in abc9_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
2019-09-30 18:33:40 -05:00
// connect to the special `$currQ' wire.
// Special signal indicating clock domain
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
2019-09-30 18:33:40 -05:00
wire [1:0] $abc9_clock = {C, IS_C_INVERTED};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
2019-09-30 18:33:40 -05:00
wire [3:0] $abc9_control = {CE, IS_D_INVERTED, S, IS_S_INVERTED};
always @* Q = \$nextQ ;
`else
2019-10-01 15:41:08 -05:00
assign \$currQ = Q;
generate case (|IS_C_INVERTED)
1'b0: always @(posedge C) Q <= \$nextQ ;
1'b1: always @(negedge C) Q <= \$nextQ ;
endcase endgenerate
`endif
endmodule
(* abc9_box_id=1008, lib_whitebox, abc9_flop *)
module FDSE_1 (
(* abc9_arrival=303 *)
2019-08-23 13:31:20 -05:00
output reg Q,
(* clkbuf_sink *)
input C,
input CE, D, S
2019-08-23 13:31:20 -05:00
);
parameter [0:0] INIT = 1'b1;
initial Q <= INIT;
wire \$currQ ;
reg \$nextQ ;
2019-10-01 15:41:08 -05:00
always @* if (S) \$nextQ = 1'b1; else if (CE) \$nextQ = D; else \$nextQ = \$currQ ;
`ifdef _ABC9
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC9_FF_ in abc9_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
2019-09-30 18:33:40 -05:00
// connect to the special `$currQ' wire.
// Special signal indicating clock domain
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
2019-09-30 18:33:40 -05:00
wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
2019-09-30 18:33:40 -05:00
wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, S, 1'b0 /* IS_S_INVERTED */};
always @* Q = \$nextQ ;
`else
2019-10-01 15:41:08 -05:00
assign \$currQ = Q;
always @(negedge C) Q <= \$nextQ ;
`endif
2015-01-16 07:59:40 -06:00
endmodule
2015-01-07 17:05:11 -06:00
module LDCE (
output reg Q,
(* invertible_pin = "IS_CLR_INVERTED" *)
input CLR,
input D,
(* invertible_pin = "IS_G_INVERTED" *)
input G,
input GE
);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_CLR_INVERTED = 1'b0;
parameter [0:0] IS_G_INVERTED = 1'b0;
parameter MSGON = "TRUE";
parameter XON = "TRUE";
initial Q = INIT;
wire clr = CLR ^ IS_CLR_INVERTED;
wire g = G ^ IS_G_INVERTED;
always @*
if (clr) Q = 1'b0;
else if (GE && g) Q = D;
endmodule
module LDPE (
output reg Q,
input D,
(* invertible_pin = "IS_G_INVERTED" *)
input G,
input GE,
(* invertible_pin = "IS_PRE_INVERTED" *)
input PRE
);
parameter [0:0] INIT = 1'b1;
parameter [0:0] IS_G_INVERTED = 1'b0;
parameter [0:0] IS_PRE_INVERTED = 1'b0;
parameter MSGON = "TRUE";
parameter XON = "TRUE";
initial Q = INIT;
wire g = G ^ IS_G_INVERTED;
wire pre = PRE ^ IS_PRE_INVERTED;
always @*
if (pre) Q = 1'b1;
else if (GE && g) Q = D;
endmodule
2019-06-24 18:16:50 -05:00
module RAM32X1D (
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L957
(* abc9_arrival=1153 *)
2019-06-24 18:16:50 -05:00
output DPO, SPO,
input D,
(* clkbuf_sink *)
2019-08-28 10:28:01 -05:00
