Remove need for $currQ port connection

This commit is contained in:
Eddie Hung 2019-09-30 16:33:40 -07:00
parent 5e9ae90cbb
commit e529872b01
4 changed files with 129 additions and 114 deletions

View File

@ -483,12 +483,12 @@ struct XAigerWriter
if (box_module->get_bool_attribute("\\abc9_flop")) {
IdString port_name = "\\$currQ";
RTLIL::Wire* w = box_module->wire(port_name);
SigSpec rhs = cell->getPort(port_name);
Wire *w = box_module->wire(port_name);
SigSpec rhs = module->wire(stringf("%s.$currQ", cell->name.c_str()));
log_assert(GetSize(w) == GetSize(rhs));
int offset = 0;
for (auto b : rhs.bits()) {
for (auto b : rhs) {
SigBit I = sigmap(b);
if (b == RTLIL::Sx)
b = State::S0;

View File

@ -256,6 +256,14 @@ struct TechmapWorker
if (w->attributes.count(ID(src)))
w->add_strpool_attribute(ID(src), extra_src_attrs);
}
if (it.second->name.begins_with("\\_TECHMAP_REPLACE_")) {
IdString replace_name = stringf("%s%s", orig_cell_name.c_str(), it.second->name.c_str() + strlen("\\_TECHMAP_REPLACE_"));
Wire *replace_w = module->addWire(replace_name, it.second);
module->connect(replace_w, w);
}
design->select(module, w);
}

