mirror of https://github.com/YosysHQ/yosys.git
memory_bram: Some refactoring
This will make more sense when the new transparency masks land. Fixes #2902.
This commit is contained in:
parent
12db9b4273
commit
4451f7f5e9
|
@ -30,9 +30,6 @@ struct rules_t
|
|||
int group, index, dupidx;
|
||||
int wrmode, enable, transp, clocks, clkpol;
|
||||
|
||||
SigBit sig_clock;
|
||||
SigSpec sig_addr, sig_data, sig_en;
|
||||
bool effective_clkpol;
|
||||
bool make_transp;
|
||||
bool make_outreg;
|
||||
int mapped_port;
|
||||
|
@ -93,7 +90,6 @@ struct rules_t
|
|||
pi.mapped_port = -1;
|
||||
pi.make_transp = false;
|
||||
pi.make_outreg = false;
|
||||
pi.effective_clkpol = false;
|
||||
portinfos.push_back(pi);
|
||||
}
|
||||
return portinfos;
|
||||
|
@ -402,10 +398,8 @@ struct rules_t
|
|||
}
|
||||
};
|
||||
|
||||
bool replace_memory(Mem &orig_mem, const rules_t &rules, FfInitVals *initvals, const rules_t::bram_t &bram, const rules_t::match_t &match, dict<string, int> &match_properties, int mode)
|
||||
bool replace_memory(Mem &mem, const rules_t &rules, FfInitVals *initvals, const rules_t::bram_t &bram, const rules_t::match_t &match, dict<string, int> &match_properties, int mode)
|
||||
{
|
||||
// We will modify ports — make a copy of the structure.
|
||||
Mem mem(orig_mem);
|
||||
Module *module = mem.module;
|
||||
|
||||
auto portinfos = bram.make_portinfos();
|
||||
|
@ -441,35 +435,12 @@ bool replace_memory(Mem &orig_mem, const rules_t &rules, FfInitVals *initvals, c
|
|||
log(" Mapping to bram type %s (variant %d):\n", log_id(bram.name), bram.variant);
|
||||
// bram.dump_config();
|
||||
|
||||
bool cell_init = !mem.inits.empty();
|
||||
vector<Const> initdata;
|
||||
|
||||
if (cell_init) {
|
||||
Const initparam = mem.get_init_data();
|
||||
initdata.reserve(mem.size);
|
||||
for (int i=0; i < mem.size; i++)
|
||||
initdata.push_back(initparam.extract(mem.width*i, mem.width, State::Sx));
|
||||
}
|
||||
|
||||
std::vector<int> shuffle_map;
|
||||
if (match.shuffle_enable && bram.dbits >= portinfos.at(match.shuffle_enable - 'A').enable*2 && portinfos.at(match.shuffle_enable - 'A').enable > 0 && !mem.wr_ports.empty())
|
||||
{
|
||||
int bucket_size = bram.dbits / portinfos.at(match.shuffle_enable - 'A').enable;
|
||||
log(" Shuffle bit order to accommodate enable buckets of size %d..\n", bucket_size);
|
||||
|
||||
// extract unshuffled data/enable bits
|
||||
|
||||
std::vector<SigSpec> old_wr_en;
|
||||
std::vector<SigSpec> old_wr_data;
|
||||
std::vector<SigSpec> old_rd_data;
|
||||
|
||||
for (auto &port : mem.wr_ports) {
|
||||
old_wr_en.push_back(port.en);
|
||||
old_wr_data.push_back(port.data);
|
||||
}
|
||||
|
||||
for (auto &port : mem.rd_ports)
|
||||
old_rd_data.push_back(port.data);
|
||||
|
||||
// analyze enable structure
|
||||
|
||||
std::vector<SigSpec> en_order;
|
||||
|
@ -484,52 +455,13 @@ bool replace_memory(Mem &orig_mem, const rules_t &rules, FfInitVals *initvals, c
|
|||
bits_wr_en[sig].push_back(i);
|
||||
}
|
||||
|
||||
// re-create memory ports
|
||||
|
||||
std::vector<SigSpec> new_wr_en(GetSize(old_wr_en));
|
||||
std::vector<SigSpec> new_wr_data(GetSize(old_wr_data));
|
||||
std::vector<SigSpec> new_rd_data(GetSize(old_rd_data));
|
||||
std::vector<std::vector<State>> new_initdata;
|
||||
std::vector<int> shuffle_map;
|
||||
|
||||
if (cell_init)
|
||||
new_initdata.resize(mem.size);
|
||||
|
||||
for (auto &it : en_order)
|
||||
{
|
||||
auto &bits = bits_wr_en.at(it);
|
||||
int buckets = (GetSize(bits) + bucket_size - 1) / bucket_size;