(* invertible_pin = "IS_WCLK_INVERTED" *)
input WCLK,
input WE,
2019-06-24 18:16:50 -05:00
input A0, A1, A2, A3, A4,
2019-06-26 11:34:34 -05:00
input DPRA0, DPRA1, DPRA2, DPRA3, DPRA4
2019-06-24 18:16:50 -05:00
);
parameter INIT = 32'h0;
parameter IS_WCLK_INVERTED = 1'b0;
wire [4:0] a = {A4, A3, A2, A1, A0};
wire [4:0] dpra = {DPRA4, DPRA3, DPRA2, DPRA1, DPRA0};
reg [31:0] mem = INIT;
assign SPO = mem[a];
assign DPO = mem[dpra];
wire clk = WCLK ^ IS_WCLK_INVERTED;
always @(posedge clk) if (WE) mem[a] <= D;
endmodule
module RAM64X1D (
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L957
(* abc9_arrival=1153 *)
2019-05-23 10:58:57 -05:00
output DPO, SPO,
input D,
(* clkbuf_sink *)
2019-08-28 10:28:01 -05:00
(* invertible_pin = "IS_WCLK_INVERTED" *)
input WCLK,
input WE,
input A0, A1, A2, A3, A4, A5,
input DPRA0, DPRA1, DPRA2, DPRA3, DPRA4, DPRA5
);
parameter INIT = 64'h0;
parameter IS_WCLK_INVERTED = 1'b0;
wire [5:0] a = {A5, A4, A3, A2, A1, A0};
wire [5:0] dpra = {DPRA5, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0};
reg [63:0] mem = INIT;
assign SPO = mem[a];
assign DPO = mem[dpra];
wire clk = WCLK ^ IS_WCLK_INVERTED;
always @(posedge clk) if (WE) mem[a] <= D;
endmodule
module RAM128X1D (
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L957
(* abc9_arrival=1153 *)
output DPO, SPO,
input D,
(* clkbuf_sink *)
2019-08-28 10:28:01 -05:00
(* invertible_pin = "IS_WCLK_INVERTED" *)
input WCLK,
input WE,
input [6:0] A, DPRA
);
parameter INIT = 128'h0;
parameter IS_WCLK_INVERTED = 1'b0;
reg [127:0] mem = INIT;
assign SPO = mem[A];
assign DPO = mem[DPRA];
wire clk = WCLK ^ IS_WCLK_INVERTED;
always @(posedge clk) if (WE) mem[A] <= D;
endmodule
2019-02-28 15:56:22 -06:00
module SRL16E (
2019-08-21 13:27:42 -05:00
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L904-L905
(* abc9_arrival=1472 *)
2019-08-23 13:31:20 -05:00
output Q,
input A0, A1, A2, A3, CE,
2019-08-13 14:36:59 -05:00
(* clkbuf_sink *)
2019-08-28 10:28:01 -05:00
(* invertible_pin = "IS_CLK_INVERTED" *)
2019-08-13 14:36:59 -05:00
input CLK,
input D
2019-02-28 15:56:22 -06:00
);
parameter [15:0] INIT = 16'h0000;
parameter [0:0] IS_CLK_INVERTED = 1'b0;
reg [15:0] r = INIT;
assign Q = r[{A3,A2,A1,A0}];
generate
if (IS_CLK_INVERTED) begin
always @(negedge CLK) if (CE) r <= { r[14:0], D };
end
else
always @(posedge CLK) if (CE) r <= { r[14:0], D };
endgenerate
endmodule
module SRLC16E (
output Q,
output Q15,
input A0, A1, A2, A3, CE,
(* clkbuf_sink *)
2019-08-28 10:28:01 -05:00
(* invertible_pin = "IS_CLK_INVERTED" *)
input CLK,
input D
2019-02-28 15:56:22 -06:00
);
parameter [15:0] INIT = 16'h0000;
parameter [0:0] IS_CLK_INVERTED = 1'b0;
reg [15:0] r = INIT;
assign Q15 = r[15];
2019-02-28 15:56:22 -06:00
assign Q = r[{A3,A2,A1,A0}];
generate
if (IS_CLK_INVERTED) begin
always @(negedge CLK) if (CE) r <= { r[14:0], D };
end
else
always @(posedge CLK) if (CE) r <= { r[14:0], D };
