memory_dff: Recognize soft transparency logic.

This commit is contained in:
Marcelina Kościelnicka 2021-08-10 19:42:10 +02:00
parent 616ace2d92
commit 9fdedf4d1c
4 changed files with 1355 additions and 7 deletions

View File

@ -19,7 +19,9 @@
#include "kernel/yosys.h"
#include "kernel/sigtools.h"
#include "kernel/modtools.h"
#include "kernel/ffinit.h"
#include "kernel/qcsat.h"
#include "kernel/mem.h"
#include "kernel/ff.h"
#include "kernel/ffmerge.h"
@ -27,27 +29,317 @@
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
struct MuxData {
int base_idx;
int size;
bool is_b;
SigSpec sig_s;
std::vector<SigSpec> sig_other;
};
struct PortData {
bool relevant;
std::vector<bool> uncollidable_mask;
std::vector<bool> transparency_mask;
std::vector<bool> collision_x_mask;
bool final_transparency;
bool final_collision_x;
};
// A helper with some caching for transparency-related SAT queries.
// Bound to a single memory read port in the process of being converted
// from async to sync..
struct MemQueryCache
{
QuickConeSat &qcsat;
// The memory.
Mem &mem;
// The port, still async at this point.
MemRd &port;
// The virtual FF that will end up merged into this port.
FfData &ff;
// An ezSAT variable that is true when we actually care about the data
// read from memory (ie. the FF has enable on and is not in reset).
int port_ren;
// Some caches.
dict<std::pair<int, SigBit>, bool> cache_can_collide_rdwr;
dict<std::tuple<int, int, SigBit, SigBit>, bool> cache_can_collide_together;
dict<std::tuple<int, SigBit, SigBit, bool>, bool> cache_is_w2rbyp;
dict<std::tuple<SigBit, bool>, bool> cache_impossible_with_ren;
MemQueryCache(QuickConeSat &qcsat, Mem &mem, MemRd &port, FfData &ff) : qcsat(qcsat), mem(mem), port(port), ff(ff) {
// port_ren is an upper bound on when we care about the value fetched
// from memory this cycle.
int ren = ezSAT::CONST_TRUE;
if (ff.has_en) {
ren = qcsat.importSigBit(ff.sig_en);
if (!ff.pol_en)
ren = qcsat.ez->NOT(ren);
}
if (ff.has_srst) {
int nrst = qcsat.importSigBit(ff.sig_srst);
if (ff.pol_srst)
nrst = qcsat.ez->NOT(nrst);
ren = qcsat.ez->AND(ren, nrst);
}
port_ren = ren;
}
// Returns ezSAT variable that is true iff the two addresses are the same.
int addr_eq(SigSpec raddr, SigSpec waddr) {
int abits = std::max(GetSize(raddr), GetSize(waddr));
raddr.extend_u0(abits);
waddr.extend_u0(abits);
return qcsat.ez->vec_eq(qcsat.importSig(raddr), qcsat.importSig(waddr));
}
// Returns true if a given write port bit can be active at the same time
// as this read port and at the same address.
bool can_collide_rdwr(int widx, SigBit wen) {
std::pair<int, SigBit> key(widx, wen);
auto it = cache_can_collide_rdwr.find(key);
if (it != cache_can_collide_rdwr.end())
return it->second;
auto &wport = mem.wr_ports[widx];
int aeq = addr_eq(port.addr, wport.addr);
int wen_sat = qcsat.importSigBit(wen);
qcsat.prepare();
bool res = qcsat.ez->solve(aeq, wen_sat, port_ren);
cache_can_collide_rdwr[key] = res;
return res;
}
// Returns true if both given write port bits can be active at the same
// time as this read port and at the same address (three-way collision).
bool can_collide_together(int widx1, int widx2, int bitidx) {
auto &wport1 = mem.wr_ports[widx1];
auto &wport2 = mem.wr_ports[widx2];
SigBit wen1 = wport1.en[bitidx];
SigBit wen2 = wport2.en[bitidx];
std::tuple<int, int, SigBit, SigBit> key(widx1, widx2, wen1, wen2);
auto it = cache_can_collide_together.find(key);
if (it != cache_can_collide_together.end())
return it->second;
int aeq1 = addr_eq(port.addr, wport1.addr);
int aeq2 = addr_eq(port.addr, wport2.addr);
int wen1_sat = qcsat.importSigBit(wen1);
int wen2_sat = qcsat.importSigBit(wen2);
qcsat.prepare();
bool res = qcsat.ez->solve(wen1_sat, wen2_sat, aeq1, aeq2, port_ren);
cache_can_collide_together[key] = res;
return res;
}
// Returns true if the given mux selection signal is a valid data-bypass
// signal in soft transparency logic for a given write port bit.