View File

@ -33,34 +33,35 @@
// behaviour) with:
// (a) a special $__ABC_FF_ in front of the FD*'s output, indicating to abc9
// the location of its basic D-Q flop
// (b) a special \$currQ connection that feeds back into the (combinatorial)
// FD* cell to facilitate clock-enable behaviour -- note that \$currQ
// isn't a real input port, it is one that is understood only by abc9
// (b) a special TECHMAP_REPLACE_.$currQwire that will be used for feedback
// into the (combinatorial) FD* cell to facilitate clock-enable behaviour
module FDRE (output reg Q, input C, CE, D, R);
parameter [0:0] INIT = 1'b0;
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_R_INVERTED = 1'b0;
wire \$nextQ ;
wire $nextQ;
FDRE #(
.INIT(INIT),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_R_INVERTED(IS_R_INVERTED)
) _TECHMAP_REPLACE_ (
.D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .R(R)
.D(D), .Q($nextQ), .C(C), .CE(CE), .R(R)
);
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
wire _TECHMAP_REPLACE_.$currQ = Q;
\$__ABC_FF_ abc_dff (.D($nextQ), .Q(Q));
endmodule
module FDRE_1 (output reg Q, input C, CE, D, R);
parameter [0:0] INIT = 1'b0;
wire \$nextQ ;
wire $nextQ;
FDRE_1 #(
.INIT(|0),
) _TECHMAP_REPLACE_ (
.D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .R(R)
.D(D), .Q($nextQ), .C(C), .CE(CE), .R(R)
);
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
wire _TECHMAP_REPLACE_.$currQ = Q;
\$__ABC_FF_ abc_dff (.D($nextQ), .Q(Q));
endmodule
module FDCE (output reg Q, input C, CE, D, CLR);
@ -68,28 +69,30 @@ module FDCE (output reg Q, input C, CE, D, CLR);
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_CLR_INVERTED = 1'b0;
wire \$nextQ , \$currQ ;
wire $currQ, $nextQ;
FDCE #(
.INIT(INIT),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_CLR_INVERTED(IS_CLR_INVERTED)
) _TECHMAP_REPLACE_ (
.D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .CLR(CLR)
.D(D), .Q($nextQ), .C(C), .CE(CE), .CLR(CLR)
);
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
\$__ABC_ASYNC abc_async (.A(\$currQ ), .S(CLR ^ IS_CLR_INVERTED), .Y(Q));
wire _TECHMAP_REPLACE_.$currQ = Q;
\$__ABC_FF_ abc_dff (.D($nextQ), .Q($currQ));
\$__ABC_ASYNC abc_async (.A($currQ), .S(CLR ^ IS_CLR_INVERTED), .Y(Q));
endmodule
module FDCE_1 (output reg Q, input C, CE, D, CLR);
parameter [0:0] INIT = 1'b0;
wire \$nextQ , \$currQ ;
wire $nextQ, $currQ;
FDCE_1 #(
.INIT(INIT)
) _TECHMAP_REPLACE_ (
.D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .CLR(CLR)
.D(D), .Q($nextQ), .C(C), .CE(CE), .CLR(CLR)
);
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
\$__ABC_ASYNC abc_async (.A(\$currQ ), .S(CLR), .Y(Q));
wire _TECHMAP_REPLACE_.$currQ = Q;
\$__ABC_FF_ abc_dff (.D($nextQ), .Q($currQ));
\$__ABC_ASYNC abc_async (.A($currQ), .S(CLR), .Y(Q));
endmodule
module FDPE (output reg Q, input C, CE, D, PRE);
@ -97,28 +100,30 @@ module FDPE (output reg Q, input C, CE, D, PRE);
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_PRE_INVERTED = 1'b0;
wire \$nextQ , \$currQ ;
wire $nextQ, $currQ;
FDPE #(
.INIT(INIT),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_PRE_INVERTED(IS_PRE_INVERTED),
) _TECHMAP_REPLACE_ (
.D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .PRE(PRE)
.D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(PRE)
);
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
\$__ABC_ASYNC abc_async (.A(\$currQ ), .S(PRE ^ IS_PRE_INVERTED), .Y(Q));
wire _TECHMAP_REPLACE_.$currQ = Q;
\$__ABC_FF_ abc_dff (.D($nextQ), .Q($currQ));
\$__ABC_ASYNC abc_async (.A($currQ), .S(PRE ^ IS_PRE_INVERTED), .Y(Q));
endmodule
module FDPE_1 (output reg Q, input C, CE, D, PRE);
parameter [0:0] INIT = 1'b0;
wire \$nextQ , \$currQ ;
wire $nextQ, $currQ;
FDPE_1 #(
.INIT(INIT)
) _TECHMAP_REPLACE_ (
.D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .PRE(PRE)
.D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(PRE)
);
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
\$__ABC_ASYNC abc_async (.A(\$currQ ), .S(PRE), .Y(Q));
wire _TECHMAP_REPLACE_.$currQ = Q;
\$__ABC_FF_ abc_dff (.D($nextQ), .Q($currQ));
\$__ABC_ASYNC abc_async (.A($currQ), .S(PRE), .Y(Q));
endmodule
module FDSE (output reg Q, input C, CE, D, S);
@ -126,26 +131,28 @@ module FDSE (output reg Q, input C, CE, D, S);
parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_S_INVERTED = 1'b0;
wire \$nextQ ;
wire $nextQ;
FDSE #(
.INIT(INIT),
.IS_C_INVERTED(IS_C_INVERTED),
.IS_D_INVERTED(IS_D_INVERTED),
.IS_S_INVERTED(IS_S_INVERTED)
) _TECHMAP_REPLACE_ (
.D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .S(S)
.D(D), .Q($nextQ), .C(C), .CE(CE), .S(S)
);
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
wire _TECHMAP_REPLACE_.$currQ = Q;
\$__ABC_FF_ abc_dff (.D($nextQ), .Q(Q));
endmodule
module FDSE_1 (output reg Q, input C, CE, D, S);
parameter [0:0] INIT = 1'b0;
wire \$nextQ ;
wire $nextQ;
FDSE_1 #(
.INIT(|0),
) _TECHMAP_REPLACE_ (
.D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .S(S)
.D(D), .Q($nextQ), .C(C), .CE(CE), .S(S)
);
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
wire _TECHMAP_REPLACE_.$currQ = Q;
\$__ABC_FF_ abc_dff (.D($nextQ), .Q(Q));
endmodule
module RAM32X1D (