|
||||
int fillbits = buckets*bucket_size - GetSize(bits);
|
||||
SigBit fillbit;
|
||||
for (auto bit : bits_wr_en.at(it))
|
||||
shuffle_map.push_back(bit);
|
||||
|
||||
for (int i = 0; i < GetSize(bits); i++) {
|
||||
for (int j = 0; j < GetSize(mem.wr_ports); j++) {
|
||||
new_wr_en[j].append(old_wr_en[j][bits[i]]);
|
||||
new_wr_data[j].append(old_wr_data[j][bits[i]]);
|
||||
fillbit = old_wr_en[j][bits[i]];
|
||||
}
|
||||
for (int j = 0; j < GetSize(mem.rd_ports); j++)
|
||||
new_rd_data[j].append(old_rd_data[j][bits[i]]);
|
||||
if (cell_init) {
|
||||
for (int j = 0; j < mem.size; j++)
|
||||
new_initdata[j].push_back(initdata[j][bits[i]]);
|
||||
}
|
||||
shuffle_map.push_back(bits[i]);
|
||||
}
|
||||
|
||||
for (int i = 0; i < fillbits; i++) {
|
||||
for (int j = 0; j < GetSize(mem.wr_ports); j++) {
|
||||
new_wr_en[j].append(fillbit);
|
||||
new_wr_data[j].append(State::S0);
|
||||
}
|
||||
for (int j = 0; j < GetSize(mem.rd_ports); j++)
|
||||
new_rd_data[j].append(State::Sx);
|
||||
if (cell_init) {
|
||||
for (int j = 0; j < mem.size; j++)
|
||||
new_initdata[j].push_back(State::Sx);
|
||||
}
|
||||
while (GetSize(shuffle_map) % bucket_size)
|
||||
shuffle_map.push_back(-1);
|
||||
}
|
||||
}
|
||||
|
||||
log(" Results of bit order shuffling:");
|
||||
|
@ -538,26 +470,15 @@ bool replace_memory(Mem &orig_mem, const rules_t &rules, FfInitVals *initvals, c
|
|||
log("\n");
|
||||
|
||||
// update mem_*, wr_*, and rd_* variables
|
||||
|
||||
mem.width = GetSize(new_wr_en.front());
|
||||
|
||||
for (int i = 0; i < GetSize(mem.wr_ports); i++) {
|
||||
auto &port = mem.wr_ports[i];
|
||||
port.en = new_wr_en[i];
|
||||
port.data = new_wr_data[i];
|
||||
}
|
||||
|
||||
for (int i = 0; i < GetSize(mem.rd_ports); i++) {
|
||||
auto &port = mem.rd_ports[i];
|
||||
port.data = new_rd_data[i];
|
||||
}
|
||||
|
||||
if (cell_init) {
|
||||
for (int i = 0; i < mem.size; i++)
|
||||
initdata[i] = Const(new_initdata[i]);
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < mem.width; i++)
|
||||
shuffle_map.push_back(i);
|
||||
}
|
||||
|
||||
// Align width up to dbits.
|
||||
while (GetSize(shuffle_map) % bram.dbits)
|
||||
shuffle_map.push_back(-1);
|
||||
|
||||
// assign write ports
|
||||
pair<SigBit, bool> wr_clkdom;
|
||||
for (int cell_port_i = 0, bram_port_i = 0; cell_port_i < GetSize(mem.wr_ports); cell_port_i++)
|
||||
|
@ -575,7 +496,7 @@ bool replace_memory(Mem &orig_mem, const rules_t &rules, FfInitVals *initvals, c
|
|||
for (; bram_port_i < GetSize(portinfos); bram_port_i++)
|
||||
{
|
||||
auto &pi = portinfos[bram_port_i];
|
||||
make_transp_enbits = pi.enable;
|
||||
make_transp_enbits = pi.enable ? pi.enable : 1;
|
||||
make_transp_clk = clkdom;
|
||||
|
||||
if (pi.wrmode != 1)
|
||||
|
@ -602,16 +523,25 @@ bool replace_memory(Mem &orig_mem, const rules_t &rules, FfInitVals *initvals, c
|
|||
}
|
||||
}
|
||||
|
||||
SigSpec sig_en;
|
||||
SigBit last_en_bit = State::S1;
|
||||
for (int i = 0; i < mem.width; i++) {
|
||||
if (pi.enable && i % (bram.dbits / pi.enable) == 0) {
|
||||
last_en_bit = port.en[i];
|
||||
sig_en.append(last_en_bit);
|
||||
}
|
||||
if (last_en_bit != port.en[i]) {
|
||||
log(" Bram port %c%d has incompatible enable structure.\n", pi.group + 'A', pi.index + 1);
|
||||
goto skip_bram_wport;
|
||||
// We need to check enable compatibility of this port, as well as all
|
||||
// ports that have priority over this one (because they will be involved
|
||||
// in emulate_priority logic).
