mirror of https://github.com/YosysHQ/yosys.git
memory_dff: Recognize soft transparency logic.
This commit is contained in:
parent
616ace2d92
commit
9fdedf4d1c
|
@ -19,7 +19,9 @@
|
|||
|
||||
#include "kernel/yosys.h"
|
||||
#include "kernel/sigtools.h"
|
||||
#include "kernel/modtools.h"
|
||||
#include "kernel/ffinit.h"
|
||||
#include "kernel/qcsat.h"
|
||||
#include "kernel/mem.h"
|
||||
#include "kernel/ff.h"
|
||||
#include "kernel/ffmerge.h"
|
||||
|
@ -27,27 +29,317 @@
|
|||
USING_YOSYS_NAMESPACE
|
||||
PRIVATE_NAMESPACE_BEGIN
|
||||
|
||||
struct MuxData {
|
||||
int base_idx;
|
||||
int size;
|
||||
bool is_b;
|
||||
SigSpec sig_s;
|
||||
std::vector<SigSpec> sig_other;
|
||||
};
|
||||
|
||||
struct PortData {
|
||||
bool relevant;
|
||||
std::vector<bool> uncollidable_mask;
|
||||
std::vector<bool> transparency_mask;
|
||||
std::vector<bool> collision_x_mask;
|
||||
bool final_transparency;
|
||||
bool final_collision_x;
|
||||
};
|
||||
|
||||
// A helper with some caching for transparency-related SAT queries.
|
||||
// Bound to a single memory read port in the process of being converted
|
||||
// from async to sync..
|
||||
struct MemQueryCache
|
||||
{
|
||||
QuickConeSat &qcsat;
|
||||
// The memory.
|
||||
Mem &mem;
|
||||
// The port, still async at this point.
|
||||
MemRd &port;
|
||||
// The virtual FF that will end up merged into this port.
|
||||
FfData &ff;
|
||||
// An ezSAT variable that is true when we actually care about the data
|
||||
// read from memory (ie. the FF has enable on and is not in reset).
|
||||
int port_ren;
|
||||
// Some caches.
|
||||
dict<std::pair<int, SigBit>, bool> cache_can_collide_rdwr;
|
||||
dict<std::tuple<int, int, SigBit, SigBit>, bool> cache_can_collide_together;
|
||||
dict<std::tuple<int, SigBit, SigBit, bool>, bool> cache_is_w2rbyp;
|
||||
dict<std::tuple<SigBit, bool>, bool> cache_impossible_with_ren;
|
||||
|
||||
MemQueryCache(QuickConeSat &qcsat, Mem &mem, MemRd &port, FfData &ff) : qcsat(qcsat), mem(mem), port(port), ff(ff) {
|
||||
// port_ren is an upper bound on when we care about the value fetched
|
||||
// from memory this cycle.
|
||||
int ren = ezSAT::CONST_TRUE;
|
||||
if (ff.has_en) {
|
||||
ren = qcsat.importSigBit(ff.sig_en);
|
||||
if (!ff.pol_en)
|
||||
ren = qcsat.ez->NOT(ren);
|
||||
}
|
||||
if (ff.has_srst) {
|
||||
int nrst = qcsat.importSigBit(ff.sig_srst);
|
||||
if (ff.pol_srst)
|
||||
nrst = qcsat.ez->NOT(nrst);
|
||||
ren = qcsat.ez->AND(ren, nrst);
|
||||
}
|
||||
port_ren = ren;
|
||||
}
|
||||
|
||||
// Returns ezSAT variable that is true iff the two addresses are the same.
|
||||
int addr_eq(SigSpec raddr, SigSpec waddr) {
|
||||
int abits = std::max(GetSize(raddr), GetSize(waddr));
|
||||
raddr.extend_u0(abits);
|
||||
waddr.extend_u0(abits);
|
||||
return qcsat.ez->vec_eq(qcsat.importSig(raddr), qcsat.importSig(waddr));
|
||||
}
|
||||
|
||||
// Returns true if a given write port bit can be active at the same time
|
||||
// as this read port and at the same address.
|
||||
bool can_collide_rdwr(int widx, SigBit wen) {
|
||||
std::pair<int, SigBit> key(widx, wen);
|
||||
auto it = cache_can_collide_rdwr.find(key);
|
||||
if (it != cache_can_collide_rdwr.end())
|
||||
return it->second;
|
||||
auto &wport = mem.wr_ports[widx];
|
||||
int aeq = addr_eq(port.addr, wport.addr);
|
||||
int wen_sat = qcsat.importSigBit(wen);
|
||||
qcsat.prepare();
|
||||
bool res = qcsat.ez->solve(aeq, wen_sat, port_ren);
|
||||
cache_can_collide_rdwr[key] = res;
|
||||
return res;
|
||||
}
|
||||
|
||||
// Returns true if both given write port bits can be active at the same
|
||||
// time as this read port and at the same address (three-way collision).
|
||||
bool can_collide_together(int widx1, int widx2, int bitidx) {
|
||||
auto &wport1 = mem.wr_ports[widx1];
|
||||
auto &wport2 = mem.wr_ports[widx2];
|
||||
SigBit wen1 = wport1.en[bitidx];
|
||||
SigBit wen2 = wport2.en[bitidx];
|
||||
std::tuple<int, int, SigBit, SigBit> key(widx1, widx2, wen1, wen2);
|
||||
auto it = cache_can_collide_together.find(key);
|
||||
if (it != cache_can_collide_together.end())
|
||||
return it->second;
|
||||
int aeq1 = addr_eq(port.addr, wport1.addr);
|
||||
int aeq2 = addr_eq(port.addr, wport2.addr);
|
||||
int wen1_sat = qcsat.importSigBit(wen1);
|
||||
int wen2_sat = qcsat.importSigBit(wen2);
|
||||
qcsat.prepare();
|
||||
bool res = qcsat.ez->solve(wen1_sat, wen2_sat, aeq1, aeq2, port_ren);
|
||||
cache_can_collide_together[key] = res;
|
||||
return res;
|
||||
}
|
||||
|
||||
// Returns true if the given mux selection signal is a valid data-bypass
|
||||
// signal in soft transparency logic for a given write port bit.
