mirror of https://github.com/YosysHQ/yosys.git
Remove need for $currQ port connection
This commit is contained in:
parent
5e9ae90cbb
commit
e529872b01
|
@ -483,12 +483,12 @@ struct XAigerWriter
|
|||
|
||||
if (box_module->get_bool_attribute("\\abc9_flop")) {
|
||||
IdString port_name = "\\$currQ";
|
||||
RTLIL::Wire* w = box_module->wire(port_name);
|
||||
SigSpec rhs = cell->getPort(port_name);
|
||||
Wire *w = box_module->wire(port_name);
|
||||
SigSpec rhs = module->wire(stringf("%s.$currQ", cell->name.c_str()));
|
||||
log_assert(GetSize(w) == GetSize(rhs));
|
||||
|
||||
int offset = 0;
|
||||
for (auto b : rhs.bits()) {
|
||||
for (auto b : rhs) {
|
||||
SigBit I = sigmap(b);
|
||||
if (b == RTLIL::Sx)
|
||||
b = State::S0;
|
||||
|
|
|
@ -256,6 +256,14 @@ struct TechmapWorker
|
|||
if (w->attributes.count(ID(src)))
|
||||
w->add_strpool_attribute(ID(src), extra_src_attrs);
|
||||
}
|
||||
|
||||
|
||||
if (it.second->name.begins_with("\\_TECHMAP_REPLACE_")) {
|
||||
IdString replace_name = stringf("%s%s", orig_cell_name.c_str(), it.second->name.c_str() + strlen("\\_TECHMAP_REPLACE_"));
|
||||
Wire *replace_w = module->addWire(replace_name, it.second);
|
||||
module->connect(replace_w, w);
|
||||
}
|
||||
|
||||
design->select(module, w);
|
||||
}
|
||||
|
||||
|
|
|
@ -33,34 +33,35 @@
|
|||
// behaviour) with:
|
||||
// (a) a special $__ABC_FF_ in front of the FD*'s output, indicating to abc9
|
||||
// the location of its basic D-Q flop
|
||||
// (b) a special \$currQ connection that feeds back into the (combinatorial)
|
||||
// FD* cell to facilitate clock-enable behaviour -- note that \$currQ
|
||||
// isn't a real input port, it is one that is understood only by abc9
|
||||
// (b) a special TECHMAP_REPLACE_.$currQwire that will be used for feedback
|
||||
// into the (combinatorial) FD* cell to facilitate clock-enable behaviour
|
||||
module FDRE (output reg Q, input C, CE, D, R);
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
parameter [0:0] IS_C_INVERTED = 1'b0;
|
||||
parameter [0:0] IS_D_INVERTED = 1'b0;
|
||||
parameter [0:0] IS_R_INVERTED = 1'b0;
|
||||
wire \$nextQ ;
|
||||
wire $nextQ;
|
||||
FDRE #(
|
||||
.INIT(INIT),
|
||||
.IS_C_INVERTED(IS_C_INVERTED),
|
||||
.IS_D_INVERTED(IS_D_INVERTED),
|
||||
.IS_R_INVERTED(IS_R_INVERTED)
|
||||
) _TECHMAP_REPLACE_ (
|
||||
.D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .R(R)
|
||||
.D(D), .Q($nextQ), .C(C), .CE(CE), .R(R)
|
||||
);
|
||||
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
|
||||
wire _TECHMAP_REPLACE_.$currQ = Q;
|
||||
\$__ABC_FF_ abc_dff (.D($nextQ), .Q(Q));
|
||||
endmodule
|
||||
module FDRE_1 (output reg Q, input C, CE, D, R);
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
wire \$nextQ ;
|
||||
wire $nextQ;
|
||||
FDRE_1 #(
|
||||
.INIT(|0),
|
||||
) _TECHMAP_REPLACE_ (
|
||||
.D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .R(R)