2019-02-28 15:56:22 -06:00
endgenerate
endmodule
module SRLC32E (
2019-08-21 13:27:42 -05:00
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L904-L905
(* abc9_arrival=1472 *)
2019-08-23 13:31:20 -05:00
output Q,
(* abc9_arrival=1114 *)
2019-08-23 13:31:20 -05:00
output Q31,
2019-02-28 15:56:22 -06:00
input [4:0] A,
input CE,
2019-08-13 14:36:59 -05:00
(* clkbuf_sink *)
2019-08-28 10:28:01 -05:00
(* invertible_pin = "IS_CLK_INVERTED" *)
2019-08-13 14:36:59 -05:00
input CLK,
input D
2019-02-28 15:56:22 -06:00
);
parameter [31:0] INIT = 32'h00000000;
parameter [0:0] IS_CLK_INVERTED = 1'b0;
reg [31:0] r = INIT;
assign Q31 = r[31];
assign Q = r[A];
generate
if (IS_CLK_INVERTED) begin
always @(negedge CLK) if (CE) r <= { r[30:0], D };
end
else
always @(posedge CLK) if (CE) r <= { r[30:0], D };
endgenerate
endmodule
module DSP48E1 (
output [29:0] ACOUT,
output [17:0] BCOUT,
output reg CARRYCASCOUT,
output reg [3:0] CARRYOUT,
output reg MULTSIGNOUT,
output OVERFLOW,
2019-07-16 17:54:27 -05:00
output reg signed [47:0] P,
output reg PATTERNBDETECT,
output reg PATTERNDETECT,
output [47:0] PCOUT,
output UNDERFLOW,
2019-07-16 17:54:27 -05:00
input signed [29:0] A,
input [29:0] ACIN,
input [3:0] ALUMODE,
2019-07-16 17:54:27 -05:00
input signed [17:0] B,
input [17:0] BCIN,
input [47:0] C,
input CARRYCASCIN,
input CARRYIN,
input [2:0] CARRYINSEL,
input CEA1,
input CEA2,
input CEAD,
input CEALUMODE,
input CEB1,
input CEB2,
input CEC,
input CECARRYIN,
input CECTRL,
input CED,
input CEINMODE,
input CEM,
input CEP,
2019-08-30 07:57:15 -05:00
(* clkbuf_sink *) input CLK,
input [24:0] D,
input [4:0] INMODE,
input MULTSIGNIN,
input [6:0] OPMODE,
input [47:0] PCIN,
input RSTA,
input RSTALLCARRYIN,
input RSTALUMODE,
input RSTB,
input RSTC,
input RSTCTRL,
input RSTD,
input RSTINMODE,
input RSTM,
input RSTP
);
parameter integer ACASCREG = 1;
parameter integer ADREG = 1;
parameter integer ALUMODEREG = 1;
parameter integer AREG = 1;
parameter AUTORESET_PATDET = "NO_RESET";
parameter A_INPUT = "DIRECT";
parameter integer BCASCREG = 1;
parameter integer BREG = 1;
parameter B_INPUT = "DIRECT";
parameter integer CARRYINREG = 1;
parameter integer CARRYINSELREG = 1;
parameter integer CREG = 1;
parameter integer DREG = 1;
parameter integer INMODEREG = 1;
parameter integer MREG = 1;
parameter integer OPMODEREG = 1;
parameter integer PREG = 1;
parameter SEL_MASK = "MASK";
parameter SEL_PATTERN = "PATTERN";
parameter USE_DPORT = "FALSE";
parameter USE_MULT = "MULTIPLY";
parameter USE_PATTERN_DETECT = "NO_PATDET";
parameter USE_SIMD = "ONE48";
parameter [47:0] MASK = 48'h3FFFFFFFFFFF;
parameter [47:0] PATTERN = 48'h000000000000;
parameter [3:0] IS_ALUMODE_INVERTED = 4'b0;
parameter [0:0] IS_CARRYIN_INVERTED = 1'b0;
parameter [0:0] IS_CLK_INVERTED = 1'b0;
parameter [4:0] IS_INMODE_INVERTED = 5'b0;
parameter [6:0] IS_OPMODE_INVERTED = 7'b0;
initial begin
`ifdef __ICARUS__