|
||||
bool is_w2rbyp(int widx, SigBit wen, SigBit sel, bool neg_sel) {
|
||||
std::tuple<int, SigBit, SigBit, bool> key(widx, wen, sel, neg_sel);
|
||||
auto it = cache_is_w2rbyp.find(key);
|
||||
if (it != cache_is_w2rbyp.end())
|
||||
return it->second;
|
||||
auto &wport = mem.wr_ports[widx];
|
||||
int aeq = addr_eq(port.addr, wport.addr);
|
||||
int wen_sat = qcsat.importSigBit(wen);
|
||||
int sel_expected = qcsat.ez->AND(aeq, wen_sat);
|
||||
int sel_sat = qcsat.importSigBit(sel);
|
||||
if (neg_sel)
|
||||
sel_sat = qcsat.ez->NOT(sel_sat);
|
||||
qcsat.prepare();
|
||||
bool res = !qcsat.ez->solve(port_ren, qcsat.ez->XOR(sel_expected, sel_sat));
|
||||
cache_is_w2rbyp[key] = res;
|
||||
return res;
|
||||
}
|
||||
|
||||
// Returns true if the given mux selection signal can never be true
|
||||
// when this port is active.
|
||||
bool impossible_with_ren(SigBit sel, bool neg_sel) {
|
||||
std::tuple<SigBit, bool> key(sel, neg_sel);
|
||||
auto it = cache_impossible_with_ren.find(key);
|
||||
if (it != cache_impossible_with_ren.end())
|
||||
return it->second;
|
||||
int sel_sat = qcsat.importSigBit(sel);
|
||||
if (neg_sel)
|
||||
sel_sat = qcsat.ez->NOT(sel_sat);
|
||||
qcsat.prepare();
|
||||
bool res = !qcsat.ez->solve(port_ren, sel_sat);
|
||||
cache_impossible_with_ren[key] = res;
|
||||
return res;
|
||||
}
|
||||
|
||||
// Helper for data_eq: walks up a multiplexer when the value of its
|
||||
// sel signal is constant under the assumption that this read port
|
||||
// is active and a given other mux sel signal is true.
|
||||
bool walk_up_mux_cond(SigBit sel, bool neg_sel, SigBit &bit) {
|
||||
auto &drivers = qcsat.modwalker.signal_drivers[qcsat.modwalker.sigmap(bit)];
|
||||
if (GetSize(drivers) != 1)
|
||||
return false;
|
||||
auto driver = *drivers.begin();
|
||||
if (!driver.cell->type.in(ID($mux), ID($pmux)))
|
||||
return false;
|
||||
log_assert(driver.port == ID::Y);
|
||||
SigSpec sig_s = driver.cell->getPort(ID::S);
|
||||
int sel_sat = qcsat.importSigBit(sel);
|
||||
if (neg_sel)
|
||||
sel_sat = qcsat.ez->NOT(sel_sat);
|
||||
bool all_0 = true;
|
||||
int width = driver.cell->parameters.at(ID::WIDTH).as_int();
|
||||
for (int i = 0; i < GetSize(sig_s); i++) {
|
||||
int sbit = qcsat.importSigBit(sig_s[i]);
|
||||
qcsat.prepare();
|
||||
if (!qcsat.ez->solve(port_ren, sel_sat, qcsat.ez->NOT(sbit))) {
|
||||
bit = driver.cell->getPort(ID::B)[i * width + driver.offset];
|
||||
return true;
|
||||
}
|
||||
if (qcsat.ez->solve(port_ren, sel_sat, sbit))
|
||||
all_0 = false;
|
||||
}
|
||||
if (all_0) {
|
||||
bit = driver.cell->getPort(ID::A)[driver.offset];
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Returns true if a given data signal is equivalent to another, under
|
||||
// the assumption that this read port is active and a given mux sel signal
|
||||
// is true. Used to match transparency logic data with write port data.
|
||||
// The walk_up_mux_cond part is necessary because write ports in yosys
|
||||
// tend to be connected to things like (wen ? wdata : 'x).
|
||||
bool data_eq(SigBit sel, bool neg_sel, SigBit dbit, SigBit odbit) {
|
||||
if (qcsat.modwalker.sigmap(dbit) == qcsat.modwalker.sigmap(odbit))
|
||||
return true;
|
||||
while (walk_up_mux_cond(sel, neg_sel, dbit));
|
||||
while (walk_up_mux_cond(sel, neg_sel, odbit));
|
||||
return qcsat.modwalker.sigmap(dbit) == qcsat.modwalker.sigmap(odbit);
|
||||
}
|
||||
};
|
||||
|
||||
struct MemoryDffWorker
|
||||
{
|
||||
Module *module;
|
||||
SigMap sigmap;
|
||||
ModWalker modwalker;
|
||||
FfInitVals initvals;
|
||||
FfMergeHelper merger;
|
||||
|
||||
MemoryDffWorker(Module *module) : module(module), sigmap(module)
|
||||
MemoryDffWorker(Module *module) : module(module), modwalker(module->design)
|
||||
{
|
||||
initvals.set(&sigmap, module);
|
||||
modwalker.setup(module);
|
||||
initvals.set(&modwalker.sigmap, module);
|
||||
merger.set(&initvals, module);
|
||||
}
|
||||
|
||||
void handle_rd_port(Mem &mem, int idx)
|
||||
// Starting from the output of an async read port, as long as the data
|
||||
// signal's only user is a mux data signal, passes through the mux
|
||||
// and remembers information about it. Conceptually works on every
|
||||
// bit separately, but coalesces the result when possible.
|
||||
SigSpec walk_muxes(SigSpec data, std::vector<MuxData> &res) {
|
||||
bool did_something;
|
||||
do {
|
||||
did_something = false;
|
||||
int prev_idx = -1;
|
||||
Cell *prev_cell = nullptr;
|
||||
bool prev_is_b = false;
|
||||
for (int i = 0; i < GetSize(data); i++) {
|
||||
SigBit bit = modwalker.sigmap(data[i]);
|
||||
auto &consumers = modwalker.signal_consumers[bit];
|
||||
if (GetSize(consumers) != 1 || modwalker.signal_outputs.count(bit))
|
||||
continue;
|
||||
auto consumer = *consumers.begin();
|
||||
bool is_b;
|
||||
if (consumer.cell->type == ID($mux)) {
|
||||
if (consumer.port == ID::A) {
|
||||
is_b = false;
|
||||
} else if (consumer.port == ID::B) {
|
||||
is_b = true;
|
||||
} else {
|
||||
continue;
|
||||
}
|
||||
} else if (consumer.cell->type == ID($pmux)) {
|
||||
if (consumer.port == ID::A) {
|
||||
is_b = false;
|
||||
} else {
|
||||
continue;
|
||||
}
|
||||
} else {
|
||||
continue;
|
||||
}
|
||||
SigSpec y = consumer.cell->getPort(ID::Y);
|
||||
int mux_width = GetSize(y);
|
||||
SigBit ybit = y.extract(consumer.offset);
|
||||
if (prev_cell != consumer.cell || prev_idx+1 != i || prev_is_b != is_b) {
|
||||
MuxData md;
|
||||
md.base_idx = i;
|
||||
md.size = 0;
|
||||
md.is_b = is_b;
|
||||
md.sig_s = consumer.cell->getPort(ID::S);
|
||||
md.sig_other.resize(GetSize(md.sig_s));
|
||||
prev_cell = consumer.cell;
|
||||
prev_is_b = is_b;
|
||||
res.push_back(md);
|
||||
}
|
||||
auto &md = res.back();
|
||||
md.size++;
|
||||
for (int j = 0; j < GetSize(md.sig_s); j++) {
|
||||
SigBit obit = consumer.cell->getPort(is_b ? ID::A : ID::B).extract(j * mux_width + consumer.offset);
|
||||
md.sig_other[j].append(obit);
|
||||
}
|
||||
prev_idx = i;
|
||||
data[i] = ybit;
|
||||
did_something = true;
|
||||
}
|
||||
} while (did_something);
|
||||
return data;
|
||||
}
|
||||
|
||||
// Merges FF and possibly soft transparency logic into an asynchronous
|
||||
// read port, making it into a synchronous one.
