yosys/backends/cxxrtl/cxxrtl_backend.cc

2672 lines
92 KiB
C++
Raw Normal View History

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2019-2020 whitequark <whitequark@whitequark.org>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/rtlil.h"
#include "kernel/register.h"
#include "kernel/sigtools.h"
#include "kernel/utils.h"
#include "kernel/celltypes.h"
#include "kernel/log.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
// [[CITE]]
// Peter Eades; Xuemin Lin; W. F. Smyth, "A Fast Effective Heuristic For The Feedback Arc Set Problem"
// Information Processing Letters, Vol. 47, pp 319-323, 1993
// https://pdfs.semanticscholar.org/c7ed/d9acce96ca357876540e19664eb9d976637f.pdf
// A topological sort (on a cell/wire graph) is always possible in a fully flattened RTLIL design without
// processes or logic loops where every wire has a single driver. Logic loops are illegal in RTLIL and wires
// with multiple drivers can be split by the `splitnets` pass; however, interdependencies between processes
// or module instances can create strongly connected components without introducing evaluation nondeterminism.
// We wish to support designs with such benign SCCs (as well as designs with multiple drivers per wire), so
// we sort the graph in a way that minimizes feedback arcs. If there are no feedback arcs in the sorted graph,
// then a more efficient evaluation method is possible, since eval() will always immediately converge.
template<class T>
struct Scheduler {
struct Vertex {
T *data;
Vertex *prev, *next;
pool<Vertex*, hash_ptr_ops> preds, succs;
Vertex() : data(NULL), prev(this), next(this) {}
Vertex(T *data) : data(data), prev(NULL), next(NULL) {}
bool empty() const
{
log_assert(data == NULL);
if (next == this) {
log_assert(prev == next);
return true;
}
return false;
}
void link(Vertex *list)
{
log_assert(prev == NULL && next == NULL);
next = list;
prev = list->prev;
list->prev->next = this;
list->prev = this;
}
void unlink()
{
log_assert(prev->next == this && next->prev == this);
prev->next = next;
next->prev = prev;
next = prev = NULL;
}
int delta() const
{
return succs.size() - preds.size();
}
};
std::vector<Vertex*> vertices;
Vertex *sources = new Vertex;
Vertex *sinks = new Vertex;
dict<int, Vertex*> bins;
~Scheduler()
{
delete sources;
delete sinks;
for (auto bin : bins)
delete bin.second;
for (auto vertex : vertices)
delete vertex;
}
Vertex *add(T *data)
{
Vertex *vertex = new Vertex(data);
vertices.push_back(vertex);
return vertex;
}
void relink(Vertex *vertex)
{
if (vertex->succs.empty())
vertex->link(sinks);
else if (vertex->preds.empty())
vertex->link(sources);
else {
int delta = vertex->delta();
if (!bins.count(delta))
bins[delta] = new Vertex;
vertex->link(bins[delta]);
}
}
Vertex *remove(Vertex *vertex)
{
vertex->unlink();
for (auto pred : vertex->preds) {
if (pred == vertex)
continue;
log_assert(pred->succs[vertex]);
pred->unlink();
pred->succs.erase(vertex);
relink(pred);
}
for (auto succ : vertex->succs) {
if (succ == vertex)
continue;
log_assert(succ->preds[vertex]);
succ->unlink();
succ->preds.erase(vertex);
relink(succ);
}
vertex->preds.clear();
vertex->succs.clear();
return vertex;
}
std::vector<Vertex*> schedule()
{
std::vector<Vertex*> s1, s2r;
for (auto vertex : vertices)
relink(vertex);
bool bins_empty = false;
while (!(sinks->empty() && sources->empty() && bins_empty)) {
while (!sinks->empty())
s2r.push_back(remove(sinks->next));
while (!sources->empty())
s1.push_back(remove(sources->next));
// Choosing u in this implementation isn't O(1), but the paper handwaves which data structure they suggest
// using to get O(1) relinking *and* find-max-key ("it is clear"... no it isn't), so this code uses a very
// naive implementation of find-max-key.