bool is_w2rbyp(int widx, SigBit wen, SigBit sel, bool neg_sel) {
std::tuple<int, SigBit, SigBit, bool> key(widx, wen, sel, neg_sel);
auto it = cache_is_w2rbyp.find(key);
if (it != cache_is_w2rbyp.end())
return it->second;
auto &wport = mem.wr_ports[widx];
int aeq = addr_eq(port.addr, wport.addr);
int wen_sat = qcsat.importSigBit(wen);
int sel_expected = qcsat.ez->AND(aeq, wen_sat);
int sel_sat = qcsat.importSigBit(sel);
if (neg_sel)
sel_sat = qcsat.ez->NOT(sel_sat);
qcsat.prepare();
bool res = !qcsat.ez->solve(port_ren, qcsat.ez->XOR(sel_expected, sel_sat));
cache_is_w2rbyp[key] = res;
return res;
}
// Returns true if the given mux selection signal can never be true
// when this port is active.
bool impossible_with_ren(SigBit sel, bool neg_sel) {
std::tuple<SigBit, bool> key(sel, neg_sel);
auto it = cache_impossible_with_ren.find(key);
if (it != cache_impossible_with_ren.end())
return it->second;
int sel_sat = qcsat.importSigBit(sel);
if (neg_sel)
sel_sat = qcsat.ez->NOT(sel_sat);
qcsat.prepare();
bool res = !qcsat.ez->solve(port_ren, sel_sat);
cache_impossible_with_ren[key] = res;
return res;
}
// Helper for data_eq: walks up a multiplexer when the value of its
// sel signal is constant under the assumption that this read port
// is active and a given other mux sel signal is true.
bool walk_up_mux_cond(SigBit sel, bool neg_sel, SigBit &bit) {
auto &drivers = qcsat.modwalker.signal_drivers[qcsat.modwalker.sigmap(bit)];
if (GetSize(drivers) != 1)
return false;
auto driver = *drivers.begin();
if (!driver.cell->type.in(ID($mux), ID($pmux)))
return false;
log_assert(driver.port == ID::Y);
SigSpec sig_s = driver.cell->getPort(ID::S);
int sel_sat = qcsat.importSigBit(sel);
if (neg_sel)
sel_sat = qcsat.ez->NOT(sel_sat);
bool all_0 = true;
int width = driver.cell->parameters.at(ID::WIDTH).as_int();
for (int i = 0; i < GetSize(sig_s); i++) {
int sbit = qcsat.importSigBit(sig_s[i]);
qcsat.prepare();
if (!qcsat.ez->solve(port_ren, sel_sat, qcsat.ez->NOT(sbit))) {
bit = driver.cell->getPort(ID::B)[i * width + driver.offset];
return true;
}
if (qcsat.ez->solve(port_ren, sel_sat, sbit))
all_0 = false;
}
if (all_0) {
bit = driver.cell->getPort(ID::A)[driver.offset];
return true;
}
return false;
}
// Returns true if a given data signal is equivalent to another, under
// the assumption that this read port is active and a given mux sel signal
// is true. Used to match transparency logic data with write port data.
// The walk_up_mux_cond part is necessary because write ports in yosys
// tend to be connected to things like (wen ? wdata : 'x).
bool data_eq(SigBit sel, bool neg_sel, SigBit dbit, SigBit odbit) {
if (qcsat.modwalker.sigmap(dbit) == qcsat.modwalker.sigmap(odbit))
return true;
while (walk_up_mux_cond(sel, neg_sel, dbit));
while (walk_up_mux_cond(sel, neg_sel, odbit));
return qcsat.modwalker.sigmap(dbit) == qcsat.modwalker.sigmap(odbit);
}
};
struct MemoryDffWorker
{
Module *module;
SigMap sigmap;
ModWalker modwalker;
FfInitVals initvals;
FfMergeHelper merger;
MemoryDffWorker(Module *module) : module(module), sigmap(module)
MemoryDffWorker(Module *module) : module(module), modwalker(module->design)
{
initvals.set(&sigmap, module);
modwalker.setup(module);
initvals.set(&modwalker.sigmap, module);
merger.set(&initvals, module);
}
void handle_rd_port(Mem &mem, int idx)
// Starting from the output of an async read port, as long as the data
// signal's only user is a mux data signal, passes through the mux
// and remembers information about it. Conceptually works on every
// bit separately, but coalesces the result when possible.