|
||||
//
|
||||
// There are three moving parts involved here:
|
||||
//
|
||||
// - the async port, which we start from, whose data port is input to...
|
||||
// - an arbitrary chain of $mux and $pmux cells implementing soft transparency
|
||||
// logic (ie. bypassing write port's data iff the write port is active and
|
||||
// writing to the same address as this read port), which in turn feeds...
|
||||
// - a final FF
|
||||
//
|
||||
// The async port and the mux chain are not allowed to have any users that
|
||||
// are not part of the above.
|
||||
//
|
||||
// The algorithm is:
|
||||
//
|
||||
// 1. Walk through the muxes.
|
||||
// 2. Recognize the final FF.
|
||||
// 3. Knowing the FF's clock and read enable, make a list of write ports
|
||||
// that we'll run transparency analysis on.
|
||||
// 4. For every mux bit, recognize it as one of:
|
||||
// - a transparency bypass mux for some port
|
||||
// - a bypass mux that feeds 'x instead (this will result in collision
|
||||
// don't care behavior being recognized)
|
||||
// - a mux that never selects the other value when read port is active,
|
||||
// and can thus be skipped (this is necessary because this could
|
||||
// be a transparency bypass mux for never-colliding port that other
|
||||
// passes failed to optimize)
|
||||
// - a mux whose other input is 'x, and can thus be skipped
|
||||
// 5. When recognizing transparency bypasses, take care to preserve priority
|
||||
// behavior — when two bypasses are sequential muxes on the chain, they
|
||||
// effectively have priority over one another, and the transform can
|
||||
// only be performed when either a) their corresponding write ports
|
||||
// also have priority, or b) there can never be a three-way collision
|
||||
// between the two write ports and the read port.
|
||||
// 6. Check consistency of per-bit transparency masks, merge them into
|
||||
// per-port transparency masks
|
||||
// 7. If everything went fine in the previous steps, actually perform
|
||||
// the merge.
|
||||
void handle_rd_port(Mem &mem, QuickConeSat &qcsat, int idx)
|
||||
{
|
||||
auto &port = mem.rd_ports[idx];
|
||||
log("Checking read port `%s'[%d] in module `%s': ", mem.memid.c_str(), idx, module->name.c_str());
|
||||
|
||||
std::vector<MuxData> muxdata;
|
||||
SigSpec data = walk_muxes(port.data, muxdata);
|
||||
FfData ff;
|
||||
pool<std::pair<Cell *, int>> bits;
|
||||
if (!merger.find_output_ff(port.data, ff, bits)) {
|
||||
if (!merger.find_output_ff(data, ff, bits)) {
|
||||
log("no output FF found.\n");
|
||||
return;
|
||||
}
|
||||
|
@ -60,6 +352,144 @@ struct MemoryDffWorker
|
|||
log("output FF has both set and reset, not supported.\n");
|
||||
return;
|
||||
}
|
||||
|
||||
// Construct cache.
|
||||
MemQueryCache cache(qcsat, mem, port, ff);
|
||||
|
||||
// Prepare information structure about all ports, recognize port bits
|
||||
// that can never collide at all and don't need to be checked.
|
||||
std::vector<PortData> portdata;
|
||||
for (int i = 0; i < GetSize(mem.wr_ports); i++) {
|
||||
PortData pd;
|
||||
auto &wport = mem.wr_ports[i];
|
||||
pd.relevant = true;
|
||||
if (!wport.clk_enable)
|
||||
pd.relevant = false;
|
||||
if (wport.clk != ff.sig_clk)
|
||||
pd.relevant = false;
|
||||
if (wport.clk_polarity != ff.pol_clk)
|
||||
pd.relevant = false;
|
||||
// In theory, we *could* support mismatched width
|
||||
// ports here. However, it's not worth it — wide
|
||||
// ports are recognized *after* memory_dff in
|
||||
// a normal flow.
|
||||
if (wport.wide_log2 != port.wide_log2)
|
||||
pd.relevant = false;
|
||||
pd.uncollidable_mask.resize(GetSize(port.data));
|
||||
pd.transparency_mask.resize(GetSize(port.data));
|
||||
pd.collision_x_mask.resize(GetSize(port.data));
|
||||
if (pd.relevant) {
|
||||
// If we got this far, this port is potentially
|
||||
// transparent and/or has undefined collision
|
||||
// behavior. Now, for every bit, check if it can
|
||||
// ever collide.
|
||||
for (int j = 0; j < ff.width; j++) {
|
||||
if (!cache.can_collide_rdwr(i, wport.en[j])) {
|
||||
pd.uncollidable_mask[j] = true;
|
||||
pd.collision_x_mask[j] = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
portdata.push_back(pd);
|
||||
}
|
||||
|
||||
// Now inspect the mux chain.
|
||||
for (auto &md : muxdata) {
|
||||
// We only mark transparent bits after processing a complete
|
||||
// mux, so that the transparency priority validation check
|
||||
// below sees transparency information as of previous mux.
|
||||
std::vector<std::pair<PortData&, int>> trans_queue;
|
||||
for (int sel_idx = 0; sel_idx < GetSize(md.sig_s); sel_idx++) {
|
||||
SigBit sbit = md.sig_s[sel_idx];
|
||||
SigSpec &odata = md.sig_other[sel_idx];
|
||||
for (int bitidx = md.base_idx; bitidx < md.base_idx+md.size; bitidx++) {
|
||||
SigBit odbit = odata[bitidx-md.base_idx];
|
||||
bool recognized = false;
|
||||
for (int pi = 0; pi < GetSize(mem.wr_ports); pi++) {
|
||||
auto &pd = portdata[pi];
|
||||
auto &wport = mem.wr_ports[pi];
|
||||
if (!pd.relevant)
|
||||
continue;
|
||||
if (pd.uncollidable_mask[bitidx])
|
||||
continue;
|
||||
bool match = cache.is_w2rbyp(pi, wport.en[bitidx], sbit, md.is_b);
|
||||
if (!match)
|
||||
continue;
|
||||
// If we got here, we recognized this mux sel
|
||||
// as valid bypass sel for a given port bit.
