This is quite possibly the worst way to implement this, but it does
work for a subset of well-behaved designs, and can be used to measure
how much performance is lost simulating the inactive edge of a clock.
It should be replaced with a clock tree analyzer generating safe
code once it is clear how should such a thing look like.
If the annotations are not used, this commit does not alter semantics
at all, other than removing elision of outputs of black box cells.
(Elision of such outputs is expected to be too rare to have any
noticeable benefit, and the implementation was somewhat of a hack.)
The (* cxxrtl.comb *) annotation alters the semantics of the output
of the black box it is applied to such that, if the black box
converges immediately, no additional delta cycle is necessary to
propagate the computed combinatorial value upwards in hierarchy.
The (* cxxrtl.sync *) annotation alters the semantics of the output
of the black box it is applied to such as to remove any uses of
the black box by the wires connected to this output, and break false
feedback arcs arising from conservative modeling of dependencies of
the black box.
Although currently these attributes are only recognized on black
boxes, if separate compilation is added in the future, it could also
emit and consume them.
The attribute for this is called (* cxxrtl.edge *), and there is
a planned attribute (* cxxrtl.sync *) that would cause blackbox
cell outputs to be added to sync defs rather than comb defs.
Rename the edge detector related stuff to avoid confusion.
If it is statically known that eval() will converge in one delta
cycle (that is, the second commit() will always return `false`)
because the design contains no feedback or buffered wires, then
there is no need to run the second delta cycle at all.
After this commit, the case where eval() always converges immediately
is detected and the second delta cycle is omitted. As a result,
Minerva SRAM SoC runs ~25% faster.
People judge a compiler backend by the first impression, and
the metric they judge it for is speed. -O6 does severely impact
debuggability, but it provides equally massive gains in performance,
so use it by default.
Module input wires are never set by the module, so it is unnecessary
to buffer them. Although important for all inputs, this is especially
critical for clocks, since after this commit, hierarchy levels no
longer add delta cycles. As a result, Minerva SRAM SoC runs ~73%
faster when flattened, and ~264% (!!) faster when hierarchical.
This commit changes the way edge detectors are represented in
generated code from a variable that is set in commit() and reset in
eval() to a function that considers .curr and .next of the clock
wire. Behavior remains the same. Besides being simpler to generate
and providing more opportunities for optimization, this commit paves
way for unbuffering module inputs.
Before this commit, any wire that was not driven by an output port of
exactly one comb cell would not be localized, even if there were no
feedback arcs through that wire. This would cause the wire to become
buffered and require (often quite a few) extraneous delta cycles
during evaluation. To alleviate this problem, -O5 was running
`splitnets -driver`.
However, this solution was mistaken. Because `splitnets -driver`
followed by `opt_clean -purge` would produce more nets with multiple
drivers, it would have to be iterated to fixpoint. Moreover, even if
this was done, it would not be sufficient because `opt_clean -purge`
does not currently remove wires with the `\init` attribute (and it
is not desirable to remove such wires, since they correspond to
registers and may be useful for debugging).
The proper solution is to consider the condition in which a wire
may be localized. Specifically, if there are no feedback arcs through
this wire, and no part of the wire is driven by an output of a sync
cell, then the wire holds no state and is localizable.
After this commit, the original condition for not localizing a wire
is replaced by a check for any sync cell driving it. This makes it
unnecessary to run `splitnets -driver` in the majority of cases
to get a design with no buffered wires, and -O5 no longer includes
that pass. As a result, Minerva SRAM SoC no longer has any buffered
wires, and runs ~27% faster.
In addition, this commit prepares the flow graph for introduction
of sync outputs of black boxes.
Co-authored-by: Jean-François Nguyen <jf@lambdaconcept.com>
Any buffered combinatorial wires (including, as a subset, feedback
wires) will prevent the design from always converging in one delta
cycle. Before this commit, only feedback wires were detected. After
this commit, any buffered combinatorial wires, including feedback
wires, are detected.
Co-authored-by: Jean-François Nguyen <jf@lambdaconcept.com>
Both parameters and attributes are necessary because the parameters
have to be the same between every instantiation of the cell, but
attributes may well vary. For example, for an UART PHY, the type
of the PHY (tty, pty, socket) would be a parameter, but configuration
of the implementation specified by the type (socket address) would
be an attribute.
This commit adds support for replacing RTLIL modules with CXXRTL
black boxes. Black box port widths may not depend on the parameters
with which it is instantiated (yet); the parameters may only be used
to change the behavior of the black box.
The $paramod name mangling is not invertible (the \ character, which
separates the module name from the parameters, is valid in the module
name itself), which does not stop people from trying to invert it.
This commit makes it easy to invert the name mangling by storing
the original name explicitly, and fixes the firrtl backend to use
the newly introduced attribute.