SigSpec walk_muxes(SigSpec data, std::vector<MuxData> &res) {
bool did_something;
do {
did_something = false;
int prev_idx = -1;
Cell *prev_cell = nullptr;
bool prev_is_b = false;
for (int i = 0; i < GetSize(data); i++) {
SigBit bit = modwalker.sigmap(data[i]);
auto &consumers = modwalker.signal_consumers[bit];
if (GetSize(consumers) != 1 || modwalker.signal_outputs.count(bit))
continue;
auto consumer = *consumers.begin();
bool is_b;
if (consumer.cell->type == ID($mux)) {
if (consumer.port == ID::A) {
is_b = false;
} else if (consumer.port == ID::B) {
is_b = true;
} else {
continue;
}
} else if (consumer.cell->type == ID($pmux)) {
if (consumer.port == ID::A) {
is_b = false;
} else {
continue;
}
} else {
continue;
}
SigSpec y = consumer.cell->getPort(ID::Y);
int mux_width = GetSize(y);
SigBit ybit = y.extract(consumer.offset);
if (prev_cell != consumer.cell || prev_idx+1 != i || prev_is_b != is_b) {
MuxData md;
md.base_idx = i;
md.size = 0;
md.is_b = is_b;
md.sig_s = consumer.cell->getPort(ID::S);
md.sig_other.resize(GetSize(md.sig_s));
prev_cell = consumer.cell;
prev_is_b = is_b;
res.push_back(md);
}
auto &md = res.back();
md.size++;
for (int j = 0; j < GetSize(md.sig_s); j++) {
SigBit obit = consumer.cell->getPort(is_b ? ID::A : ID::B).extract(j * mux_width + consumer.offset);
md.sig_other[j].append(obit);
}
prev_idx = i;
data[i] = ybit;
did_something = true;
}
} while (did_something);
return data;
}
// Merges FF and possibly soft transparency logic into an asynchronous
// read port, making it into a synchronous one.
//
// There are three moving parts involved here:
//
// - the async port, which we start from, whose data port is input to...
// - an arbitrary chain of $mux and $pmux cells implementing soft transparency
// logic (ie. bypassing write port's data iff the write port is active and
// writing to the same address as this read port), which in turn feeds...
// - a final FF
//
// The async port and the mux chain are not allowed to have any users that
// are not part of the above.
//
// The algorithm is:
//
// 1. Walk through the muxes.
// 2. Recognize the final FF.
// 3. Knowing the FF's clock and read enable, make a list of write ports
// that we'll run transparency analysis on.
// 4. For every mux bit, recognize it as one of:
// - a transparency bypass mux for some port
// - a bypass mux that feeds 'x instead (this will result in collision
// don't care behavior being recognized)
// - a mux that never selects the other value when read port is active,
// and can thus be skipped (this is necessary because this could
// be a transparency bypass mux for never-colliding port that other
// passes failed to optimize)
// - a mux whose other input is 'x, and can thus be skipped
// 5. When recognizing transparency bypasses, take care to preserve priority
// behavior — when two bypasses are sequential muxes on the chain, they
// effectively have priority over one another, and the transform can
// only be performed when either a) their corresponding write ports
// also have priority, or b) there can never be a three-way collision
// between the two write ports and the read port.
// 6. Check consistency of per-bit transparency masks, merge them into
// per-port transparency masks
// 7. If everything went fine in the previous steps, actually perform
// the merge.
void handle_rd_port(Mem &mem, QuickConeSat &qcsat, int idx)
{
auto &port = mem.rd_ports[idx];
log("Checking read port `%s'[%d] in module `%s': ", mem.memid.c_str(), idx, module->name.c_str());
std::vector<MuxData> muxdata;
SigSpec data = walk_muxes(port.data, muxdata);
FfData ff;
pool<std::pair<Cell *, int>> bits;
if (!merger.find_output_ff(port.data, ff, bits)) {
if (!merger.find_output_ff(data, ff, bits)) {
log("no output FF found.\n");
return;
}
@ -60,6 +352,144 @@ struct MemoryDffWorker
log("output FF has both set and reset, not supported.\n");
return;
}
// Construct cache.
MemQueryCache cache(qcsat, mem, port, ff);
// Prepare information structure about all ports, recognize port bits
// that can never collide at all and don't need to be checked.
std::vector<PortData> portdata;
for (int i = 0; i < GetSize(mem.wr_ports); i++) {
PortData pd;
auto &wport = mem.wr_ports[i];
pd.relevant = true;
if (!wport.clk_enable)
pd.relevant = false;
if (wport.clk != ff.sig_clk)
pd.relevant = false;
if (wport.clk_polarity != ff.pol_clk)
pd.relevant = false;
// In theory, we *could* support mismatched width
// ports here. However, it's not worth it — wide
// ports are recognized *after* memory_dff in
// a normal flow.
if (wport.wide_log2 != port.wide_log2)
pd.relevant = false;
pd.uncollidable_mask.resize(GetSize(port.data));
pd.transparency_mask.resize(GetSize(port.data));
pd.collision_x_mask.resize(GetSize(port.data));
if (pd.relevant) {
// If we got this far, this port is potentially
// transparent and/or has undefined collision
// behavior. Now, for every bit, check if it can
// ever collide.
for (int j = 0; j < ff.width; j++) {
if (!cache.can_collide_rdwr(i, wport.en[j])) {
pd.uncollidable_mask[j] = true;
pd.collision_x_mask[j] = true;
}
}
}
portdata.push_back(pd);
}
// Now inspect the mux chain.