View File

@ -258,31 +258,31 @@ module FDRE (
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_R_INVERTED = 1'b0;
initial Q <= INIT;
wire \$currQ ;
reg \$nextQ ;
always @* if (R == !IS_R_INVERTED) \$nextQ = 1'b0; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
wire $currQ;
reg $nextQ;
always @* if (R == !IS_R_INVERTED) $nextQ = 1'b0; else if (CE) $nextQ = D ^ IS_D_INVERTED; else $nextQ = $currQ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
// connect to the special `\$currQ' wire.
// connect to the special `$currQ' wire.
// Special signal indicating clock domain
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
wire [1:0] \$abc9_clock = {C, IS_C_INVERTED};
wire [1:0] $abc9_clock = {C, IS_C_INVERTED};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, R, IS_R_INVERTED};
always @* Q = \$nextQ ;
wire [3:0] $abc9_control = {CE, IS_D_INVERTED, R, IS_R_INVERTED};
always @* Q = $nextQ;
`else
assign \$currQ = Q;
assign $currQ = Q;
generate case (|IS_C_INVERTED)
1'b0: always @(posedge C) Q <= \$nextQ ;
1'b1: always @(negedge C) Q <= \$nextQ ;
1'b0: always @(posedge C) Q <= $nextQ;
1'b1: always @(negedge C) Q <= $nextQ;
endcase endgenerate
`endif
endmodule
@ -297,29 +297,29 @@ module FDRE_1 (
);
parameter [0:0] INIT = 1'b0;
initial Q <= INIT;
wire \$currQ ;
reg \$nextQ ;
always @* if (R) Q <= 1'b0; else if (CE) Q <= D; else \$nextQ = \$currQ ;
wire $currQ;
reg $nextQ;
always @* if (R) Q <= 1'b0; else if (CE) Q <= D; else $nextQ = $currQ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
// connect to the special `\$currQ' wire.
// connect to the special `$currQ' wire.
// Special signal indicating clock domain
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, R, 1'b0 /* IS_R_INVERTED */};
always @* Q = \$nextQ ;
wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, R, 1'b0 /* IS_R_INVERTED */};
always @* Q = $nextQ;
`else
assign \$currQ = Q;
always @(negedge C) Q <= \$nextQ ;
assign $currQ = Q;
always @(negedge C) Q <= $nextQ;
`endif
endmodule
@ -341,15 +341,15 @@ module FDCE (
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_CLR_INVERTED = 1'b0;
initial Q <= INIT;
wire \$currQ ;
reg \$nextQ ;
always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
wire $currQ;
reg $nextQ;
always @* if (CE) Q <= D ^ IS_D_INVERTED; else $nextQ = $currQ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
// connect to the special `\$currQ' wire.
// connect to the special `$currQ' wire.
// Since this is an async flop, async behaviour is also dealt with
// using the $_ABC_ASYNC box by abc_map.v
@ -357,19 +357,19 @@ module FDCE (
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
wire [1:0] \$abc9_clock = {C, IS_C_INVERTED};
wire [1:0] $abc9_clock = {C, IS_C_INVERTED};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, CLR, IS_CLR_INVERTED};
always @* Q = \$nextQ ;
wire [3:0] $abc9_control = {CE, IS_D_INVERTED, CLR, IS_CLR_INVERTED};
always @* Q = $nextQ;
`else
assign \$currQ = Q;
assign $currQ = Q;
generate case ({|IS_C_INVERTED, |IS_CLR_INVERTED})
2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ;
2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ;
2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ;
2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ;
2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= $nextQ;
2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= $nextQ;
2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= $nextQ;
2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= $nextQ;
endcase endgenerate
`endif
endmodule
@ -384,15 +384,15 @@ module FDCE_1 (
);
parameter [0:0] INIT = 1'b0;
initial Q <= INIT;
wire \$currQ ;
reg \$nextQ ;
always @* if (CE) Q <= D; else \$nextQ = \$currQ ;
wire $currQ;
reg $nextQ;
always @* if (CE) Q <= D; else $nextQ = $currQ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
// connect to the special `\$currQ' wire.
// connect to the special `$currQ' wire.
// Since this is an async flop, async behaviour is also dealt with
// using the $_ABC_ASYNC box by abc_map.v
@ -400,15 +400,15 @@ module FDCE_1 (
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, CLR, 1'b0 /* IS_CLR_INVERTED */};
always @* Q = \$nextQ ;
wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, CLR, 1'b0 /* IS_CLR_INVERTED */};
always @* Q = $nextQ;
`else
assign \$currQ = Q;
always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else Q <= \$nextQ ;
assign $currQ = Q;
always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else Q <= $nextQ;
`endif
endmodule
@ -430,15 +430,15 @@ module FDPE (
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_PRE_INVERTED = 1'b0;
initial Q <= INIT;
wire \$currQ ;
reg \$nextQ ;