|
||||
.D(D), .Q($nextQ), .C(C), .CE(CE), .R(R)
|
||||
);
|
||||
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
|
||||
wire _TECHMAP_REPLACE_.$currQ = Q;
|
||||
\$__ABC_FF_ abc_dff (.D($nextQ), .Q(Q));
|
||||
endmodule
|
||||
|
||||
module FDCE (output reg Q, input C, CE, D, CLR);
|
||||
|
@ -68,28 +69,30 @@ module FDCE (output reg Q, input C, CE, D, CLR);
|
|||
parameter [0:0] IS_C_INVERTED = 1'b0;
|
||||
parameter [0:0] IS_D_INVERTED = 1'b0;
|
||||
parameter [0:0] IS_CLR_INVERTED = 1'b0;
|
||||
wire \$nextQ , \$currQ ;
|
||||
wire $currQ, $nextQ;
|
||||
FDCE #(
|
||||
.INIT(INIT),
|
||||
.IS_C_INVERTED(IS_C_INVERTED),
|
||||
.IS_D_INVERTED(IS_D_INVERTED),
|
||||
.IS_CLR_INVERTED(IS_CLR_INVERTED)
|
||||
) _TECHMAP_REPLACE_ (
|
||||
.D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .CLR(CLR)
|
||||
.D(D), .Q($nextQ), .C(C), .CE(CE), .CLR(CLR)
|
||||
);
|
||||
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
|
||||
\$__ABC_ASYNC abc_async (.A(\$currQ ), .S(CLR ^ IS_CLR_INVERTED), .Y(Q));
|
||||
wire _TECHMAP_REPLACE_.$currQ = Q;
|
||||
\$__ABC_FF_ abc_dff (.D($nextQ), .Q($currQ));
|
||||
\$__ABC_ASYNC abc_async (.A($currQ), .S(CLR ^ IS_CLR_INVERTED), .Y(Q));
|
||||
endmodule
|
||||
module FDCE_1 (output reg Q, input C, CE, D, CLR);
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
wire \$nextQ , \$currQ ;
|
||||
wire $nextQ, $currQ;
|
||||
FDCE_1 #(
|
||||
.INIT(INIT)
|
||||
) _TECHMAP_REPLACE_ (
|
||||
.D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .CLR(CLR)
|
||||
.D(D), .Q($nextQ), .C(C), .CE(CE), .CLR(CLR)
|
||||
);
|
||||
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
|
||||
\$__ABC_ASYNC abc_async (.A(\$currQ ), .S(CLR), .Y(Q));
|
||||
wire _TECHMAP_REPLACE_.$currQ = Q;
|
||||
\$__ABC_FF_ abc_dff (.D($nextQ), .Q($currQ));
|
||||
\$__ABC_ASYNC abc_async (.A($currQ), .S(CLR), .Y(Q));
|
||||
endmodule
|
||||
|
||||
module FDPE (output reg Q, input C, CE, D, PRE);
|
||||
|
@ -97,28 +100,30 @@ module FDPE (output reg Q, input C, CE, D, PRE);
|
|||
parameter [0:0] IS_C_INVERTED = 1'b0;
|
||||
parameter [0:0] IS_D_INVERTED = 1'b0;
|
||||
parameter [0:0] IS_PRE_INVERTED = 1'b0;
|
||||
wire \$nextQ , \$currQ ;
|
||||
wire $nextQ, $currQ;
|
||||
FDPE #(
|
||||
.INIT(INIT),
|
||||
.IS_C_INVERTED(IS_C_INVERTED),
|
||||
.IS_D_INVERTED(IS_D_INVERTED),
|
||||
.IS_PRE_INVERTED(IS_PRE_INVERTED),
|
||||
) _TECHMAP_REPLACE_ (
|
||||
.D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .PRE(PRE)
|
||||
.D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(PRE)
|
||||
);
|
||||
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
|
||||
\$__ABC_ASYNC abc_async (.A(\$currQ ), .S(PRE ^ IS_PRE_INVERTED), .Y(Q));
|
||||
wire _TECHMAP_REPLACE_.$currQ = Q;
|
||||
\$__ABC_FF_ abc_dff (.D($nextQ), .Q($currQ));
|
||||
\$__ABC_ASYNC abc_async (.A($currQ), .S(PRE ^ IS_PRE_INVERTED), .Y(Q));
