- FfData now keeps track of the module and underlying cell, if any (so
calling emit on FfData created from a cell will replace the existing cell)
- FfData implementation is split off to its own .cc file for faster
compilation
- the "flip FF data sense by inserting inverters in front and after"
functionality that zinit uses is moved onto FfData class and beefed up
to have dffsr support, to support more use cases
- *_en is split into *_ce (clock enable) and *_aload (async load aka
latch gate enable), so both can be present at once
- has_d is removed
- has_gclk is added (to have a clear marker for $ff)
- d_is_const and val_d leftovers are removed
- async2sync, clk2fflogic, opt_dff are updated to operate correctly on
FFs with async load
This also aligns the functionality:
- in all cases, the onehot attribute is used to create appropriate
constraints (previously, opt_dff didn't do it at all, and share
created one-hot constraints based on $pmux presence alone, which
is unsound)
- in all cases, shift and mul/div/pow cells are now skipped when
importing the SAT problem (previously only memory_share did this)
— this avoids creating clauses for hard cells that are unlikely
to help with proving the UNSATness needed for optimization
This essentially adds wide port support for free in passes that don't
have a usefully better way of handling wide ports than just breaking
them up to narrow ports, avoiding "please run memory_narrow" annoyance.
When converting a sync transparent read port with const address to async
read port, nothing at all needs to be done other than clk_enable change,
and thus we have no FF cell to return. Handle this case correctly in
the helper and in its users.
When the register being merged into the EN signal happens to be a $sdff,
the current code creates a new $mux for every bit, even if they happen
to be identical (as is usually the case), preventing proper grouping
further down the flow. Fix this by adding a simple cache.
Fixes#2409.
The $div and $mod cells use truncating division semantics (rounding
towards 0), as defined by e.g. Verilog. Another rounding mode, flooring
(rounding towards negative infinity), can be used in e.g. VHDL. The
new $divfloor cell provides this flooring division.
This commit also fixes the handling of $div in opt_expr, which was
previously optimized as if it was $divfloor.