for (auto &md : muxdata) {
// We only mark transparent bits after processing a complete
// mux, so that the transparency priority validation check
// below sees transparency information as of previous mux.
std::vector<std::pair<PortData&, int>> trans_queue;
for (int sel_idx = 0; sel_idx < GetSize(md.sig_s); sel_idx++) {
SigBit sbit = md.sig_s[sel_idx];
SigSpec &odata = md.sig_other[sel_idx];
for (int bitidx = md.base_idx; bitidx < md.base_idx+md.size; bitidx++) {
SigBit odbit = odata[bitidx-md.base_idx];
bool recognized = false;
for (int pi = 0; pi < GetSize(mem.wr_ports); pi++) {
auto &pd = portdata[pi];
auto &wport = mem.wr_ports[pi];
if (!pd.relevant)
continue;
if (pd.uncollidable_mask[bitidx])
continue;
bool match = cache.is_w2rbyp(pi, wport.en[bitidx], sbit, md.is_b);
if (!match)
continue;
// If we got here, we recognized this mux sel
// as valid bypass sel for a given port bit.
if (odbit == State::Sx) {
// 'x, mark collision don't care.
pd.collision_x_mask[bitidx] = true;
pd.transparency_mask[bitidx] = false;
} else if (cache.data_eq(sbit, md.is_b, wport.data[bitidx], odbit)) {
// Correct data value, mark transparency,
// but only after verifying that priority
// is fine.
for (int k = 0; k < GetSize(mem.wr_ports); k++) {
if (portdata[k].transparency_mask[bitidx]) {
if (wport.priority_mask[k])
continue;
if (!cache.can_collide_together(pi, k, bitidx))
continue;
log("FF found, but transparency logic priority doesn't match write priority.\n");
return;
}
}
recognized = true;
trans_queue.push_back({pd, bitidx});
break;
} else {
log("FF found, but with a mux data input that doesn't seem to correspond to transparency logic.\n");
return;
}
}
if (!recognized) {
// If we haven't positively identified this as
// a bypass: it's still skippable if the
// data is 'x, or if the sel cannot actually be
// active.
if (odbit == State::Sx)
continue;
if (cache.impossible_with_ren(sbit, md.is_b))
continue;
log("FF found, but with a mux select that doesn't seem to correspond to transparency logic.\n");
return;
}
}
}
// Done with this mux, now actually apply the transparencies.
for (auto it : trans_queue) {
it.first.transparency_mask[it.second] = true;
it.first.collision_x_mask[it.second] = false;
}
}
// Final merging and validation of per-bit masks.
for (int pi = 0; pi < GetSize(mem.wr_ports); pi++) {
auto &pd = portdata[pi];
if (!pd.relevant)
continue;
bool trans = false;
bool non_trans = false;
for (int i = 0; i < ff.width; i++) {
if (pd.collision_x_mask[i])
continue;
if (pd.transparency_mask[i])
trans = true;
else
non_trans = true;
}
if (trans && non_trans) {
log("FF found, but soft transparency logic is inconsistent for port %d.\n", pi);
return;
}
pd.final_transparency = trans;
pd.final_collision_x = !trans && !non_trans;
}
// OK, it worked.
log("merging output FF to cell.\n");
merger.remove_output_ff(bits);
if (ff.has_en && !ff.pol_en)
ff.sig_en = module->LogicNot(NEW_ID, ff.sig_en);
@ -89,8 +519,21 @@ struct MemoryDffWorker
}
port.init_value = ff.val_init;
port.data = ff.sig_q;
for (int pi = 0; pi < GetSize(mem.wr_ports); pi++) {
auto &pd = portdata[pi];
if (!pd.relevant)
continue;
if (pd.final_collision_x) {
log(" Write port %d: don't care on collision.\n", pi);
port.collision_x_mask[pi] = true;
} else if (pd.final_transparency) {
log(" Write port %d: transparent.\n", pi);
port.transparency_mask[pi] = true;
} else {
log(" Write port %d: non-transparent.\n", pi);
}
}
mem.emit();
log("merged output FF to cell.\n");
}
void handle_rd_port_addr(Mem &mem, int idx)
@ -146,9 +589,10 @@ struct MemoryDffWorker
{
std::vector<Mem> memories = Mem::get_selected_memories(module);
for (auto &mem : memories) {
QuickConeSat qcsat(modwalker);
for (int i = 0; i < GetSize(mem.rd_ports); i++) {
if (!mem.rd_ports[i].clk_enable)
handle_rd_port(mem, i);
handle_rd_port(mem, qcsat, i);
}
}
for (auto &mem : memories) {

View File

@ -0,0 +1,21 @@
// expect-wr-ports 1
// expect-rd-ports 1
// expect-rd-clk \clk
// expect-rd-en \re
module top(input clk, we, re, input [7:0] ra, wa, wd, output reg [7:0] rd);
reg [7:0] mem[0:255];
always @(posedge clk) begin
if (we)
mem[wa] <= wd;
if (re) begin
rd <= mem[ra];
if (we && ra == wa)
rd <= wd;
end
end
endmodule

21
tests/memories/trans_sp.v Normal file
View File

@ -0,0 +1,21 @@
// expect-wr-ports 1
// expect-rd-ports 1
// expect-rd-clk \clk
// expect-rd-en \re
module top(input clk, we, re, input [7:0] addr, wd, output reg [7:0] rd);
reg [7:0] mem[0:255];
always @(posedge clk) begin
if (we)
mem[addr] <= wd;
if (re) begin
rd <= mem[addr];
if (we)
rd <= wd;
end
end
endmodule

View File