|
||||
if (odbit == State::Sx) {
|
||||
// 'x, mark collision don't care.
|
||||
pd.collision_x_mask[bitidx] = true;
|
||||
pd.transparency_mask[bitidx] = false;
|
||||
} else if (cache.data_eq(sbit, md.is_b, wport.data[bitidx], odbit)) {
|
||||
// Correct data value, mark transparency,
|
||||
// but only after verifying that priority
|
||||
// is fine.
|
||||
for (int k = 0; k < GetSize(mem.wr_ports); k++) {
|
||||
if (portdata[k].transparency_mask[bitidx]) {
|
||||
if (wport.priority_mask[k])
|
||||
continue;
|
||||
if (!cache.can_collide_together(pi, k, bitidx))
|
||||
continue;
|
||||
log("FF found, but transparency logic priority doesn't match write priority.\n");
|
||||
return;
|
||||
}
|
||||
}
|
||||
recognized = true;
|
||||
trans_queue.push_back({pd, bitidx});
|
||||
break;
|
||||
} else {
|
||||
log("FF found, but with a mux data input that doesn't seem to correspond to transparency logic.\n");
|
||||
return;
|
||||
}
|
||||
}
|
||||
if (!recognized) {
|
||||
// If we haven't positively identified this as
|
||||
// a bypass: it's still skippable if the
|
||||
// data is 'x, or if the sel cannot actually be
|
||||
// active.
|
||||
if (odbit == State::Sx)
|
||||
continue;
|
||||
if (cache.impossible_with_ren(sbit, md.is_b))
|
||||
continue;
|
||||
log("FF found, but with a mux select that doesn't seem to correspond to transparency logic.\n");
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
// Done with this mux, now actually apply the transparencies.
|
||||
for (auto it : trans_queue) {
|
||||
it.first.transparency_mask[it.second] = true;
|
||||
it.first.collision_x_mask[it.second] = false;
|
||||
}
|
||||
}
|
||||
|
||||
// Final merging and validation of per-bit masks.
|
||||
for (int pi = 0; pi < GetSize(mem.wr_ports); pi++) {
|
||||
auto &pd = portdata[pi];
|
||||
if (!pd.relevant)
|
||||
continue;
|
||||
bool trans = false;
|
||||
bool non_trans = false;
|
||||
for (int i = 0; i < ff.width; i++) {
|
||||
if (pd.collision_x_mask[i])
|
||||
continue;
|
||||
if (pd.transparency_mask[i])
|
||||
trans = true;
|
||||
else
|
||||
non_trans = true;
|
||||
}
|
||||
if (trans && non_trans) {
|
||||
log("FF found, but soft transparency logic is inconsistent for port %d.\n", pi);
|
||||
return;
|
||||
}
|
||||
pd.final_transparency = trans;
|
||||
pd.final_collision_x = !trans && !non_trans;
|
||||
}
|
||||
|
||||
// OK, it worked.
|
||||
log("merging output FF to cell.\n");
|
||||
|
||||
merger.remove_output_ff(bits);
|
||||
if (ff.has_en && !ff.pol_en)
|
||||
ff.sig_en = module->LogicNot(NEW_ID, ff.sig_en);
|
||||
|
@ -89,8 +519,21 @@ struct MemoryDffWorker
|
|||
}
|
||||
port.init_value = ff.val_init;
|
||||
port.data = ff.sig_q;
|
||||
for (int pi = 0; pi < GetSize(mem.wr_ports); pi++) {
|
||||
auto &pd = portdata[pi];
|
||||
if (!pd.relevant)
|
||||
continue;
|
||||
if (pd.final_collision_x) {
|
||||
log(" Write port %d: don't care on collision.\n", pi);
|
||||
port.collision_x_mask[pi] = true;
|
||||
} else if (pd.final_transparency) {
|
||||
log(" Write port %d: transparent.\n", pi);
|
||||
port.transparency_mask[pi] = true;
|
||||
} else {
|
||||
log(" Write port %d: non-transparent.\n", pi);
|
||||
}
|
||||
}
|
||||
mem.emit();
|
||||
log("merged output FF to cell.\n");
|
||||
}
|
||||
|
||||
void handle_rd_port_addr(Mem &mem, int idx)
|
||||
|
@ -146,9 +589,10 @@ struct MemoryDffWorker
|
|||
{
|
||||
std::vector<Mem> memories = Mem::get_selected_memories(module);
|
||||
for (auto &mem : memories) {
|
||||
QuickConeSat qcsat(modwalker);
|
||||
for (int i = 0; i < GetSize(mem.rd_ports); i++) {
|
||||
if (!mem.rd_ports[i].clk_enable)
|
||||
handle_rd_port(mem, i);
|
||||
handle_rd_port(mem, qcsat, i);
|
||||
}
|
||||
}
|
||||
for (auto &mem : memories) {
|
||||
|
|
|
@ -0,0 +1,21 @@
|
|||
// expect-wr-ports 1
|
||||
// expect-rd-ports 1
|
||||
// expect-rd-clk \clk
|
||||
// expect-rd-en \re
|
||||
|
||||
module top(input clk, we, re, input [7:0] ra, wa, wd, output reg [7:0] rd);
|
||||
|
||||
reg [7:0] mem[0:255];
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (we)
|
||||
mem[wa] <= wd;
|
||||
|
||||
if (re) begin
|
||||
rd <= mem[ra];
|
||||
if (we && ra == wa)
|
||||
rd <= wd;
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
|
@ -0,0 +1,21 @@
|
|||
// expect-wr-ports 1
|
||||
// expect-rd-ports 1
|
||||
// expect-rd-clk \clk
|
||||
// expect-rd-en \re
|
||||
|
||||
module top(input clk, we, re, input [7:0] addr, wd, output reg [7:0] rd);
|
||||
|
||||
reg [7:0] mem[0:255];
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (we)
|
||||
mem[addr] <= wd;
|
||||
|
||||
if (re) begin
|
||||
rd <= mem[addr];
|
||||
if (we)
|
||||
rd <= wd;