always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
wire $currQ;
reg $nextQ;
always @* if (CE) Q <= D ^ IS_D_INVERTED; else $nextQ = $currQ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
// connect to the special `\$currQ' wire.
// connect to the special `$currQ' wire.
// Since this is an async flop, async behaviour is also dealt with
// using the $_ABC_ASYNC box by abc_map.v
@ -446,19 +446,19 @@ module FDPE (
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
wire [1:0] \$abc9_clock = {C, IS_C_INVERTED};
wire [1:0] $abc9_clock = {C, IS_C_INVERTED};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, PRE, IS_PRE_INVERTED};
always @* Q = \$nextQ ;
wire [3:0] $abc9_control = {CE, IS_D_INVERTED, PRE, IS_PRE_INVERTED};
always @* Q = $nextQ;
`else
assign \$currQ = Q;
assign $currQ = Q;
generate case ({|IS_C_INVERTED, |IS_PRE_INVERTED})
2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ;
2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ;
2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ;
2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ;
2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= $nextQ;
2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= $nextQ;
2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= $nextQ;
2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= $nextQ;
endcase endgenerate
`endif
endmodule
@ -473,15 +473,15 @@ module FDPE_1 (
);
parameter [0:0] INIT = 1'b1;
initial Q <= INIT;
wire \$currQ ;
reg \$nextQ ;
always @* if (CE) Q <= D; else \$nextQ = \$currQ ;
wire $currQ;
reg $nextQ;
always @* if (CE) Q <= D; else $nextQ = $currQ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
// connect to the special `\$currQ' wire.
// connect to the special `$currQ' wire.
// Since this is an async flop, async behaviour is also dealt with
// using the $_ABC_ASYNC box by abc_map.v
@ -489,15 +489,15 @@ module FDPE_1 (
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, PRE, 1'b0 /* IS_PRE_INVERTED */};
always @* Q = \$nextQ ;
wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, PRE, 1'b0 /* IS_PRE_INVERTED */};
always @* Q = $nextQ;
`else
assign \$currQ = Q;
always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else Q <= \$nextQ ;
assign $currQ = Q;
always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else Q <= $nextQ;
`endif
endmodule
@ -519,31 +519,31 @@ module FDSE (
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_S_INVERTED = 1'b0;
initial Q <= INIT;
wire \$currQ ;
reg \$nextQ ;
always @* if (S == !IS_S_INVERTED) \$nextQ = 1'b1; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
wire $currQ;
reg $nextQ;
always @* if (S == !IS_S_INVERTED) $nextQ = 1'b1; else if (CE) $nextQ = D ^ IS_D_INVERTED; else $nextQ = $currQ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
// connect to the special `\$currQ' wire.
// connect to the special `$currQ' wire.
// Special signal indicating clock domain
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
wire [1:0] \$abc9_clock = {C, IS_C_INVERTED};
wire [1:0] $abc9_clock = {C, IS_C_INVERTED};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, S, IS_S_INVERTED};
always @* Q = \$nextQ ;
wire [3:0] $abc9_control = {CE, IS_D_INVERTED, S, IS_S_INVERTED};
always @* Q = $nextQ;
`else
assign \$currQ = Q;
assign $currQ = Q;
generate case (|IS_C_INVERTED)
1'b0: always @(posedge C) Q <= \$nextQ ;
1'b1: always @(negedge C) Q <= \$nextQ ;
1'b0: always @(posedge C) Q <= $nextQ;
1'b1: always @(negedge C) Q <= $nextQ;
endcase endgenerate
`endif
endmodule
@ -558,29 +558,29 @@ module FDSE_1 (
);
parameter [0:0] INIT = 1'b1;
initial Q <= INIT;
wire \$currQ ;
reg \$nextQ ;
always @* if (S) \$nextQ = 1'b1; else if (CE) \$nextQ = D; else \$nextQ = \$currQ ;
wire $currQ;
reg $nextQ;
always @* if (S) $nextQ = 1'b1; else if (CE) $nextQ = D; else $nextQ = $currQ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// In order to achieve clock-enable behaviour, the current value
// of the sequential output is required which Yosys will
// connect to the special `\$currQ' wire.
// connect to the special `$currQ' wire.
// Special signal indicating clock domain
// (used to partition the module so that `abc9' only performs
// sequential synthesis (reachability analysis) correctly on
// one domain at a time)
wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
// Special signal indicating control domain
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, S, 1'b0 /* IS_S_INVERTED */};
always @* Q = \$nextQ ;
wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, S, 1'b0 /* IS_S_INVERTED */};
always @* Q = $nextQ;
`else
assign \$currQ = Q;
always @(negedge C) Q <= \$nextQ ;
assign $currQ = Q;
always @(negedge C) Q <= $nextQ;
`endif
endmodule