@ -0,0 +1,862 @@
# Good case 1: single port.
read_verilog << EOT
module top(
input [3:0] addr,
input [3:0] wd,
input we,
input clk,
output reg [3:0] rd,
);
reg [3:0] mem[0:15];
always @(posedge clk) begin
if (we) begin
mem[addr] <= wd;
rd <= wd;
end else begin
rd <= mem[addr];
end
end
endmodule
EOT
hierarchy -auto-top
proc
opt_dff
opt_clean
memory_dff
memory_collect
select -assert-count 1 t:$mem_v2
select -assert-count 1 t:$mem_v2 r:RD_TRANSPARENCY_MASK=1'b1 r:RD_COLLISION_X_MASK=1'b0 %i %i
design -reset
# Good case 2: single port, exclusive.
read_verilog << EOT
module top(
input [3:0] addr,
input [3:0] wd,
input we,
input clk,
output reg [3:0] rd,
);
reg [3:0] mem[0:15];
always @(posedge clk) begin
if (we) begin
mem[addr] <= wd;
end else begin
rd <= mem[addr];
end
end
endmodule
EOT
hierarchy -auto-top
proc
opt_dff
opt_clean
memory_dff
memory_collect
select -assert-count 1 t:$mem_v2
select -assert-count 1 t:$mem_v2 r:RD_TRANSPARENCY_MASK=1'b0 r:RD_COLLISION_X_MASK=1'b1 %i %i
design -reset
# Good case 3: proper bypass muxes.
read_verilog << EOT
module top(
input [3:0] ra,
input [3:0] wa1,
input [3:0] wa2,
input [3:0] wd1,
input [3:0] wd2,
input we1, we2,
input re,
input clk,
output reg [3:0] rd,
);
reg [3:0] mem[0:15];
always @(posedge clk) begin
if (we1)
mem[wa1] <= wd1;
if (we2)
mem[wa2] <= wd2;
if (re) begin
rd <= mem[ra];
if (we1 && wa1 == ra)
rd <= wd1;
if (we2 && wa2 == ra)
rd <= wd2;
end
end
endmodule
EOT
hierarchy -auto-top
proc
opt_dff
opt_clean
memory_dff
memory_collect
select -assert-count 1 t:$mem_v2
select -assert-count 1 t:$mem_v2 r:RD_TRANSPARENCY_MASK=2'b11 r:RD_COLLISION_X_MASK=2'b00 %i %i
design -reset
# Good case 4: proper bypass mux, but only one.
read_verilog << EOT
module top(
input [3:0] ra,
input [3:0] wa1,
input [3:0] wa2,
input [3:0] wd1,
input [3:0] wd2,
input we1, we2,
input re,
input clk,
output reg [3:0] rd,
);
reg [3:0] mem[0:15];
always @(posedge clk) begin
if (we1)
mem[wa1] <= wd1;
if (we2)
mem[wa2] <= wd2;
if (re) begin
rd <= mem[ra];
if (we1 && wa1 == ra)
rd <= wd1;
end
end
endmodule
EOT
hierarchy -auto-top
proc
opt_dff
opt_clean
memory_dff
memory_collect
select -assert-count 1 t:$mem_v2
select -assert-count 1 t:$mem_v2 r:RD_TRANSPARENCY_MASK=2'b01 r:RD_COLLISION_X_MASK=2'b00 %i %i
design -reset
# Good case 5: proper bypass mux, but the other one.
read_verilog << EOT
module top(
input [3:0] ra,
input [3:0] wa1,
input [3:0] wa2,
input [3:0] wd1,
input [3:0] wd2,
input we1, we2,
input re,
input clk,
output reg [3:0] rd,
);
reg [3:0] mem[0:15];
always @(posedge clk) begin
if (we1)
mem[wa1] <= wd1;
if (we2)
mem[wa2] <= wd2;
if (re) begin
rd <= mem[ra];
if (we2 && wa2 == ra)
rd <= wd2;
end
end
endmodule
EOT
hierarchy -auto-top
proc
opt_dff
opt_clean
memory_dff
memory_collect
select -assert-count 1 t:$mem_v2
select -assert-count 1 t:$mem_v2 r:RD_TRANSPARENCY_MASK=2'b10 r:RD_COLLISION_X_MASK=2'b00 %i %i