|
||||
endmodule
|
||||
module FDPE_1 (output reg Q, input C, CE, D, PRE);
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
wire \$nextQ , \$currQ ;
|
||||
wire $nextQ, $currQ;
|
||||
FDPE_1 #(
|
||||
.INIT(INIT)
|
||||
) _TECHMAP_REPLACE_ (
|
||||
.D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .PRE(PRE)
|
||||
.D(D), .Q($nextQ), .C(C), .CE(CE), .PRE(PRE)
|
||||
);
|
||||
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
|
||||
\$__ABC_ASYNC abc_async (.A(\$currQ ), .S(PRE), .Y(Q));
|
||||
wire _TECHMAP_REPLACE_.$currQ = Q;
|
||||
\$__ABC_FF_ abc_dff (.D($nextQ), .Q($currQ));
|
||||
\$__ABC_ASYNC abc_async (.A($currQ), .S(PRE), .Y(Q));
|
||||
endmodule
|
||||
|
||||
module FDSE (output reg Q, input C, CE, D, S);
|
||||
|
@ -126,26 +131,28 @@ module FDSE (output reg Q, input C, CE, D, S);
|
|||
parameter [0:0] IS_C_INVERTED = 1'b0;
|
||||
parameter [0:0] IS_D_INVERTED = 1'b0;
|
||||
parameter [0:0] IS_S_INVERTED = 1'b0;
|
||||
wire \$nextQ ;
|
||||
wire $nextQ;
|
||||
FDSE #(
|
||||
.INIT(INIT),
|
||||
.IS_C_INVERTED(IS_C_INVERTED),
|
||||
.IS_D_INVERTED(IS_D_INVERTED),
|
||||
.IS_S_INVERTED(IS_S_INVERTED)
|
||||
) _TECHMAP_REPLACE_ (
|
||||
.D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .S(S)
|
||||
.D(D), .Q($nextQ), .C(C), .CE(CE), .S(S)
|
||||
);
|
||||
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
|
||||
wire _TECHMAP_REPLACE_.$currQ = Q;
|
||||
\$__ABC_FF_ abc_dff (.D($nextQ), .Q(Q));
|
||||
endmodule
|
||||
module FDSE_1 (output reg Q, input C, CE, D, S);
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
wire \$nextQ ;
|
||||
wire $nextQ;
|
||||
FDSE_1 #(
|
||||
.INIT(|0),
|
||||
) _TECHMAP_REPLACE_ (
|
||||
.D(D), .Q(\$nextQ ), .\$currQ (Q), .C(C), .CE(CE), .S(S)
|
||||
.D(D), .Q($nextQ), .C(C), .CE(CE), .S(S)
|
||||
);
|
||||
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
|
||||
wire _TECHMAP_REPLACE_.$currQ = Q;
|
||||
\$__ABC_FF_ abc_dff (.D($nextQ), .Q(Q));
|
||||
endmodule
|
||||
|
||||
module RAM32X1D (
|
||||
|
|
|
@ -258,31 +258,31 @@ module FDRE (
|
|||
parameter [0:0] IS_D_INVERTED = 1'b0;
|
||||
parameter [0:0] IS_R_INVERTED = 1'b0;
|
||||
initial Q <= INIT;
|
||||
wire \$currQ ;
|
||||
reg \$nextQ ;
|
||||
always @* if (R == !IS_R_INVERTED) \$nextQ = 1'b0; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
|
||||
wire $currQ;
|
||||
reg $nextQ;
|
||||
always @* if (R == !IS_R_INVERTED) $nextQ = 1'b0; else if (CE) $nextQ = D ^ IS_D_INVERTED; else $nextQ = $currQ;
|
||||
`ifdef _ABC
|
||||
// `abc9' requires that complex flops be split into a combinatorial
|
||||
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
|
||||
// In order to achieve clock-enable behaviour, the current value
|
||||
// of the sequential output is required which Yosys will
|
||||
// connect to the special `\$currQ' wire.
|
||||
// connect to the special `$currQ' wire.