|
||||
|
||||
for (int i = 0; i < GetSize(mem.wr_ports); i++) {
|
||||
auto &oport = mem.wr_ports[i];
|
||||
if (i != cell_port_i && !oport.priority_mask[cell_port_i])
|
||||
continue;
|
||||
SigBit last_en_bit = State::S1;
|
||||
for (int j = 0; j < GetSize(shuffle_map); j++) {
|
||||
if (shuffle_map[j] == -1)
|
||||
continue;
|
||||
SigBit en_bit = oport.en[shuffle_map[j]];
|
||||
if (pi.enable && j % (bram.dbits / pi.enable) == 0)
|
||||
last_en_bit = en_bit;
|
||||
if (last_en_bit != en_bit) {
|
||||
log(" Bram port %c%d has incompatible enable structure.\n", pi.group + 'A', pi.index + 1);
|
||||
goto skip_bram_wport;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -621,14 +551,8 @@ bool replace_memory(Mem &orig_mem, const rules_t &rules, FfInitVals *initvals, c
|
|||
if (port.clk_enable) {
|
||||
clock_domains[pi.clocks] = clkdom;
|
||||
clock_polarities[pi.clkpol] = clkdom.second;
|
||||
pi.sig_clock = clkdom.first;
|
||||
pi.effective_clkpol = clkdom.second;
|
||||
}
|
||||
|
||||
pi.sig_en = sig_en;
|
||||
pi.sig_addr = port.addr;
|
||||
pi.sig_data = port.data;
|
||||
|
||||
bram_port_i++;
|
||||
goto mapped_wr_port;
|
||||
}
|
||||
|
@ -651,10 +575,6 @@ grow_read_ports:;
|
|||
for (auto &pi : portinfos) {
|
||||
if (pi.wrmode == 0) {
|
||||
pi.mapped_port = -1;
|
||||
pi.sig_clock = SigBit();
|
||||
pi.sig_addr = SigSpec();
|
||||
pi.sig_data = SigSpec();
|
||||
pi.sig_en = SigSpec();
|
||||
pi.make_outreg = false;
|
||||
pi.make_transp = false;
|
||||
}
|
||||
|
@ -766,19 +686,13 @@ grow_read_ports:;
|
|||
log(" Mapped to bram port %c%d.%d.\n", pi.group + 'A', pi.index + 1, pi.dupidx + 1);
|
||||
pi.mapped_port = cell_port_i;
|
||||
|
||||
if (port.clk_enable && !pi.make_outreg) {
|
||||
if (pi.clocks) {
|
||||
clock_domains[pi.clocks] = clkdom;
|
||||
clock_polarities[pi.clkpol] = clkdom.second;
|
||||
if (!pi.make_transp)
|
||||
read_transp[pi.transp] = transp;
|
||||
pi.sig_clock = clkdom.first;
|
||||
pi.sig_en = port.en;
|
||||
pi.effective_clkpol = clkdom.second;
|
||||
}
|
||||
|
||||
pi.sig_addr = port.addr;
|
||||
pi.sig_data = port.data;
|
||||
|
||||
if (grow_read_ports_cursor < cell_port_i) {
|
||||
grow_read_ports_cursor = cell_port_i;
|
||||
try_growing_more_read_ports = true;
|
||||
|
@ -798,17 +712,19 @@ grow_read_ports:;
|
|||
|
||||
// update properties and re-check conditions
|
||||
|
||||
int dcells = GetSize(shuffle_map) / bram.dbits;
|
||||
int acells = (mem.size + (1 << bram.abits) - 1) / (1 << bram.abits);
|
||||
if (mode <= 1)
|
||||
{
|
||||
match_properties["dups"] = dup_count;
|
||||
match_properties["waste"] = match_properties["dups"] * match_properties["bwaste"];
|
||||
|
||||
int cells = ((mem.width + bram.dbits - 1) / bram.dbits) * ((mem.size + (1 << bram.abits) - 1) / (1 << bram.abits));
|
||||
int cells = dcells * acells;
|
||||
match_properties["efficiency"] = (100 * match_properties["bits"]) / (dup_count * cells * bram.dbits * (1 << bram.abits));
|
||||
|
||||
match_properties["dcells"] = ((mem.width + bram.dbits - 1) / bram.dbits);