design -reset
# Good case 6: 'x mux.
read_verilog << EOT
module top(
input [3:0] ra,
input [3:0] wa1,
input [3:0] wa2,
input [3:0] wd1,
input [3:0] wd2,
input we1, we2,
input re,
input clk,
output reg [3:0] rd,
);
reg [3:0] mem[0:15];
always @(posedge clk) begin
if (we1)
mem[wa1] <= wd1;
if (we2)
mem[wa2] <= wd2;
if (re) begin
rd <= mem[ra];
if (we1 && wa1 == ra)
rd <= 4'hx;
if (we2 && wa2 == ra)
rd <= wd2;
end
end
endmodule
EOT
hierarchy -auto-top
proc
opt_dff
opt_clean
memory_dff
memory_collect
select -assert-count 1 t:$mem_v2
select -assert-count 1 t:$mem_v2 r:RD_TRANSPARENCY_MASK=2'b10 r:RD_COLLISION_X_MASK=2'b01 %i %i
design -reset
# Good case 7: uncollidable addresses.
read_verilog << EOT
module top(
input [3:0] addr,
input [3:0] wd1,
input [3:0] wd2,
input we1, we2,
input re,
input clk,
output reg [3:0] rd,
);
reg [3:0] mem[0:15];
wire [3:0] wa1 = addr;
wire [3:0] wa2 = addr + 1;
wire [3:0] ra = addr + 2;
always @(posedge clk) begin
if (we1)
mem[wa1] <= wd1;
if (we2)
mem[wa2] <= wd2;
if (re) begin
rd <= mem[ra];
end
end
endmodule
EOT
hierarchy -auto-top
proc
opt_dff
opt_clean
memory_dff
memory_collect
select -assert-count 1 t:$mem_v2
select -assert-count 1 t:$mem_v2 r:RD_TRANSPARENCY_MASK=2'b00 r:RD_COLLISION_X_MASK=2'b11 %i %i
design -reset
# Good case 8: uncollidable addresses, but still have soft transparency logic.
read_verilog << EOT
module top(
input [3:0] addr,
input [3:0] wd1,
input [3:0] wd2,
input we1, we2,
input re,
input clk,
output reg [3:0] rd,
);
reg [3:0] mem[0:15];
wire [3:0] wa1 = addr;
wire [3:0] wa2 = addr + 1;
wire [3:0] ra = addr + 2;
always @(posedge clk) begin
if (we1)
mem[wa1] <= wd1;
if (we2)
mem[wa2] <= wd2;
if (re) begin
rd <= mem[ra];
if (we1 && wa1 == ra)
rd <= wd1;
if (we2 && wa2 == ra)
rd <= wd2;
end
end
endmodule
EOT
hierarchy -auto-top
proc
opt_dff
opt_clean
memory_dff
memory_collect
select -assert-count 1 t:$mem_v2
select -assert-count 1 t:$mem_v2 r:RD_TRANSPARENCY_MASK=2'b00 r:RD_COLLISION_X_MASK=2'b11 %i %i
design -reset
# Bad case 1: broken bypass signal.
read_verilog << EOT
module top(
input [3:0] ra,
input [3:0] wa1,
input [3:0] wa2,
input [3:0] wd1,
input [3:0] wd2,
input we1, we2,
input re,
input clk,
output reg [3:0] rd,
);
reg [3:0] mem[0:15];
always @(posedge clk) begin
if (we1)
mem[wa1] <= wd1;
if (we2)
mem[wa2] <= wd2;
if (re) begin
rd <= mem[ra];
if (we1 && wa1 == ra)
rd <= wd1;
if (we2 && wa2 == ra && we1)
rd <= wd2;
end
end
endmodule
EOT
hierarchy -auto-top
proc
opt_dff
opt_clean
logger -expect log "FF found, but with a mux select that doesn't seem to correspond to transparency logic" 1
memory_dff
logger -check-expected
memory_collect
select -assert-count 1 t:$mem_v2
select -assert-count 1 t:$mem_v2 r:RD_CLK_ENABLE=1'b0 %i
design -reset
# Bad case 2: bad data signal.
read_verilog << EOT
module top(
input [3:0] ra,
input [3:0] wa1,
input [3:0] wa2,
input [3:0] wd1,
input [3:0] wd2,
input we1, we2,
input re,
input clk,
output reg [3:0] rd,
);
reg [3:0] mem[0:15];
always @(posedge clk) begin
if (we1)
mem[wa1] <= wd1;
if (we2)
mem[wa2] <= wd2;
if (re) begin
rd <= mem[ra];
if (we1 && wa1 == ra)
rd <= wd1;
if (we2 && wa2 == ra)
rd <= wd1;
end
end
endmodule
EOT
hierarchy -auto-top
proc
opt_dff
opt_clean
logger -expect log "FF found, but with a mux data input that doesn't seem to correspond to transparency logic" 1