|
||||
|
||||
// Special signal indicating clock domain
|
||||
// (used to partition the module so that `abc9' only performs
|
||||
// sequential synthesis (reachability analysis) correctly on
|
||||
// one domain at a time)
|
||||
wire [1:0] \$abc9_clock = {C, IS_C_INVERTED};
|
||||
wire [1:0] $abc9_clock = {C, IS_C_INVERTED};
|
||||
// Special signal indicating control domain
|
||||
// (which, combined with this spell type, encodes to `abc9'
|
||||
// which flops may be merged together)
|
||||
wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, R, IS_R_INVERTED};
|
||||
always @* Q = \$nextQ ;
|
||||
wire [3:0] $abc9_control = {CE, IS_D_INVERTED, R, IS_R_INVERTED};
|
||||
always @* Q = $nextQ;
|
||||
`else
|
||||
assign \$currQ = Q;
|
||||
assign $currQ = Q;
|
||||
generate case (|IS_C_INVERTED)
|
||||
1'b0: always @(posedge C) Q <= \$nextQ ;
|
||||
1'b1: always @(negedge C) Q <= \$nextQ ;
|
||||
1'b0: always @(posedge C) Q <= $nextQ;
|
||||
1'b1: always @(negedge C) Q <= $nextQ;
|
||||
endcase endgenerate
|
||||
`endif
|
||||
endmodule
|
||||
|
@ -297,29 +297,29 @@ module FDRE_1 (
|
|||
);
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
initial Q <= INIT;
|
||||
wire \$currQ ;
|
||||
reg \$nextQ ;
|
||||
always @* if (R) Q <= 1'b0; else if (CE) Q <= D; else \$nextQ = \$currQ ;
|
||||
wire $currQ;
|
||||
reg $nextQ;
|
||||
always @* if (R) Q <= 1'b0; else if (CE) Q <= D; else $nextQ = $currQ;
|
||||
`ifdef _ABC
|
||||
// `abc9' requires that complex flops be split into a combinatorial
|
||||
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
|
||||
// In order to achieve clock-enable behaviour, the current value
|
||||
// of the sequential output is required which Yosys will
|
||||
// connect to the special `\$currQ' wire.
|
||||
// connect to the special `$currQ' wire.
|
||||
|
||||
// Special signal indicating clock domain
|
||||
// (used to partition the module so that `abc9' only performs
|
||||
// sequential synthesis (reachability analysis) correctly on
|
||||
// one domain at a time)
|
||||
wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
|
||||
wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
|
||||
// Special signal indicating control domain
|
||||
// (which, combined with this spell type, encodes to `abc9'
|
||||
// which flops may be merged together)
|
||||
wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, R, 1'b0 /* IS_R_INVERTED */};
|
||||
always @* Q = \$nextQ ;
|
||||
wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, R, 1'b0 /* IS_R_INVERTED */};
|
||||
always @* Q = $nextQ;
|
||||
`else
|
||||
assign \$currQ = Q;
|
||||
always @(negedge C) Q <= \$nextQ ;
|
||||
assign $currQ = Q;
|
||||
always @(negedge C) Q <= $nextQ;
|
||||
`endif
|
||||
endmodule
|
||||
|
||||
|
@ -341,15 +341,15 @@ module FDCE (
|
|||
parameter [0:0] IS_D_INVERTED = 1'b0;
|
||||
parameter [0:0] IS_CLR_INVERTED = 1'b0;
|
||||
initial Q <= INIT;
|
||||
wire \$currQ ;
|
||||
reg \$nextQ ;
|
||||
always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
|
||||
wire $currQ;
|
||||
reg $nextQ;
|
||||
always @* if (CE) Q <= D ^ IS_D_INVERTED; else $nextQ = $currQ;
|
||||
`ifdef _ABC
|
||||
// `abc9' requires that complex flops be split into a combinatorial
|
||||
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
|
||||
// In order to achieve clock-enable behaviour, the current value
|
||||
// of the sequential output is required which Yosys will
|
||||
// connect to the special `\$currQ' wire.
|
||||
// connect to the special `$currQ' wire.