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
|
@ -0,0 +1,862 @@
|
|||
# Good case 1: single port.
|
||||
|
||||
read_verilog << EOT
|
||||
|
||||
module top(
|
||||
input [3:0] addr,
|
||||
input [3:0] wd,
|
||||
input we,
|
||||
input clk,
|
||||
output reg [3:0] rd,
|
||||
);
|
||||
|
||||
reg [3:0] mem[0:15];
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (we) begin
|
||||
mem[addr] <= wd;
|
||||
rd <= wd;
|
||||
end else begin
|
||||
rd <= mem[addr];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
EOT
|
||||
|
||||
hierarchy -auto-top
|
||||
proc
|
||||
opt_dff
|
||||
opt_clean
|
||||
memory_dff
|
||||
memory_collect
|
||||
select -assert-count 1 t:$mem_v2
|
||||
select -assert-count 1 t:$mem_v2 r:RD_TRANSPARENCY_MASK=1'b1 r:RD_COLLISION_X_MASK=1'b0 %i %i
|
||||
|
||||
design -reset
|
||||
|
||||
# Good case 2: single port, exclusive.
|
||||
|
||||
read_verilog << EOT
|
||||
|
||||
module top(
|
||||
input [3:0] addr,
|
||||
input [3:0] wd,
|
||||
input we,
|
||||
input clk,
|
||||
output reg [3:0] rd,
|
||||
);
|
||||
|
||||
reg [3:0] mem[0:15];
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (we) begin
|
||||
mem[addr] <= wd;
|
||||
end else begin
|
||||
rd <= mem[addr];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
EOT
|
||||
|
||||
hierarchy -auto-top
|
||||
proc
|
||||
opt_dff
|
||||
opt_clean
|
||||
memory_dff
|
||||
memory_collect
|
||||
select -assert-count 1 t:$mem_v2
|
||||
select -assert-count 1 t:$mem_v2 r:RD_TRANSPARENCY_MASK=1'b0 r:RD_COLLISION_X_MASK=1'b1 %i %i
|
||||
|
||||
design -reset
|
||||
|
||||
# Good case 3: proper bypass muxes.
|
||||
|
||||
read_verilog << EOT
|
||||
|
||||
module top(
|
||||
input [3:0] ra,
|
||||
input [3:0] wa1,
|
||||
input [3:0] wa2,
|
||||
input [3:0] wd1,
|
||||
input [3:0] wd2,
|
||||
input we1, we2,
|
||||
input re,
|
||||
input clk,
|
||||
output reg [3:0] rd,
|
||||
);
|
||||
|
||||
reg [3:0] mem[0:15];
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (we1)
|
||||
mem[wa1] <= wd1;
|
||||
if (we2)
|
||||
mem[wa2] <= wd2;
|
||||
if (re) begin
|
||||
rd <= mem[ra];
|
||||
if (we1 && wa1 == ra)
|
||||
rd <= wd1;
|
||||
if (we2 && wa2 == ra)
|
||||
rd <= wd2;
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
EOT
|
||||
|
||||
hierarchy -auto-top
|
||||
proc
|
||||
opt_dff
|
||||
opt_clean
|
||||
memory_dff
|
||||
memory_collect
|
||||
select -assert-count 1 t:$mem_v2
|
||||
select -assert-count 1 t:$mem_v2 r:RD_TRANSPARENCY_MASK=2'b11 r:RD_COLLISION_X_MASK=2'b00 %i %i
|
||||
|
||||
design -reset
|
||||
|
||||
# Good case 4: proper bypass mux, but only one.
|
||||
|
||||
read_verilog << EOT
|
||||
|
||||
module top(
|
||||
input [3:0] ra,
|
||||
input [3:0] wa1,
|
||||
input [3:0] wa2,
|
||||
input [3:0] wd1,
|
||||
input [3:0] wd2,
|
||||
input we1, we2,
|
||||
input re,
|
||||
input clk,
|
||||
output reg [3:0] rd,
|
||||
);
|
||||
|
||||
reg [3:0] mem[0:15];
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (we1)
|
||||
mem[wa1] <= wd1;
|
||||
if (we2)
|
||||
mem[wa2] <= wd2;
|
||||
if (re) begin
|
||||
rd <= mem[ra];
|
||||
if (we1 && wa1 == ra)
|
||||
rd <= wd1;
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
EOT
|
||||
|
||||
hierarchy -auto-top
|
||||
proc
|
||||
opt_dff
|
||||
opt_clean
|
||||
memory_dff
|
||||
memory_collect
|
||||
select -assert-count 1 t:$mem_v2
|
||||
select -assert-count 1 t:$mem_v2 r:RD_TRANSPARENCY_MASK=2'b01 r:RD_COLLISION_X_MASK=2'b00 %i %i
|
||||
|
||||
design -reset
|
||||
|
||||
# Good case 5: proper bypass mux, but the other one.
|
||||
|
||||
read_verilog << EOT
|
||||
|
||||
module top(
|
||||
input [3:0] ra,
|
||||
input [3:0] wa1,
|
||||
input [3:0] wa2,
|
||||
input [3:0] wd1,
|
||||
input [3:0] wd2,
|
||||
input we1, we2,
|
||||
input re,
|
||||
input clk,
|
||||
output reg [3:0] rd,
|
||||
);
|
||||
|
||||
reg [3:0] mem[0:15];
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (we1)
|
||||
mem[wa1] <= wd1;
|
||||
if (we2)
|
||||
mem[wa2] <= wd2;
|
||||
if (re) begin
|
||||
rd <= mem[ra];
|
||||
if (we2 && wa2 == ra)
|
||||
rd <= wd2;
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
EOT
|
||||
|
||||
hierarchy -auto-top
|
||||
proc
|
||||
opt_dff
|
||||
opt_clean
|
||||
memory_dff
|
||||
memory_collect
|
||||
select -assert-count 1 t:$mem_v2
|
||||
select -assert-count 1 t:$mem_v2 r:RD_TRANSPARENCY_MASK=2'b10 r:RD_COLLISION_X_MASK=2'b00 %i %i