if (AUTORESET_PATDET != "NO_RESET") $fatal(1, "Unsupported AUTORESET_PATDET value");
if (SEL_MASK != "MASK") $fatal(1, "Unsupported SEL_MASK value");
if (SEL_PATTERN != "PATTERN") $fatal(1, "Unsupported SEL_PATTERN value");
if (USE_SIMD != "ONE48" && USE_SIMD != "TWO24" && USE_SIMD != "FOUR12") $fatal(1, "Unsupported USE_SIMD value");
if (IS_ALUMODE_INVERTED != 4'b0) $fatal(1, "Unsupported IS_ALUMODE_INVERTED value");
if (IS_CARRYIN_INVERTED != 1'b0) $fatal(1, "Unsupported IS_CARRYIN_INVERTED value");
if (IS_CLK_INVERTED != 1'b0) $fatal(1, "Unsupported IS_CLK_INVERTED value");
if (IS_INMODE_INVERTED != 5'b0) $fatal(1, "Unsupported IS_INMODE_INVERTED value");
if (IS_OPMODE_INVERTED != 7'b0) $fatal(1, "Unsupported IS_OPMODE_INVERTED value");
`endif
end
wire signed [29:0] A_muxed;
wire signed [17:0] B_muxed;
generate
if (A_INPUT == "CASCADE") assign A_muxed = ACIN;
else assign A_muxed = A;
if (B_INPUT == "CASCADE") assign B_muxed = BCIN;
else assign B_muxed = B;
endgenerate
2019-09-18 13:12:46 -05:00
reg signed [29:0] Ar1, Ar2;
reg signed [24:0] Dr;
reg signed [17:0] Br1, Br2;
reg signed [47:0] Cr;
reg [4:0] INMODEr = 5'b0;
reg [6:0] OPMODEr = 7'b0;
reg [3:0] ALUMODEr = 4'b0;
reg [2:0] CARRYINSELr = 3'b0;
2019-07-16 16:05:50 -05:00
generate
// Configurable A register
if (AREG == 2) begin
2019-09-18 13:12:46 -05:00
initial Ar1 = 30'b0;
initial Ar2 = 30'b0;
always @(posedge CLK)
if (RSTA) begin
Ar1 <= 30'b0;
Ar2 <= 30'b0;
end else begin
if (CEA1) Ar1 <= A_muxed;
if (CEA2) Ar2 <= Ar1;
end
end else if (AREG == 1) begin
2019-09-18 13:12:46 -05:00
//initial Ar1 = 30'b0;
initial Ar2 = 30'b0;
always @(posedge CLK)
if (RSTA) begin
Ar1 <= 30'b0;
Ar2 <= 30'b0;
end else begin
if (CEA1) Ar1 <= A_muxed;
if (CEA2) Ar2 <= A_muxed;
end
end else begin
always @* Ar1 <= A_muxed;
always @* Ar2 <= A_muxed;
end
2019-08-08 12:44:26 -05:00
// Configurable B register
if (BREG == 2) begin
2019-09-18 13:12:46 -05:00
initial Br1 = 25'b0;
initial Br2 = 25'b0;
always @(posedge CLK)
if (RSTB) begin
Br1 <= 18'b0;
Br2 <= 18'b0;
end else begin
if (CEB1) Br1 <= B_muxed;
if (CEB2) Br2 <= Br1;
end
2019-08-08 12:44:26 -05:00
end else if (BREG == 1) begin
2019-09-18 13:12:46 -05:00
//initial Br1 = 25'b0;
initial Br2 = 25'b0;
always @(posedge CLK)
if (RSTB) begin
Br1 <= 18'b0;
Br2 <= 18'b0;
end else begin
if (CEB1) Br1 <= B_muxed;
if (CEB2) Br2 <= B_muxed;
end
end else begin
always @* Br1 <= B_muxed;
always @* Br2 <= B_muxed;
end
// C and D registers
2019-09-18 13:12:46 -05:00
if (CREG == 1) initial Cr = 48'b0;
if (CREG == 1) begin always @(posedge CLK) if (RSTC) Cr <= 48'b0; else if (CEC) Cr <= C; end
else always @* Cr <= C;
2019-09-18 13:12:46 -05:00
if (CREG == 1) initial Dr = 25'b0;
if (DREG == 1) begin always @(posedge CLK) if (RSTD) Dr <= 25'b0; else if (CED) Dr <= D; end
else always @* Dr <= D;
// Control registers
2019-09-18 13:12:46 -05:00
if (INMODEREG == 1) initial INMODEr = 5'b0;