|
||||
// Since this is an async flop, async behaviour is also dealt with
|
||||
// using the $_ABC_ASYNC box by abc_map.v
|
||||
|
||||
|
@ -357,19 +357,19 @@ module FDCE (
|
|||
// (used to partition the module so that `abc9' only performs
|
||||
// sequential synthesis (reachability analysis) correctly on
|
||||
// one domain at a time)
|
||||
wire [1:0] \$abc9_clock = {C, IS_C_INVERTED};
|
||||
wire [1:0] $abc9_clock = {C, IS_C_INVERTED};
|
||||
// Special signal indicating control domain
|
||||
// (which, combined with this spell type, encodes to `abc9'
|
||||
// which flops may be merged together)
|
||||
wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, CLR, IS_CLR_INVERTED};
|
||||
always @* Q = \$nextQ ;
|
||||
wire [3:0] $abc9_control = {CE, IS_D_INVERTED, CLR, IS_CLR_INVERTED};
|
||||
always @* Q = $nextQ;
|
||||
`else
|
||||
assign \$currQ = Q;
|
||||
assign $currQ = Q;
|
||||
generate case ({|IS_C_INVERTED, |IS_CLR_INVERTED})
|
||||
2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ;
|
||||
2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ;
|
||||
2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ;
|
||||
2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ;
|
||||
2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= $nextQ;
|
||||
2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= $nextQ;
|
||||
2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= $nextQ;
|
||||
2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= $nextQ;
|
||||
endcase endgenerate
|
||||
`endif
|
||||
endmodule
|
||||
|
@ -384,15 +384,15 @@ module FDCE_1 (
|
|||
);
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
initial Q <= INIT;
|
||||
wire \$currQ ;
|
||||
reg \$nextQ ;
|
||||
always @* if (CE) Q <= D; else \$nextQ = \$currQ ;
|
||||
wire $currQ;
|
||||
reg $nextQ;
|
||||
always @* if (CE) Q <= D; else $nextQ = $currQ;
|
||||
`ifdef _ABC
|
||||
// `abc9' requires that complex flops be split into a combinatorial
|
||||
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
|
||||
// In order to achieve clock-enable behaviour, the current value
|
||||
// of the sequential output is required which Yosys will
|
||||
// connect to the special `\$currQ' wire.
|
||||
// connect to the special `$currQ' wire.
|
||||
// Since this is an async flop, async behaviour is also dealt with
|
||||
// using the $_ABC_ASYNC box by abc_map.v
|
||||
|
||||
|
@ -400,15 +400,15 @@ module FDCE_1 (
|
|||
// (used to partition the module so that `abc9' only performs
|
||||
// sequential synthesis (reachability analysis) correctly on
|
||||
// one domain at a time)
|
||||
wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
|
||||
wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
|
||||
// Special signal indicating control domain
|
||||
// (which, combined with this spell type, encodes to `abc9'
|
||||
// which flops may be merged together)
|
||||
wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, CLR, 1'b0 /* IS_CLR_INVERTED */};
|
||||
always @* Q = \$nextQ ;
|
||||
wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, CLR, 1'b0 /* IS_CLR_INVERTED */};
|
||||
always @* Q = $nextQ;
|
||||
`else
|
||||
assign \$currQ = Q;
|
||||
always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else Q <= \$nextQ ;
|
||||
assign $currQ = Q;
|
||||
always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else Q <= $nextQ;
|
||||
`endif
|
||||
endmodule
|
||||
|
||||
|
@ -430,15 +430,15 @@ module FDPE (
|
|||
parameter [0:0] IS_D_INVERTED = 1'b0;
|
||||
parameter [0:0] IS_PRE_INVERTED = 1'b0;
|
||||
initial Q <= INIT;
|
||||
wire \$currQ ;
|
||||
reg \$nextQ ;
|
||||
always @* if (CE) Q <= D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
|
||||
wire $currQ;
|
||||
reg $nextQ;
|
||||
always @* if (CE) Q <= D ^ IS_D_INVERTED; else $nextQ = $currQ;
|
||||
`ifdef _ABC
|
||||
// `abc9' requires that complex flops be split into a combinatorial
|
||||
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
|
||||
// In order to achieve clock-enable behaviour, the current value
|
||||
// of the sequential output is required which Yosys will
|
||||
// connect to the special `\$currQ' wire.