memory_dff
logger -check-expected
memory_collect
select -assert-count 1 t:$mem_v2
select -assert-count 1 t:$mem_v2 r:RD_CLK_ENABLE=1'b0 %i
design -reset
# Bad case 3: priority mismatch.
read_verilog << EOT
module top(
input [3:0] ra,
input [3:0] wa1,
input [3:0] wa2,
input [3:0] wd1,
input [3:0] wd2,
input we1, we2,
input re,
input clk,
output reg [3:0] rd,
);
reg [3:0] mem[0:15];
always @(posedge clk) begin
if (we1)
mem[wa1] <= wd1;
if (we2)
mem[wa2] <= wd2;
if (re) begin
rd <= mem[ra];
if (we2 && wa2 == ra)
rd <= wd2;
if (we1 && wa1 == ra)
rd <= wd1;
end
end
endmodule
EOT
hierarchy -auto-top
proc
opt_dff
opt_clean
logger -expect log "FF found, but transparency logic priority doesn't match write priority." 1
memory_dff
logger -check-expected
memory_collect
select -assert-count 1 t:$mem_v2
select -assert-count 1 t:$mem_v2 r:RD_CLK_ENABLE=1'b0 %i
design -reset
# Good case 10: priority mismatch, but since the second value is 'x, it's still OK.
read_verilog << EOT
module top(
input [3:0] ra,
input [3:0] wa1,
input [3:0] wa2,
input [3:0] wd1,
input [3:0] wd2,
input we1, we2,
input re,
input clk,
output reg [3:0] rd,
);
reg [3:0] mem[0:15];
always @(posedge clk) begin
if (we1)
mem[wa1] <= wd1;
if (we2)
mem[wa2] <= wd2;
if (re) begin
rd <= mem[ra];
if (we2 && wa2 == ra)
rd <= wd2;
if (we1 && wa1 == ra)
rd <= 4'hx;
end
end
endmodule
EOT
hierarchy -auto-top
proc
opt_dff
opt_clean
memory_dff
memory_collect
select -assert-count 1 t:$mem_v2
select -assert-count 1 t:$mem_v2 r:RD_TRANSPARENCY_MASK=2'b10 r:RD_COLLISION_X_MASK=2'b01 %i %i
design -reset
# Good case 11: priority mismatch, but since three-way collision cannot happen, it's still OK.
read_verilog << EOT
module top(
input [3:0] addr,
input [1:0] mode,
input [3:0] wd1,
input [3:0] wd2,
input we1, we2,
input re,
input clk,
output reg [3:0] rd,
);
reg [3:0] wa1, wa2, ra;
always @* begin
case (mode)
0: begin
wa1 = addr+1;
wa2 = addr;
ra = addr;
end
1: begin
wa1 = addr;
wa2 = addr+1;
ra = addr;
end
2: begin
wa1 = addr;
wa2 = addr;
ra = addr+1;
end
3: begin
wa1 = addr;
wa2 = addr+1;
ra = addr+2;
end
endcase
end
reg [3:0] mem[0:15];
always @(posedge clk) begin
if (we1)
mem[wa1] <= wd1;
if (we2)
mem[wa2] <= wd2;
if (re) begin
rd <= mem[ra];
if (we2 && wa2 == ra)
rd <= wd2;
if (we1 && wa1 == ra)
rd <= wd1;
end
end
endmodule
EOT
hierarchy -auto-top
proc
opt_dff
opt_clean
memory_dff
memory_collect
select -assert-count 1 t:$mem_v2
select -assert-count 1 t:$mem_v2 r:RD_TRANSPARENCY_MASK=2'b11 r:RD_COLLISION_X_MASK=2'b00 %i %i
design -reset
# Bad case 4: half of the port is transparent.
read_verilog << EOT
module top(
input [3:0] ra,
input [3:0] wa1,
input [3:0] wa2,
input [3:0] wd1,
input [3:0] wd2,
input we1, we2,
input re,
input clk,
output reg [3:0] rd,
);
reg [3:0] mem[0:15];
always @(posedge clk) begin
if (we1)
mem[wa1] <= wd1;
if (we2)
mem[wa2] <= wd2;
if (re) begin
rd <= mem[ra];
if (we1 && wa1 == ra)
rd <= wd1;
if (we2 && wa2 == ra)
rd[3:2] <= wd2[3:2];
end
end
endmodule
EOT
hierarchy -auto-top
proc
opt_dff
opt_clean
logger -expect log "FF found, but soft transparency logic is inconsistent for port 1." 1