|
||||
match_properties["acells"] = ((mem.size + (1 << bram.abits) - 1) / (1 << bram.abits));
|
||||
match_properties["cells"] = match_properties["dcells"] * match_properties["acells"] * match_properties["dups"];
|
||||
match_properties["dcells"] = dcells;
|
||||
match_properties["acells"] = acells;
|
||||
match_properties["cells"] = cells * dup_count;
|
||||
|
||||
log(" Updated properties: dups=%d waste=%d efficiency=%d\n",
|
||||
match_properties["dups"], match_properties["waste"], match_properties["efficiency"]);
|
||||
|
@ -875,6 +791,70 @@ grow_read_ports:;
|
|||
return true;
|
||||
}
|
||||
|
||||
// At this point we are commited to replacing the RAM, and can mutate mem.
|
||||
|
||||
// We don't really support priorities, emulate them.
|
||||
for (int i = 0; i < GetSize(mem.wr_ports); i++)
|
||||
for (int j = 0; j < i; j++)
|
||||
mem.emulate_priority(j, i);
|
||||
|
||||
// Now the big swizzle.
|
||||
mem.width = GetSize(shuffle_map);
|
||||
|
||||
// Swizzle write ports.
|
||||
for (auto &port : mem.wr_ports) {
|
||||
SigSpec new_en, new_data;
|
||||
SigBit en_bit = State::S1;
|
||||
for (auto idx : shuffle_map) {
|
||||
if (idx == -1) {
|
||||
new_data.append(State::Sx);
|
||||
} else {
|
||||
new_data.append(port.data[idx]);
|
||||
en_bit = port.en[idx];
|
||||
}
|
||||
new_en.append(en_bit);
|
||||
}
|
||||
port.en = new_en;
|
||||
port.data = new_data;
|
||||
}
|
||||
|
||||
// Swizzle read ports.
|
||||
for (auto &port : mem.rd_ports) {
|
||||
SigSpec new_data = module->addWire(NEW_ID, mem.width);
|
||||
Const new_init_value = Const(State::Sx, mem.width);
|
||||
Const new_arst_value = Const(State::Sx, mem.width);
|
||||
Const new_srst_value = Const(State::Sx, mem.width);
|
||||
for (int i = 0; i < mem.width; i++)
|
||||
if (shuffle_map[i] != -1) {
|
||||
module->connect(port.data[shuffle_map[i]], new_data[i]);
|
||||
new_init_value[i] = port.init_value[shuffle_map[i]];
|
||||
new_arst_value[i] = port.arst_value[shuffle_map[i]];
|
||||
new_srst_value[i] = port.srst_value[shuffle_map[i]];
|
||||
}
|
||||
port.data = new_data;
|
||||
port.init_value = new_init_value;
|
||||
port.arst_value = new_arst_value;
|
||||
port.srst_value = new_srst_value;
|
||||
}
|
||||
|
||||
// Swizzle the init data.
|
||||
bool cell_init = !mem.inits.empty();
|
||||
vector<Const> initdata;
|
||||
if (cell_init) {
|
||||
Const initparam = mem.get_init_data();
|
||||
initdata.reserve(mem.size);
|
||||
for (int i = 0; i < mem.size; i++) {
|
||||
std::vector<State> val;
|
||||
for (auto idx : shuffle_map) {
|
||||
if (idx == -1)
|
||||
val.push_back(State::Sx);
|
||||
else
|
||||
val.push_back(initparam[mem.width * i + idx]);
|
||||
}
|
||||
initdata.push_back(Const(val));
|
||||
}
|
||||
}
|
||||
|
||||
// prepare variant parameters
|
||||
|
||||
dict<IdString, Const> variant_params;
|
||||
|
@ -882,20 +862,15 @@ grow_read_ports:;
|
|||
bram.find_variant_params(variant_params, other_bram);
|
||||
|
||||
// Apply make_outreg where necessary.