|
||||
// connect to the special `$currQ' wire.
|
||||
// Since this is an async flop, async behaviour is also dealt with
|
||||
// using the $_ABC_ASYNC box by abc_map.v
|
||||
|
||||
|
@ -446,19 +446,19 @@ module FDPE (
|
|||
// (used to partition the module so that `abc9' only performs
|
||||
// sequential synthesis (reachability analysis) correctly on
|
||||
// one domain at a time)
|
||||
wire [1:0] \$abc9_clock = {C, IS_C_INVERTED};
|
||||
wire [1:0] $abc9_clock = {C, IS_C_INVERTED};
|
||||
// Special signal indicating control domain
|
||||
// (which, combined with this spell type, encodes to `abc9'
|
||||
// which flops may be merged together)
|
||||
wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, PRE, IS_PRE_INVERTED};
|
||||
always @* Q = \$nextQ ;
|
||||
wire [3:0] $abc9_control = {CE, IS_D_INVERTED, PRE, IS_PRE_INVERTED};
|
||||
always @* Q = $nextQ;
|
||||
`else
|
||||
assign \$currQ = Q;
|
||||
assign $currQ = Q;
|
||||
generate case ({|IS_C_INVERTED, |IS_PRE_INVERTED})
|
||||
2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ;
|
||||
2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ;
|
||||
2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ;
|
||||
2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ;
|
||||
2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= $nextQ;
|
||||
2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= $nextQ;
|
||||
2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= $nextQ;
|
||||
2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= $nextQ;
|
||||
endcase endgenerate
|
||||
`endif
|
||||
endmodule
|
||||
|
@ -473,15 +473,15 @@ module FDPE_1 (
|
|||
);
|
||||
parameter [0:0] INIT = 1'b1;
|
||||
initial Q <= INIT;
|
||||
wire \$currQ ;
|
||||
reg \$nextQ ;
|
||||
always @* if (CE) Q <= D; else \$nextQ = \$currQ ;
|
||||
wire $currQ;
|
||||
reg $nextQ;
|
||||
always @* if (CE) Q <= D; else $nextQ = $currQ;
|
||||
`ifdef _ABC
|
||||
// `abc9' requires that complex flops be split into a combinatorial
|
||||
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
|
||||
// In order to achieve clock-enable behaviour, the current value
|
||||
// of the sequential output is required which Yosys will
|
||||
// connect to the special `\$currQ' wire.
|
||||
// connect to the special `$currQ' wire.
|
||||
// Since this is an async flop, async behaviour is also dealt with
|
||||
// using the $_ABC_ASYNC box by abc_map.v
|
||||
|
||||
|
@ -489,15 +489,15 @@ module FDPE_1 (
|
|||
// (used to partition the module so that `abc9' only performs
|
||||
// sequential synthesis (reachability analysis) correctly on
|
||||
// one domain at a time)
|
||||
wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
|
||||
wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
|
||||
// Special signal indicating control domain
|
||||
// (which, combined with this spell type, encodes to `abc9'
|
||||
// which flops may be merged together)
|
||||
wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, PRE, 1'b0 /* IS_PRE_INVERTED */};
|
||||
always @* Q = \$nextQ ;
|
||||
wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, PRE, 1'b0 /* IS_PRE_INVERTED */};
|
||||
always @* Q = $nextQ;
|
||||
`else
|
||||
assign \$currQ = Q;
|
||||
always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else Q <= \$nextQ ;
|
||||
assign $currQ = Q;
|
||||
always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else Q <= $nextQ;
|
||||
`endif
|
||||
endmodule
|
||||
|
||||
|
@ -519,31 +519,31 @@ module FDSE (
|
|||
parameter [0:0] IS_D_INVERTED = 1'b0;
|
||||
parameter [0:0] IS_S_INVERTED = 1'b0;
|
||||
initial Q <= INIT;
|
||||
wire \$currQ ;
|
||||
reg \$nextQ ;
|
||||
always @* if (S == !IS_S_INVERTED) \$nextQ = 1'b1; else if (CE) \$nextQ = D ^ IS_D_INVERTED; else \$nextQ = \$currQ ;
|
||||
wire $currQ;
|
||||
reg $nextQ;
|
||||
always @* if (S == !IS_S_INVERTED) $nextQ = 1'b1; else if (CE) $nextQ = D ^ IS_D_INVERTED; else $nextQ = $currQ;
|
||||
`ifdef _ABC
|
||||
// `abc9' requires that complex flops be split into a combinatorial
|
||||
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
|
||||
// In order to achieve clock-enable behaviour, the current value
|
||||
// of the sequential output is required which Yosys will
|
||||
// connect to the special `\$currQ' wire.