if (INMODEREG == 1) begin always @(posedge CLK) if (RSTINMODE) INMODEr <= 5'b0; else if (CEINMODE) INMODEr <= INMODE; end
else always @* INMODEr <= INMODE;
2019-09-18 13:12:46 -05:00
if (OPMODEREG == 1) initial OPMODEr = 7'b0;
if (OPMODEREG == 1) begin always @(posedge CLK) if (RSTCTRL) OPMODEr <= 7'b0; else if (CECTRL) OPMODEr <= OPMODE; end
else always @* OPMODEr <= OPMODE;
2019-09-18 13:12:46 -05:00
if (ALUMODEREG == 1) initial ALUMODEr = 4'b0;
if (ALUMODEREG == 1) begin always @(posedge CLK) if (RSTALUMODE) ALUMODEr <= 4'b0; else if (CEALUMODE) ALUMODEr <= ALUMODE; end
else always @* ALUMODEr <= ALUMODE;
2019-09-18 13:12:46 -05:00
if (CARRYINSELREG == 1) initial CARRYINSELr = 3'b0;
if (CARRYINSELREG == 1) begin always @(posedge CLK) if (RSTCTRL) CARRYINSELr <= 3'b0; else if (CECTRL) CARRYINSELr <= CARRYINSEL; end
else always @* CARRYINSELr <= CARRYINSEL;
endgenerate
2019-09-18 13:12:46 -05:00
// A and B cascade
generate
if (ACASCREG == 1 && AREG == 2) assign ACOUT = Ar1;
else assign ACOUT = Ar2;
if (BCASCREG == 1 && BREG == 2) assign BCOUT = Br1;
else assign BCOUT = Br2;
endgenerate
// A/D input selection and pre-adder
wire signed [29:0] Ar12_muxed = INMODEr[0] ? Ar1 : Ar2;
wire signed [24:0] Ar12_gated = INMODEr[1] ? 25'b0 : Ar12_muxed;
wire signed [24:0] Dr_gated = INMODEr[2] ? Dr : 25'b0;
wire signed [24:0] AD_result = INMODEr[3] ? (Dr_gated - Ar12_gated) : (Dr_gated + Ar12_gated);
2019-09-18 13:12:46 -05:00
reg signed [24:0] ADr;
generate
2019-09-18 13:12:46 -05:00
if (ADREG == 1) initial ADr = 25'b0;
if (ADREG == 1) begin always @(posedge CLK) if (RSTD) ADr <= 25'b0; else if (CEAD) ADr <= AD_result; end
else always @* ADr <= AD_result;
endgenerate
// 25x18 multiplier
wire signed [24:0] A_MULT;
wire signed [17:0] B_MULT = INMODEr[4] ? Br1 : Br2;
generate
if (USE_DPORT == "TRUE") assign A_MULT = ADr;
else assign A_MULT = Ar12_gated;
2019-07-16 16:05:50 -05:00
endgenerate
wire signed [42:0] M = A_MULT * B_MULT;
wire signed [42:0] Mx = (CARRYINSEL == 3'b010) ? 43'bx : M;
reg signed [42:0] Mr = 43'b0;
// Multiplier result register
generate
if (MREG == 1) begin always @(posedge CLK) if (RSTM) Mr <= 43'b0; else if (CEM) Mr <= Mx; end
else always @* Mr <= Mx;
endgenerate
wire signed [42:0] Mrx = (CARRYINSELr == 3'b010) ? 43'bx : Mr;
// X, Y and Z ALU inputs
reg signed [47:0] X, Y, Z;
always @* begin
// X multiplexer
case (OPMODEr[1:0])
2'b00: X = 48'b0;
2'b01: begin X = $signed(Mrx);
`ifdef __ICARUS__
if (OPMODEr[3:2] != 2'b01) $fatal(1, "OPMODEr[3:2] must be 2'b01 when OPMODEr[1:0] is 2'b01");
`endif
end
2'b10: begin X = P;
`ifdef __ICARUS__
if (PREG != 1) $fatal(1, "PREG must be 1 when OPMODEr[1:0] is 2'b10");
`endif
end
2'b11: X = $signed({Ar2, Br2});
default: X = 48'bx;
endcase
// Y multiplexer
case (OPMODEr[3:2])
2'b00: Y = 48'b0;
2'b01: begin Y = 48'b0; // FIXME: more accurate partial product modelling?