|
||||
for (auto &pi : portinfos) {
|
||||
if (pi.make_outreg) {
|
||||
for (auto &pi : portinfos)
|
||||
if (pi.make_outreg)
|
||||
mem.extract_rdff(pi.mapped_port, initvals);
|
||||
auto &port = mem.rd_ports[pi.mapped_port];
|
||||
pi.sig_addr = port.addr;
|
||||
pi.sig_data = port.data;
|
||||
}
|
||||
}
|
||||
|
||||
// actually replace that memory cell
|
||||
|
||||
dict<SigSpec, pair<SigSpec, SigSpec>> dout_cache;
|
||||
|
||||
for (int grid_d = 0; grid_d*bram.dbits < mem.width; grid_d++)
|
||||
for (int grid_d = 0; grid_d < dcells; grid_d++)
|
||||
{
|
||||
SigSpec mktr_wraddr, mktr_wrdata, mktr_wrdata_q;
|
||||
vector<SigSpec> mktr_wren;
|
||||
|
@ -905,11 +880,11 @@ grow_read_ports:;
|
|||
mktr_wrdata = module->addWire(NEW_ID, bram.dbits);
|
||||
mktr_wrdata_q = module->addWire(NEW_ID, bram.dbits);
|
||||
module->addDff(NEW_ID, make_transp_clk.first, mktr_wrdata, mktr_wrdata_q, make_transp_clk.second);
|
||||
for (int grid_a = 0; grid_a*(1 << bram.abits) < mem.size; grid_a++)
|
||||
for (int grid_a = 0; grid_a < acells; grid_a++)
|
||||
mktr_wren.push_back(module->addWire(NEW_ID, make_transp_enbits));
|
||||
}
|
||||
|
||||
for (int grid_a = 0; grid_a*(1 << bram.abits) < mem.size; grid_a++)
|
||||
for (int grid_a = 0; grid_a < acells; grid_a++)
|
||||
for (int dupidx = 0; dupidx < dup_count; dupidx++)
|
||||
{
|
||||
Cell *c = module->addCell(module->uniquify(stringf("%s.%d.%d.%d", mem.memid.c_str(), grid_d, grid_a, dupidx)), bram.name);
|
||||
|
@ -919,18 +894,16 @@ grow_read_ports:;
|
|||
c->setParam(vp.first, vp.second);
|
||||
|
||||
if (cell_init) {
|
||||
int init_offset = grid_a*(1 << bram.abits);
|
||||
int init_offset = grid_a*(1 << bram.abits) - mem.start_offset;
|
||||
int init_shift = grid_d*bram.dbits;
|
||||
int init_size = (1 << bram.abits);
|
||||
Const initparam(State::Sx, init_size*bram.dbits);
|
||||
for (int i = 0; i < init_size; i++) {
|
||||
State padding = State::Sx;
|
||||
for (int i = 0; i < init_size; i++)
|
||||
for (int j = 0; j < bram.dbits; j++)
|
||||
if (init_offset+i < GetSize(initdata) && init_shift+j < GetSize(initdata[init_offset+i]))
|
||||
if (init_offset+i < GetSize(initdata) && init_offset+i >= 0)
|
||||
initparam[i*bram.dbits+j] = initdata[init_offset+i][init_shift+j];
|
||||
else
|
||||
initparam[i*bram.dbits+j] = padding;
|
||||
}
|
||||
initparam[i*bram.dbits+j] = State::Sx;
|
||||
c->setParam(ID::INIT, initparam);
|
||||
}
|
||||
|
||||
|
@ -942,55 +915,75 @@ grow_read_ports:;
|
|||
string prefix = stringf("%c%d", pi.group + 'A', pi.index + 1);
|
||||
const char *pf = prefix.c_str();
|
||||
|
||||
if (pi.clocks && (!c->hasPort(stringf("\\CLK%d", (pi.clocks-1) % clocks_max + 1)) || pi.sig_clock.wire)) {
|
||||
c->setPort(stringf("\\CLK%d", (pi.clocks-1) % clocks_max + 1), pi.sig_clock);
|
||||
if (pi.clkpol > 1 && pi.sig_clock.wire)
|
||||
c->setParam(stringf("\\CLKPOL%d", (pi.clkpol-1) % clkpol_max + 1), clock_polarities.at(pi.clkpol));
|
||||
if (pi.transp > 1 && pi.sig_clock.wire)
|
||||
