When an adffe is being legalized, and is not natively supported,
prioritize unmapping to adff over converting to dffsre if dffsre is not
natively supported itself.
Fixes#2361.
The only difference between "RTLIL" and "ILANG" is that the latter is
the text representation of the former, as opposed to the in-memory
graph representation. This distinction serves no purpose but confuses
people: it is not obvious that the ILANG backend writes RTLIL graphs.
Passes `write_ilang` and `read_ilang` are provided as aliases to
`write_rtlil` and `read_rtlil` for compatibility.
For connection `assign a = b;`, `sigmap(a)` returns `b`. This is
exactly the opposite of the desired canonicalization for driven bits.
Consider the following code:
module foo(inout a, b);
assign a = b;
endmodule
module bar(output c);
foo f(c, 1'b0);
endmodule
Before this commit, the inout ports would be swapped after flattening
(and cause a crash while attempting to drive a constant value).
This issue was introduced in 9f772eb9.
Fixes#2183.
This parameter will resolve to the name of the cell being mapped. The
first user of this parameter will be synth_intel_alm's Quartus output,
which requires a unique (and preferably descriptive) name passed as
a cell parameter for the memory cells.
Those can be created by `opt_dff` when optimizing `$adff` with const
clock, or with D == Q. Make dfflegalize do the opposite transform
when such dlatches would be otherwise unimplementable.
This ensures that, when both sync and async FFs are available and abc9
is involved, the sync FFs will be used, and will thus remain available
for sequential synthesis.
I think these were probably missed by accident. Spotted because GCC
spits out lots of messages like this:
passes/techmap/dfflegalize.cc:114:7: warning: zero-length gnu_printf format string [-Wformat-zero-length]
114 | log("");
| ^~
(because we tell GCC that the first argument to log() looks like a
printf control string in log.h, and a zero length such string triggers
a warning).
Before this commit, `flatten` matched the template objects with
the newly created objects solely by their name. Because of this,
it could be confused by code such as:
module bar();
$dff a();
endmodule
module foo();
bar b();
$dff \b.a ();
endmodule
After this commit, `flatten` avoids every possible case of name
collision.
Fixes#2106.