`ifdef __ICARUS__
if (OPMODEr[1:0] != 2'b01) $fatal(1, "OPMODEr[1:0] must be 2'b01 when OPMODEr[3:2] is 2'b01");
`endif
end
2'b10: Y = {48{1'b1}};
2'b11: Y = Cr;
default: Y = 48'bx;
endcase
// Z multiplexer
case (OPMODEr[6:4])
3'b000: Z = 48'b0;
3'b001: Z = PCIN;
3'b010: begin Z = P;
`ifdef __ICARUS__
if (PREG != 1) $fatal(1, "PREG must be 1 when OPMODEr[6:4] i0s 3'b010");
`endif
end
3'b011: Z = Cr;
3'b100: begin Z = P;
`ifdef __ICARUS__
if (PREG != 1) $fatal(1, "PREG must be 1 when OPMODEr[6:4] is 3'b100");
if (OPMODEr[3:0] != 4'b1000) $fatal(1, "OPMODEr[3:0] must be 4'b1000 when OPMODEr[6:4] i0s 3'b100");
`endif
end
3'b101: Z = $signed(PCIN[47:17]);
3'b110: Z = $signed(P[47:17]);
default: Z = 48'bx;
endcase
end
// Carry in
wire A24_xnor_B17d = A_MULT[24] ~^ B_MULT[17];
reg CARRYINr = 1'b0, A24_xnor_B17 = 1'b0;
generate
if (CARRYINREG == 1) begin always @(posedge CLK) if (RSTALLCARRYIN) CARRYINr <= 1'b0; else if (CECARRYIN) CARRYINr <= CARRYIN; end
else always @* CARRYINr = CARRYIN;
if (MREG == 1) begin always @(posedge CLK) if (RSTALLCARRYIN) A24_xnor_B17 <= 1'b0; else if (CEM) A24_xnor_B17 <= A24_xnor_B17d; end
else always @* A24_xnor_B17 = A24_xnor_B17d;
endgenerate
reg cin_muxed;
always @(*) begin
case (CARRYINSELr)
3'b000: cin_muxed = CARRYINr;
3'b001: cin_muxed = ~PCIN[47];
3'b010: cin_muxed = CARRYCASCIN;
3'b011: cin_muxed = PCIN[47];
3'b100: cin_muxed = CARRYCASCOUT;
3'b101: cin_muxed = ~P[47];
3'b110: cin_muxed = A24_xnor_B17;
3'b111: cin_muxed = P[47];
default: cin_muxed = 1'bx;
endcase
end
wire alu_cin = (ALUMODEr[3] || ALUMODEr[2]) ? 1'b0 : cin_muxed;
// ALU core
wire [47:0] Z_muxinv = ALUMODEr[0] ? ~Z : Z;
wire [47:0] xor_xyz = X ^ Y ^ Z_muxinv;
wire [47:0] maj_xyz = (X & Y) | (X & Z_muxinv) | (Y & Z_muxinv);
wire [47:0] xor_xyz_muxed = ALUMODEr[3] ? maj_xyz : xor_xyz;
wire [47:0] maj_xyz_gated = ALUMODEr[2] ? 48'b0 : maj_xyz;
wire [48:0] maj_xyz_simd_gated;
wire [3:0] int_carry_in, int_carry_out, ext_carry_out;
wire [47:0] alu_sum;
assign int_carry_in[0] = 1'b0;
wire [3:0] carryout_reset;
generate
if (USE_SIMD == "FOUR12") begin
assign maj_xyz_simd_gated = {
maj_xyz_gated[47:36],
1'b0, maj_xyz_gated[34:24],
1'b0, maj_xyz_gated[22:12],
1'b0, maj_xyz_gated[10:0],
alu_cin
};
assign int_carry_in[3:1] = 3'b000;
assign ext_carry_out = {
int_carry_out[3],
maj_xyz_gated[35] ^ int_carry_out[2],
maj_xyz_gated[23] ^ int_carry_out[1],
maj_xyz_gated[11] ^ int_carry_out[0]
};
assign carryout_reset = 4'b0000;
end else if (USE_SIMD == "TWO24") begin
assign maj_xyz_simd_gated = {
maj_xyz_gated[47:24],
1'b0, maj_xyz_gated[22:0],
alu_cin
};
assign int_carry_in[3:1] = {int_carry_out[2], 1'b0, int_carry_out[0]};