|
||||
|
||||
design -reset
|
||||
|
||||
# Good case 6: 'x mux.
|
||||
|
||||
read_verilog << EOT
|
||||
|
||||
module top(
|
||||
input [3:0] ra,
|
||||
input [3:0] wa1,
|
||||
input [3:0] wa2,
|
||||
input [3:0] wd1,
|
||||
input [3:0] wd2,
|
||||
input we1, we2,
|
||||
input re,
|
||||
input clk,
|
||||
output reg [3:0] rd,
|
||||
);
|
||||
|
||||
reg [3:0] mem[0:15];
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (we1)
|
||||
mem[wa1] <= wd1;
|
||||
if (we2)
|
||||
mem[wa2] <= wd2;
|
||||
if (re) begin
|
||||
rd <= mem[ra];
|
||||
if (we1 && wa1 == ra)
|
||||
rd <= 4'hx;
|
||||
if (we2 && wa2 == ra)
|
||||
rd <= wd2;
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
EOT
|
||||
|
||||
hierarchy -auto-top
|
||||
proc
|
||||
opt_dff
|
||||
opt_clean
|
||||
memory_dff
|
||||
memory_collect
|
||||
select -assert-count 1 t:$mem_v2
|
||||
select -assert-count 1 t:$mem_v2 r:RD_TRANSPARENCY_MASK=2'b10 r:RD_COLLISION_X_MASK=2'b01 %i %i
|
||||
|
||||
design -reset
|
||||
|
||||
# Good case 7: uncollidable addresses.
|
||||
|
||||
read_verilog << EOT
|
||||
|
||||
module top(
|
||||
input [3:0] addr,
|
||||
input [3:0] wd1,
|
||||
input [3:0] wd2,
|
||||
input we1, we2,
|
||||
input re,
|
||||
input clk,
|
||||
output reg [3:0] rd,
|
||||
);
|
||||
|
||||
reg [3:0] mem[0:15];
|
||||
|
||||
wire [3:0] wa1 = addr;
|
||||
wire [3:0] wa2 = addr + 1;
|
||||
wire [3:0] ra = addr + 2;
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (we1)
|
||||
mem[wa1] <= wd1;
|
||||
if (we2)
|
||||
mem[wa2] <= wd2;
|
||||
if (re) begin
|
||||
rd <= mem[ra];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
EOT
|
||||
|
||||
hierarchy -auto-top
|
||||
proc
|
||||
opt_dff
|
||||
opt_clean
|
||||
memory_dff
|
||||
memory_collect
|
||||
select -assert-count 1 t:$mem_v2
|
||||
select -assert-count 1 t:$mem_v2 r:RD_TRANSPARENCY_MASK=2'b00 r:RD_COLLISION_X_MASK=2'b11 %i %i
|
||||
|
||||
design -reset
|
||||
|
||||
# Good case 8: uncollidable addresses, but still have soft transparency logic.
|
||||
|
||||
read_verilog << EOT
|
||||
|
||||
module top(
|
||||
input [3:0] addr,
|
||||
input [3:0] wd1,
|
||||
input [3:0] wd2,
|
||||
input we1, we2,
|
||||
input re,
|
||||
input clk,
|
||||
output reg [3:0] rd,
|
||||
);
|
||||
|
||||
reg [3:0] mem[0:15];
|
||||
|
||||
wire [3:0] wa1 = addr;
|
||||
wire [3:0] wa2 = addr + 1;
|
||||
wire [3:0] ra = addr + 2;
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (we1)
|
||||
mem[wa1] <= wd1;
|
||||
if (we2)
|
||||
mem[wa2] <= wd2;
|
||||
if (re) begin
|
||||
rd <= mem[ra];
|
||||
if (we1 && wa1 == ra)
|
||||
rd <= wd1;
|
||||
if (we2 && wa2 == ra)
|
||||
rd <= wd2;
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
EOT
|
||||
|
||||
hierarchy -auto-top
|
||||
proc
|
||||
opt_dff
|
||||
opt_clean
|
||||
memory_dff
|
||||
memory_collect
|
||||
select -assert-count 1 t:$mem_v2
|
||||
select -assert-count 1 t:$mem_v2 r:RD_TRANSPARENCY_MASK=2'b00 r:RD_COLLISION_X_MASK=2'b11 %i %i
|
||||
|
||||
design -reset
|
||||
|
||||
# Bad case 1: broken bypass signal.
|
||||
|
||||
read_verilog << EOT
|
||||
|
||||
module top(
|
||||
input [3:0] ra,
|
||||
input [3:0] wa1,
|
||||
input [3:0] wa2,
|
||||
input [3:0] wd1,
|
||||
input [3:0] wd2,
|
||||
input we1, we2,
|
||||
input re,
|
||||
input clk,
|
||||
output reg [3:0] rd,
|
||||
);
|
||||
|
||||
reg [3:0] mem[0:15];
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (we1)
|
||||
mem[wa1] <= wd1;
|
||||
if (we2)
|
||||
mem[wa2] <= wd2;
|
||||
if (re) begin
|
||||
rd <= mem[ra];
|
||||
if (we1 && wa1 == ra)
|
||||
rd <= wd1;
|
||||
if (we2 && wa2 == ra && we1)
|
||||
rd <= wd2;
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
EOT
|
||||
|
||||
hierarchy -auto-top
|
||||
proc
|
||||
opt_dff
|
||||
opt_clean
|
||||
logger -expect log "FF found, but with a mux select that doesn't seem to correspond to transparency logic" 1
|
||||
memory_dff
|
||||
logger -check-expected
|
||||
memory_collect
|
||||
select -assert-count 1 t:$mem_v2
|
||||
select -assert-count 1 t:$mem_v2 r:RD_CLK_ENABLE=1'b0 %i
|
||||
|
||||
design -reset
|
||||
|
||||
# Bad case 2: bad data signal.
|
||||
|
||||
read_verilog << EOT
|
||||
|
||||
module top(
|
||||
input [3:0] ra,
|
||||
input [3:0] wa1,
|
||||
input [3:0] wa2,
|
||||
input [3:0] wd1,
|
||||
input [3:0] wd2,
|
||||
input we1, we2,
|
||||
input re,
|
||||
input clk,
|
||||
output reg [3:0] rd,
|
||||
);
|
||||
|
||||
reg [3:0] mem[0:15];
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (we1)
|
||||
mem[wa1] <= wd1;
|
||||
if (we2)
|
||||
mem[wa2] <= wd2;
|
||||
if (re) begin
|
||||
rd <= mem[ra];
|
||||
if (we1 && wa1 == ra)
|
||||
rd <= wd1;
|
||||
if (we2 && wa2 == ra)
|
||||
rd <= wd1;
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
EOT
|
||||
|
||||
hierarchy -auto-top
|
||||
proc
|
||||
opt_dff
|
||||
opt_clean
|
||||
logger -expect log "FF found, but with a mux data input that doesn't seem to correspond to transparency logic" 1
