The main part is converting ice40_dsp to recognize the new FF types
created in opt_dff instead of trying to recognize the mux patterns on
its own.
The fsm call has been moved upwards because the passes cannot deal with
$dffe/$sdff*, and other optimizations don't help it much anyway.
This pass is a proper subset of opt_rmdff, which is called by opt, which
is called by every synth flow in the coarse part. Thus, it never
actually does anything and can be safely removed.
According to the official simulation model, and also cross-checked
on real hardware, the data output of the SPRAM when chipselect is
low is kept stable. It doesn't go undefined.
Signed-off-by: Sylvain Munaut <tnt@246tNt.com>
This commit tries to carefully follow the documented behavior of LSE
and Synplify. It will use `syn_ramstyle` attribute if there are any
write ports, and `syn_romstyle` attribute otherwise.
* LSE supports both `syn_ramstyle` and `syn_romstyle`.
* Synplify only supports `syn_ramstyle`, with same values as LSE.
* Synplify also supports `syn_rw_conflict_logic`, which is not
documented as supported for LSE.
Limitations of the Yosys implementation:
* LSE/Synplify appear to interpret attribute values insensitive
to case. There is currently no way to do this in Yosys (attrmap
can only change case of attribute names).
* LSE/Synplify support `syn_ramstyle="block_ram,no_rw_check"`
syntax to turn off insertion of transparency logic. There is
currently no way to support multiple valued attributes in
memory_bram. It is also not clear if that is a good idea, since
it can cause sim/synth mismatches.
* LSE/Synplify/1364.1 support block ROM inference from full case
statements. Yosys does not currently perform this transformation.
* LSE/Synplify propagate `syn_ramstyle`/`syn_romstyle` attributes
from the module to the inner memories. There is currently no way
to do this in Yosys (attrmvcp only works on cells and wires).