c->setParam(stringf("\\TRANSP%d", (pi.transp-1) % transp_max + 1), read_transp.at(pi.transp));
|
||||
}
|
||||
if (pi.clocks && clock_domains.count(pi.clocks))
|
||||
c->setPort(stringf("\\CLK%d", (pi.clocks-1) % clocks_max + 1), clock_domains.at(pi.clocks).first);
|
||||
if (pi.clkpol > 1 && clock_polarities.count(pi.clkpol))
|
||||
c->setParam(stringf("\\CLKPOL%d", (pi.clkpol-1) % clkpol_max + 1), clock_polarities.at(pi.clkpol));
|
||||
if (pi.transp > 1 && read_transp.count(pi.transp))
|
||||
c->setParam(stringf("\\TRANSP%d", (pi.transp-1) % transp_max + 1), read_transp.at(pi.transp));
|
||||
|
||||
SigSpec addr_ok;
|
||||
if (GetSize(pi.sig_addr) > bram.abits) {
|
||||
SigSpec extra_addr = pi.sig_addr.extract(bram.abits, GetSize(pi.sig_addr) - bram.abits);
|
||||
SigSpec sig_addr;
|
||||
if (pi.mapped_port >= 0) {
|
||||
if (pi.wrmode == 1)
|
||||
sig_addr = mem.wr_ports[pi.mapped_port].addr;
|
||||
else
|
||||
sig_addr = mem.rd_ports[pi.mapped_port].addr;
|
||||
}
|
||||
|
||||
if (GetSize(sig_addr) > bram.abits) {
|
||||
SigSpec extra_addr = sig_addr.extract(bram.abits, GetSize(sig_addr) - bram.abits);
|
||||
SigSpec extra_addr_sel = SigSpec(grid_a, GetSize(extra_addr));
|
||||
addr_ok = module->Eq(NEW_ID, extra_addr, extra_addr_sel);
|
||||
}
|
||||
|
||||
if (pi.enable)
|
||||
{
|
||||
SigSpec sig_en = pi.sig_en;
|
||||
|
||||
if (pi.wrmode == 1) {
|
||||
sig_en.extend_u0((grid_d+1) * pi.enable);
|
||||
sig_en = sig_en.extract(grid_d * pi.enable, pi.enable);
|
||||
}
|
||||
|
||||
if (!addr_ok.empty())
|
||||
sig_en = module->Mux(NEW_ID, SigSpec(0, GetSize(sig_en)), sig_en, addr_ok);
|
||||
|
||||
c->setPort(stringf("\\%sEN", pf), sig_en);
|
||||
|
||||
if (pi.wrmode == 1 && enable_make_transp)
|
||||
module->connect(mktr_wren[grid_a], sig_en);
|
||||
}
|
||||
|
||||
SigSpec sig_addr = pi.sig_addr;
|
||||
sig_addr.extend_u0(bram.abits);
|
||||
c->setPort(stringf("\\%sADDR", pf), sig_addr);
|
||||
|
||||
if (pi.wrmode == 1 && enable_make_transp && grid_a == 0)
|
||||
module->connect(mktr_wraddr, sig_addr);
|
||||
|
||||
SigSpec sig_data = pi.sig_data;
|
||||
sig_data.extend_u0((grid_d+1) * bram.dbits);
|
||||
sig_data = sig_data.extract(grid_d * bram.dbits, bram.dbits);
|
||||
|
||||
if (pi.wrmode == 1) {
|
||||
if (pi.mapped_port == -1)
|
||||
{
|
||||
if (pi.enable)
|
||||
c->setPort(stringf("\\%sEN", pf), Const(State::S0, pi.enable));
|
||||
continue;
|
||||
}
|
||||
|
||||
auto &port = mem.wr_ports[pi.mapped_port];
|
||||
SigSpec sig_data = port.data.extract(grid_d * bram.dbits, bram.dbits);
|
||||
c->setPort(stringf("\\%sDATA", pf), sig_data);
|
||||
if (enable_make_transp && grid_a == 0)
|
||||
|
||||
if (pi.enable)
|
||||
{
|
||||
SigSpec sig_en;
|
||||
int stride = bram.dbits / pi.enable;
|
||||
for (int i = 0; i < pi.enable; i++)
|
||||
sig_en.append(port.en[stride * i + grid_d * bram.dbits]);
|
||||
|
||||
if (!addr_ok.empty())
|
||||
sig_en = module->Mux(NEW_ID, SigSpec(0, GetSize(sig_en)), sig_en, addr_ok);
|
||||
|
||||
c->setPort(stringf("\\%sEN", pf), sig_en);