|
||||
memory_dff
|
||||
logger -check-expected
|
||||
memory_collect
|
||||
select -assert-count 1 t:$mem_v2
|
||||
select -assert-count 1 t:$mem_v2 r:RD_CLK_ENABLE=1'b0 %i
|
||||
|
||||
design -reset
|
||||
|
||||
# Bad case 3: priority mismatch.
|
||||
|
||||
read_verilog << EOT
|
||||
|
||||
module top(
|
||||
input [3:0] ra,
|
||||
input [3:0] wa1,
|
||||
input [3:0] wa2,
|
||||
input [3:0] wd1,
|
||||
input [3:0] wd2,
|
||||
input we1, we2,
|
||||
input re,
|
||||
input clk,
|
||||
output reg [3:0] rd,
|
||||
);
|
||||
|
||||
reg [3:0] mem[0:15];
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (we1)
|
||||
mem[wa1] <= wd1;
|
||||
if (we2)
|
||||
mem[wa2] <= wd2;
|
||||
if (re) begin
|
||||
rd <= mem[ra];
|
||||
if (we2 && wa2 == ra)
|
||||
rd <= wd2;
|
||||
if (we1 && wa1 == ra)
|
||||
rd <= wd1;
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
EOT
|
||||
|
||||
hierarchy -auto-top
|
||||
proc
|
||||
opt_dff
|
||||
opt_clean
|
||||
logger -expect log "FF found, but transparency logic priority doesn't match write priority." 1
|
||||
memory_dff
|
||||
logger -check-expected
|
||||
memory_collect
|
||||
select -assert-count 1 t:$mem_v2
|
||||
select -assert-count 1 t:$mem_v2 r:RD_CLK_ENABLE=1'b0 %i
|
||||
|
||||
design -reset
|
||||
|
||||
# Good case 10: priority mismatch, but since the second value is 'x, it's still OK.
|
||||
|
||||
read_verilog << EOT
|
||||
|
||||
module top(
|
||||
input [3:0] ra,
|
||||
input [3:0] wa1,
|
||||
input [3:0] wa2,
|
||||
input [3:0] wd1,
|
||||
input [3:0] wd2,
|
||||
input we1, we2,
|
||||
input re,
|
||||
input clk,
|
||||
output reg [3:0] rd,
|
||||
);
|
||||
|
||||
reg [3:0] mem[0:15];
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (we1)
|
||||
mem[wa1] <= wd1;
|
||||
if (we2)
|
||||
mem[wa2] <= wd2;
|
||||
if (re) begin
|
||||
rd <= mem[ra];
|
||||
if (we2 && wa2 == ra)
|
||||
rd <= wd2;
|
||||
if (we1 && wa1 == ra)
|
||||
rd <= 4'hx;
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
EOT
|
||||
|
||||
hierarchy -auto-top
|
||||
proc
|
||||
opt_dff
|
||||
opt_clean
|
||||
memory_dff
|
||||
memory_collect
|
||||
select -assert-count 1 t:$mem_v2
|
||||
select -assert-count 1 t:$mem_v2 r:RD_TRANSPARENCY_MASK=2'b10 r:RD_COLLISION_X_MASK=2'b01 %i %i
|
||||
|
||||
design -reset
|
||||
|
||||
# Good case 11: priority mismatch, but since three-way collision cannot happen, it's still OK.
|
||||
|
||||
read_verilog << EOT
|
||||
|
||||
module top(
|
||||
input [3:0] addr,
|
||||
input [1:0] mode,
|
||||
input [3:0] wd1,
|
||||
input [3:0] wd2,
|
||||
input we1, we2,
|
||||
input re,
|
||||
input clk,
|
||||
output reg [3:0] rd,
|
||||
);
|
||||
|
||||
reg [3:0] wa1, wa2, ra;
|
||||
|
||||
always @* begin
|
||||
case (mode)
|
||||
0: begin
|
||||
wa1 = addr+1;
|
||||
wa2 = addr;
|
||||
ra = addr;
|
||||
end
|
||||
1: begin
|
||||
wa1 = addr;
|
||||
wa2 = addr+1;
|
||||
ra = addr;
|
||||
end
|
||||
2: begin
|
||||
wa1 = addr;
|
||||
wa2 = addr;
|
||||
ra = addr+1;
|
||||
end
|
||||
3: begin
|
||||
wa1 = addr;
|
||||
wa2 = addr+1;
|
||||
ra = addr+2;
|
||||
end
|
||||
endcase
|
||||
end
|
||||
|
||||
reg [3:0] mem[0:15];
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (we1)
|
||||
mem[wa1] <= wd1;
|
||||
if (we2)
|
||||
mem[wa2] <= wd2;
|
||||
if (re) begin
|
||||
rd <= mem[ra];
|
||||
if (we2 && wa2 == ra)
|
||||
rd <= wd2;
|
||||
if (we1 && wa1 == ra)
|
||||
rd <= wd1;
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
EOT
|
||||
|
||||
hierarchy -auto-top
|
||||
proc
|
||||
opt_dff
|
||||
opt_clean
|
||||
memory_dff
|
||||
memory_collect
|
||||
select -assert-count 1 t:$mem_v2
|
||||
select -assert-count 1 t:$mem_v2 r:RD_TRANSPARENCY_MASK=2'b11 r:RD_COLLISION_X_MASK=2'b00 %i %i
|
||||
|
||||
design -reset
|
||||
|
||||
# Bad case 4: half of the port is transparent.
|
||||
|
||||
read_verilog << EOT
|
||||
|
||||
module top(
|
||||
input [3:0] ra,
|
||||
input [3:0] wa1,
|
||||
input [3:0] wa2,
|
||||
input [3:0] wd1,
|
||||
input [3:0] wd2,
|
||||
input we1, we2,
|
||||
input re,
|
||||
input clk,
|
||||
output reg [3:0] rd,
|
||||
);
|
||||
|
||||
reg [3:0] mem[0:15];
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (we1)
|
||||
mem[wa1] <= wd1;
|
||||
if (we2)
|
||||
mem[wa2] <= wd2;
|
||||
if (re) begin
|
||||
rd <= mem[ra];
|
||||
if (we1 && wa1 == ra)
|
||||
rd <= wd1;
|
||||
if (we2 && wa2 == ra)
|
||||
rd[3:2] <= wd2[3:2];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
EOT
|
||||
|
||||
hierarchy -auto-top
|
||||
proc
|
||||
opt_dff
|
||||
opt_clean
|
||||
logger -expect log "FF found, but soft transparency logic is inconsistent for port 1." 1