assign ext_carry_out = {
int_carry_out[3],
1'bx,
maj_xyz_gated[23] ^ int_carry_out[1],
1'bx
};
assign carryout_reset = 4'b0x0x;
end else begin
assign maj_xyz_simd_gated = {maj_xyz_gated, alu_cin};
assign int_carry_in[3:1] = int_carry_out[2:0];
assign ext_carry_out = {
int_carry_out[3],
3'bxxx
};
assign carryout_reset = 4'b0xxx;
end
genvar i;
for (i = 0; i < 4; i = i + 1)
assign {int_carry_out[i], alu_sum[i*12 +: 12]} = {1'b0, maj_xyz_simd_gated[i*12 +: ((i == 3) ? 13 : 12)]}
+ xor_xyz_muxed[i*12 +: 12] + int_carry_in[i];
endgenerate
wire signed [47:0] Pd = ALUMODEr[1] ? ~alu_sum : alu_sum;
wire [3:0] CARRYOUTd = (OPMODEr[3:0] == 4'b0101 || ALUMODEr[3:2] != 2'b00) ? 4'bxxxx :
((ALUMODEr[0] & ALUMODEr[1]) ? ~ext_carry_out : ext_carry_out);
wire CARRYCASCOUTd = ext_carry_out[3];
wire MULTSIGNOUTd = Mrx[42];
2019-07-16 16:05:50 -05:00
generate
if (PREG == 1) begin
2019-09-18 13:12:46 -05:00
initial P = 48'b0;
initial CARRYOUT = carryout_reset;
initial CARRYCASCOUT = 1'b0;
initial MULTSIGNOUT = 1'b0;
always @(posedge CLK)
if (RSTP) begin
P <= 48'b0;
CARRYOUT <= carryout_reset;
CARRYCASCOUT <= 1'b0;
MULTSIGNOUT <= 1'b0;
end else if (CEP) begin
P <= Pd;
CARRYOUT <= CARRYOUTd;
CARRYCASCOUT <= CARRYCASCOUTd;
MULTSIGNOUT <= MULTSIGNOUTd;
end
end else begin
always @* begin
P = Pd;
CARRYOUT = CARRYOUTd;
CARRYCASCOUT = CARRYCASCOUTd;
MULTSIGNOUT = MULTSIGNOUTd;
end
end
2019-07-16 16:05:50 -05:00
endgenerate
2019-08-13 14:19:26 -05:00
assign PCOUT = P;
generate
wire PATTERNDETECTd, PATTERNBDETECTd;
if (USE_PATTERN_DETECT == "PATDET") begin
// TODO: Support SEL_PATTERN != "PATTERN" and SEL_MASK != "MASK
assign PATTERNDETECTd = &(~(Pd ^ PATTERN) | MASK);
assign PATTERNBDETECTd = &((Pd ^ PATTERN) | MASK);
end else begin
assign PATTERNDETECTd = 1'b1;
assign PATTERNBDETECTd = 1'b1;
end
if (PREG == 1) begin
reg PATTERNDETECTPAST, PATTERNBDETECTPAST;
initial PATTERNDETECT = 1'b0;
initial PATTERNBDETECT = 1'b0;
initial PATTERNDETECTPAST = 1'b0;
initial PATTERNBDETECTPAST = 1'b0;
always @(posedge CLK)
if (RSTP) begin
PATTERNDETECT <= 1'b0;
PATTERNBDETECT <= 1'b0;
PATTERNDETECTPAST <= 1'b0;
PATTERNBDETECTPAST <= 1'b0;
end else if (CEP) begin
PATTERNDETECT <= PATTERNDETECTd;
PATTERNBDETECT <= PATTERNBDETECTd;
PATTERNDETECTPAST <= PATTERNDETECT;
PATTERNBDETECTPAST <= PATTERNBDETECT;
end
assign OVERFLOW = &{PATTERNDETECTPAST, ~PATTERNBDETECT, ~PATTERNDETECT};
assign UNDERFLOW = &{PATTERNBDETECTPAST, ~PATTERNBDETECT, ~PATTERNDETECT};
end else begin
always @* begin
PATTERNDETECT = PATTERNDETECTd;
PATTERNBDETECT = PATTERNBDETECTd;
end
assign OVERFLOW = 1'bx, UNDERFLOW = 1'bx;
end
endgenerate
endmodule