|
||||
|
||||
if (enable_make_transp)
|
||||
module->connect(mktr_wren[grid_a], sig_en);
|
||||
}
|
||||
else if (enable_make_transp)
|
||||
module->connect(mktr_wren[grid_a], addr_ok);
|
||||
|
||||
if (enable_make_transp && grid_a == 0) {
|
||||
module->connect(mktr_wraddr, sig_addr);
|
||||
module->connect(mktr_wrdata, sig_data);
|
||||
}
|
||||
} else {
|
||||
if (pi.mapped_port == -1)
|
||||
{
|
||||
if (pi.enable)
|
||||
c->setPort(stringf("\\%sEN", pf), State::S0);
|
||||
continue;
|
||||
}
|
||||
auto &port = mem.rd_ports[pi.mapped_port];
|
||||
SigSpec sig_data = port.data.extract(grid_d * bram.dbits, bram.dbits);
|
||||
|
||||
SigSpec bram_dout = module->addWire(NEW_ID, bram.dbits);
|
||||
c->setPort(stringf("\\%sDATA", pf), bram_dout);
|
||||
if (pi.make_transp) {
|
||||
|
@ -1010,22 +1003,21 @@ grow_read_ports:;
|
|||
}
|
||||
}
|
||||
|
||||
for (int i = bram.dbits-1; i >= 0; i--)
|
||||
if (sig_data[i].wire == nullptr) {
|
||||
sig_data.remove(i);
|
||||
bram_dout.remove(i);
|
||||
}
|
||||
|
||||
SigSpec addr_ok_q = addr_ok;
|
||||
if (pi.clocks && !addr_ok.empty()) {
|
||||
if (port.clk_enable && !addr_ok.empty()) {
|
||||
addr_ok_q = module->addWire(NEW_ID);
|
||||
if (!pi.sig_en.empty())
|
||||
addr_ok = module->Mux(NEW_ID, addr_ok_q, addr_ok, pi.sig_en);
|
||||
module->addDff(NEW_ID, pi.sig_clock, addr_ok, addr_ok_q, pi.effective_clkpol);
|
||||
module->addDffe(NEW_ID, port.clk, port.en, addr_ok, addr_ok_q, port.clk_polarity);
|
||||
}
|
||||
|
||||
dout_cache[sig_data].first.append(addr_ok_q);
|
||||
dout_cache[sig_data].second.append(bram_dout);
|
||||
|
||||
if (pi.enable) {
|
||||
SigSpec sig_en = port.en;
|
||||
if (!addr_ok.empty())
|
||||
sig_en = module->And(NEW_ID, sig_en, addr_ok);
|
||||
c->setPort(stringf("\\%sEN", pf), sig_en);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1070,20 +1062,6 @@ void handle_memory(Mem &mem, const rules_t &rules, FfInitVals *initvals)
|
|||
log(" %s=%d", it.first.c_str(), it.second);
|
||||
log("\n");
|
||||
|
||||
// This pass cannot deal with write port priority — we need to emulate it,
|
||||
// if present. Since priority emulation will change the enable signals,
|
||||
// which in turn may change enable grouping and mapping eligibility in
|
||||
// pathological cases, we need to do this before checking mapping
|
||||
// eligibility. This will create priority emulation logic for all
|
||||
// memories in the design regardless of whether we end up mapping them
|
||||
// or not, but since we never call Mem::emit(), the new priority masks
|
||||
// and enables won't be commited to the design, and this logic will be
|
||||
// unused (and removed by subsequent opt_clean) for unmapped memories.
|
||||
|
||||
for (int i = 0; i < GetSize(mem.wr_ports); i++)
|
||||
for (int j = 0; j < i; j++)
|
||||
mem.emulate_priority(j, i);
|
||||
|
||||
pool<pair<IdString, int>> failed_brams;
|
||||
dict<pair<int, int>, tuple<int, int, int>> best_rule_cache;
|
||||
|
||||
|
|
Loading…
Reference in New Issue