|
||||
memory_dff
|
||||
logger -check-expected
|
||||
memory_collect
|
||||
select -assert-count 1 t:$mem_v2
|
||||
select -assert-count 1 t:$mem_v2 r:RD_CLK_ENABLE=1'b0 %i
|
||||
|
||||
design -reset
|
||||
|
||||
# Good case 12: like above, but the other bits aren't changed by the port anyway.
|
||||
|
||||
read_verilog << EOT
|
||||
|
||||
module top(
|
||||
input [3:0] ra,
|
||||
input [3:0] wa1,
|
||||
input [3:0] wa2,
|
||||
input [3:0] wd1,
|
||||
input [3:0] wd2,
|
||||
input we1, we2,
|
||||
input re,
|
||||
input clk,
|
||||
output reg [3:0] rd,
|
||||
);
|
||||
|
||||
reg [3:0] mem[0:15];
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (we1)
|
||||
mem[wa1] <= wd1;
|
||||
if (we2)
|
||||
mem[wa2][3:2] <= wd2[3:2];
|
||||
if (re) begin
|
||||
rd <= mem[ra];
|
||||
if (we1 && wa1 == ra)
|
||||
rd <= wd1;
|
||||
if (we2 && wa2 == ra)
|
||||
rd[3:2] <= wd2[3:2];
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
EOT
|
||||
|
||||
hierarchy -auto-top
|
||||
proc
|
||||
opt_dff
|
||||
opt_clean
|
||||
memory_dff
|
||||
memory_collect
|
||||
select -assert-count 1 t:$mem_v2
|
||||
select -assert-count 1 t:$mem_v2 r:RD_TRANSPARENCY_MASK=2'b11 r:RD_COLLISION_X_MASK=2'b00 %i %i
|
||||
|
||||
design -reset
|
||||
|
||||
# Good case 13: wide read, narrow write.
|
||||
|
||||
read_verilog << EOT
|
||||
|
||||
module top(
|
||||
input [7:0] addr,
|
||||
input [7:0] wd,
|
||||
input we,
|
||||
input re,
|
||||
input clk,
|
||||
output reg [31:0] rd,
|
||||
);
|
||||
|
||||
reg [7:0] mem[0:255];
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (we)
|
||||
mem[addr] <= wd;
|
||||
if (re) begin
|
||||
rd[7:0] <= mem[{addr[7:2], 2'b00}];
|
||||
rd[15:8] <= mem[{addr[7:2], 2'b01}];
|
||||
rd[23:16] <= mem[{addr[7:2], 2'b10}];
|
||||
rd[31:24] <= mem[{addr[7:2], 2'b11}];
|
||||
case ({we, addr[1:0]})
|
||||
3'b100: rd[7:0] <= wd;
|
||||
3'b101: rd[15:8] <= wd;
|
||||
3'b110: rd[23:16] <= wd;
|
||||
3'b111: rd[31:24] <= wd;
|
||||
endcase
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
EOT
|
||||
|
||||
hierarchy -auto-top
|
||||
proc
|
||||
opt_dff
|
||||
opt_clean
|
||||
dump
|
||||
memory_dff
|
||||
memory_collect
|
||||
select -assert-count 1 t:$mem_v2
|
||||
select -assert-count 1 t:$mem_v2 r:RD_TRANSPARENCY_MASK=4'b1111 r:RD_COLLISION_X_MASK=4'b0000 %i %i
|
||||
|
||||
design -reset
|
||||
|
||||
# Good case 14: narrow read, wide write.
|
||||
|
||||
read_verilog << EOT
|
||||
|
||||
module top(
|
||||
input [7:0] addr,
|
||||
input [31:0] wd,
|
||||
input we,
|
||||
input re,
|
||||
input clk,
|
||||
output reg [7:0] rd,
|
||||
);
|
||||
|
||||
reg [7:0] mem[0:255];
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (we) begin
|
||||
mem[{addr[7:2], 2'b00}] <= wd[7:0];
|
||||
mem[{addr[7:2], 2'b01}] <= wd[15:8];
|
||||
mem[{addr[7:2], 2'b10}] <= wd[23:16];
|
||||
mem[{addr[7:2], 2'b11}] <= wd[31:24];
|
||||
end
|
||||
if (re) begin
|
||||
rd <= mem[addr];
|
||||
case ({we, addr[1:0]})
|
||||
3'b100: rd <= wd[7:0];
|
||||
3'b101: rd <= wd[15:8];
|
||||
3'b110: rd <= wd[23:16];
|
||||
3'b111: rd <= wd[31:24];
|
||||
endcase
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
EOT
|
||||
|
||||
hierarchy -auto-top
|
||||
proc
|
||||
opt_dff
|
||||
opt_clean
|
||||
dump
|
||||
memory_dff
|
||||
memory_collect
|
||||
select -assert-count 1 t:$mem_v2
|
||||
select -assert-count 1 t:$mem_v2 r:RD_TRANSPARENCY_MASK=4'b1111 r:RD_COLLISION_X_MASK=4'b0000 %i %i
|
||||
|
||||
design -reset
|
||||
|
||||
# Good case 15: wide read, wide write.
|
||||
|
||||
read_verilog << EOT
|
||||
|
||||
module top(
|
||||
input [7:0] addr,
|
||||
input [31:0] wd,
|
||||
input we,
|
||||
input re,
|
||||
input clk,
|
||||
output reg [31:0] rd,
|
||||
);
|
||||
|
||||
reg [7:0] mem[0:255];
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (we) begin
|
||||
mem[{addr[7:2], 2'b00}] <= wd[7:0];
|
||||
mem[{addr[7:2], 2'b01}] <= wd[15:8];
|
||||
mem[{addr[7:2], 2'b10}] <= wd[23:16];
|
||||
mem[{addr[7:2], 2'b11}] <= wd[31:24];
|
||||
end
|
||||
if (re) begin
|
||||
rd[7:0] <= mem[{addr[7:2], 2'b00}];
|
||||
rd[15:8] <= mem[{addr[7:2], 2'b01}];
|
||||
rd[23:16] <= mem[{addr[7:2], 2'b10}];
|
||||
rd[31:24] <= mem[{addr[7:2], 2'b11}];
|
||||
if (we)
|
||||
rd <= wd;
|
||||
end
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
EOT
|
||||
|
||||
hierarchy -auto-top
|
||||
proc
|
||||
opt_dff
|
||||
opt_clean
|
||||
dump
|
||||
memory_dff
|
||||
select -assert-count 4 t:$memrd_v2
|
||||
select -assert-count 1 t:$memrd_v2 r:TRANSPARENCY_MASK=4'b0001 r:COLLISION_X_MASK=4'b1110 %i %i
|
||||
select -assert-count 1 t:$memrd_v2 r:TRANSPARENCY_MASK=4'b0010 r:COLLISION_X_MASK=4'b1101 %i %i
|
||||
select -assert-count 1 t:$memrd_v2 r:TRANSPARENCY_MASK=4'b0100 r:COLLISION_X_MASK=4'b1011 %i %i
|
||||
select -assert-count 1 t:$memrd_v2 r:TRANSPARENCY_MASK=4'b1000 r:COLLISION_X_MASK=4'b0111 %i %i
|
||||
|
||||
design -reset
|
Loading…
Reference in New Issue