|
||||
// connect to the special `$currQ' wire.
|
||||
|
||||
// Special signal indicating clock domain
|
||||
// (used to partition the module so that `abc9' only performs
|
||||
// sequential synthesis (reachability analysis) correctly on
|
||||
// one domain at a time)
|
||||
wire [1:0] \$abc9_clock = {C, IS_C_INVERTED};
|
||||
wire [1:0] $abc9_clock = {C, IS_C_INVERTED};
|
||||
// Special signal indicating control domain
|
||||
// (which, combined with this spell type, encodes to `abc9'
|
||||
// which flops may be merged together)
|
||||
wire [3:0] \$abc9_control = {CE, IS_D_INVERTED, S, IS_S_INVERTED};
|
||||
always @* Q = \$nextQ ;
|
||||
wire [3:0] $abc9_control = {CE, IS_D_INVERTED, S, IS_S_INVERTED};
|
||||
always @* Q = $nextQ;
|
||||
`else
|
||||
assign \$currQ = Q;
|
||||
assign $currQ = Q;
|
||||
generate case (|IS_C_INVERTED)
|
||||
1'b0: always @(posedge C) Q <= \$nextQ ;
|
||||
1'b1: always @(negedge C) Q <= \$nextQ ;
|
||||
1'b0: always @(posedge C) Q <= $nextQ;
|
||||
1'b1: always @(negedge C) Q <= $nextQ;
|
||||
endcase endgenerate
|
||||
`endif
|
||||
endmodule
|
||||
|
@ -558,29 +558,29 @@ module FDSE_1 (
|
|||
);
|
||||
parameter [0:0] INIT = 1'b1;
|
||||
initial Q <= INIT;
|
||||
wire \$currQ ;
|
||||
reg \$nextQ ;
|
||||
always @* if (S) \$nextQ = 1'b1; else if (CE) \$nextQ = D; else \$nextQ = \$currQ ;
|
||||
wire $currQ;
|
||||
reg $nextQ;
|
||||
always @* if (S) $nextQ = 1'b1; else if (CE) $nextQ = D; else $nextQ = $currQ;
|
||||
`ifdef _ABC
|
||||
// `abc9' requires that complex flops be split into a combinatorial
|
||||
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
|
||||
// In order to achieve clock-enable behaviour, the current value
|
||||
// of the sequential output is required which Yosys will
|
||||
// connect to the special `\$currQ' wire.
|
||||
// connect to the special `$currQ' wire.
|
||||
|
||||
// Special signal indicating clock domain
|
||||
// (used to partition the module so that `abc9' only performs
|
||||
// sequential synthesis (reachability analysis) correctly on
|
||||
// one domain at a time)
|
||||
wire [1:0] \$abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
|
||||
wire [1:0] $abc9_clock = {C, 1'b1 /* IS_C_INVERTED */};
|
||||
// Special signal indicating control domain
|
||||
// (which, combined with this spell type, encodes to `abc9'
|
||||
// which flops may be merged together)
|
||||
wire [3:0] \$abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, S, 1'b0 /* IS_S_INVERTED */};
|
||||
always @* Q = \$nextQ ;
|
||||
wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, S, 1'b0 /* IS_S_INVERTED */};
|
||||
always @* Q = $nextQ;
|
||||
`else
|
||||
assign \$currQ = Q;
|
||||
always @(negedge C) Q <= \$nextQ ;
|
||||
assign $currQ = Q;
|
||||
always @(negedge C) Q <= $nextQ;
|
||||
`endif
|
||||
endmodule
|
||||
|
||||
|
|
Loading…
Reference in New Issue