memory_dff
logger -check-expected
memory_collect
select -assert-count 1 t:$mem_v2
select -assert-count 1 t:$mem_v2 r:RD_CLK_ENABLE=1'b0 %i
design -reset
# Good case 12: like above, but the other bits aren't changed by the port anyway.
read_verilog << EOT
module top(
input [3:0] ra,
input [3:0] wa1,
input [3:0] wa2,
input [3:0] wd1,
input [3:0] wd2,
input we1, we2,
input re,
input clk,
output reg [3:0] rd,
);
reg [3:0] mem[0:15];
always @(posedge clk) begin
if (we1)
mem[wa1] <= wd1;
if (we2)
mem[wa2][3:2] <= wd2[3:2];
if (re) begin
rd <= mem[ra];
if (we1 && wa1 == ra)
rd <= wd1;
if (we2 && wa2 == ra)
rd[3:2] <= wd2[3:2];
end
end
endmodule
EOT
hierarchy -auto-top
proc
opt_dff
opt_clean
memory_dff
memory_collect
select -assert-count 1 t:$mem_v2
select -assert-count 1 t:$mem_v2 r:RD_TRANSPARENCY_MASK=2'b11 r:RD_COLLISION_X_MASK=2'b00 %i %i
design -reset
# Good case 13: wide read, narrow write.
read_verilog << EOT
module top(
input [7:0] addr,
input [7:0] wd,
input we,
input re,
input clk,
output reg [31:0] rd,
);
reg [7:0] mem[0:255];
always @(posedge clk) begin
if (we)
mem[addr] <= wd;
if (re) begin
rd[7:0] <= mem[{addr[7:2], 2'b00}];
rd[15:8] <= mem[{addr[7:2], 2'b01}];
rd[23:16] <= mem[{addr[7:2], 2'b10}];
rd[31:24] <= mem[{addr[7:2], 2'b11}];
case ({we, addr[1:0]})
3'b100: rd[7:0] <= wd;
3'b101: rd[15:8] <= wd;
3'b110: rd[23:16] <= wd;
3'b111: rd[31:24] <= wd;
endcase
end
end
endmodule
EOT
hierarchy -auto-top
proc
opt_dff
opt_clean
dump
memory_dff
memory_collect
select -assert-count 1 t:$mem_v2
select -assert-count 1 t:$mem_v2 r:RD_TRANSPARENCY_MASK=4'b1111 r:RD_COLLISION_X_MASK=4'b0000 %i %i
design -reset
# Good case 14: narrow read, wide write.
read_verilog << EOT
module top(
input [7:0] addr,
input [31:0] wd,
input we,
input re,
input clk,
output reg [7:0] rd,
);
reg [7:0] mem[0:255];
always @(posedge clk) begin
if (we) begin
mem[{addr[7:2], 2'b00}] <= wd[7:0];
mem[{addr[7:2], 2'b01}] <= wd[15:8];
mem[{addr[7:2], 2'b10}] <= wd[23:16];
mem[{addr[7:2], 2'b11}] <= wd[31:24];
end
if (re) begin
rd <= mem[addr];
case ({we, addr[1:0]})
3'b100: rd <= wd[7:0];
3'b101: rd <= wd[15:8];
3'b110: rd <= wd[23:16];
3'b111: rd <= wd[31:24];
endcase
end
end
endmodule
EOT
hierarchy -auto-top
proc
opt_dff
opt_clean
dump
memory_dff
memory_collect
select -assert-count 1 t:$mem_v2
select -assert-count 1 t:$mem_v2 r:RD_TRANSPARENCY_MASK=4'b1111 r:RD_COLLISION_X_MASK=4'b0000 %i %i
design -reset
# Good case 15: wide read, wide write.
read_verilog << EOT
module top(
input [7:0] addr,
input [31:0] wd,
input we,
input re,
input clk,
output reg [31:0] rd,
);
reg [7:0] mem[0:255];
always @(posedge clk) begin
if (we) begin
mem[{addr[7:2], 2'b00}] <= wd[7:0];
mem[{addr[7:2], 2'b01}] <= wd[15:8];
mem[{addr[7:2], 2'b10}] <= wd[23:16];
mem[{addr[7:2], 2'b11}] <= wd[31:24];
end
if (re) begin
rd[7:0] <= mem[{addr[7:2], 2'b00}];
rd[15:8] <= mem[{addr[7:2], 2'b01}];
rd[23:16] <= mem[{addr[7:2], 2'b10}];
rd[31:24] <= mem[{addr[7:2], 2'b11}];
if (we)
rd <= wd;
end
end
endmodule
EOT
hierarchy -auto-top
proc
opt_dff
opt_clean
dump
memory_dff
select -assert-count 4 t:$memrd_v2
select -assert-count 1 t:$memrd_v2 r:TRANSPARENCY_MASK=4'b0001 r:COLLISION_X_MASK=4'b1110 %i %i
select -assert-count 1 t:$memrd_v2 r:TRANSPARENCY_MASK=4'b0010 r:COLLISION_X_MASK=4'b1101 %i %i
select -assert-count 1 t:$memrd_v2 r:TRANSPARENCY_MASK=4'b0100 r:COLLISION_X_MASK=4'b1011 %i %i
select -assert-count 1 t:$memrd_v2 r:TRANSPARENCY_MASK=4'b1000 r:COLLISION_X_MASK=4'b0111 %i %i
design -reset