bins_empty = true;
bins.template sort<std::greater<int>>();
for (auto bin : bins) {
if (!bin.second->empty()) {
bins_empty = false;
s1.push_back(remove(bin.second->next));
break;
}
}
}
s1.insert(s1.end(), s2r.rbegin(), s2r.rend());
return s1;
}
};
bool is_unary_cell(RTLIL::IdString type)
{
return type.in(
ID($not), ID($logic_not), ID($reduce_and), ID($reduce_or), ID($reduce_xor), ID($reduce_xnor), ID($reduce_bool),
ID($pos), ID($neg));
}
bool is_binary_cell(RTLIL::IdString type)
{
return type.in(
ID($and), ID($or), ID($xor), ID($xnor), ID($logic_and), ID($logic_or),
ID($shl), ID($sshl), ID($shr), ID($sshr), ID($shift), ID($shiftx),
ID($eq), ID($ne), ID($eqx), ID($nex), ID($gt), ID($ge), ID($lt), ID($le),
ID($add), ID($sub), ID($mul), ID($div), ID($mod));
}
bool is_extending_cell(RTLIL::IdString type)
{
return !type.in(
ID($logic_not), ID($logic_and), ID($logic_or),
ID($reduce_and), ID($reduce_or), ID($reduce_xor), ID($reduce_xnor), ID($reduce_bool));
}
bool is_elidable_cell(RTLIL::IdString type)
{
return is_unary_cell(type) || is_binary_cell(type) || type.in(
ID($mux), ID($concat), ID($slice), ID($pmux));
}
bool is_sync_ff_cell(RTLIL::IdString type)
{
return type.in(
ID($dff), ID($dffe), ID($sdff), ID($sdffe), ID($sdffce));
}
bool is_ff_cell(RTLIL::IdString type)
{
return is_sync_ff_cell(type) || type.in(
ID($adff), ID($adffe), ID($dffsr), ID($dffsre), ID($dlatch), ID($adlatch), ID($dlatchsr), ID($sr));
}
bool is_internal_cell(RTLIL::IdString type)
{
return type[0] == '$' && !type.begins_with("$paramod");
}
bool is_cxxrtl_blackbox_cell(const RTLIL::Cell *cell)
{
RTLIL::Module *cell_module = cell->module->design->module(cell->type);
log_assert(cell_module != nullptr);
return cell_module->get_bool_attribute(ID(cxxrtl_blackbox));
}
enum class CxxrtlPortType {
UNKNOWN = 0, // or mixed comb/sync
COMB = 1,
SYNC = 2,
};
CxxrtlPortType cxxrtl_port_type(const RTLIL::Cell *cell, RTLIL::IdString port)
{
RTLIL::Module *cell_module = cell->module->design->module(cell->type);
if (cell_module == nullptr || !cell_module->get_bool_attribute(ID(cxxrtl_blackbox)))
return CxxrtlPortType::UNKNOWN;
RTLIL::Wire *cell_output_wire = cell_module->wire(port);
log_assert(cell_output_wire != nullptr);
bool is_comb = cell_output_wire->get_bool_attribute(ID(cxxrtl_comb));
bool is_sync = cell_output_wire->get_bool_attribute(ID(cxxrtl_sync));
if (is_comb && is_sync)
log_cmd_error("Port `%s.%s' is marked as both `cxxrtl_comb` and `cxxrtl_sync`.\n",
log_id(cell_module), log_signal(cell_output_wire));
else if (is_comb)
return CxxrtlPortType::COMB;
else if (is_sync)
return CxxrtlPortType::SYNC;
return CxxrtlPortType::UNKNOWN;
}
bool is_cxxrtl_comb_port(const RTLIL::Cell *cell, RTLIL::IdString port)
{
return cxxrtl_port_type(cell, port) == CxxrtlPortType::COMB;
}
bool is_cxxrtl_sync_port(const RTLIL::Cell *cell, RTLIL::IdString port)
{
return cxxrtl_port_type(cell, port) == CxxrtlPortType::SYNC;
}
struct FlowGraph {
struct Node {
enum class Type {
CONNECT,
CELL_SYNC,
CELL_EVAL,
PROCESS
};
Type type;
RTLIL::SigSig connect = {};
const RTLIL::Cell *cell = NULL;
const RTLIL::Process *process = NULL;
};
std::vector<Node*> nodes;
cxxrtl: localize wires with multiple comb drivers, too. Before this commit, any wire that was not driven by an output port of exactly one comb cell would not be localized, even if there were no feedback arcs through that wire. This would cause the wire to become buffered and require (often quite a few) extraneous delta cycles during evaluation. To alleviate this problem, -O5 was running `splitnets -driver`. However, this solution was mistaken. Because `splitnets -driver` followed by `opt_clean -purge` would produce more nets with multiple drivers, it would have to be iterated to fixpoint. Moreover, even if this was done, it would not be sufficient because `opt_clean -purge` does not currently remove wires with the `\init` attribute (and it is not desirable to remove such wires, since they correspond to registers and may be useful for debugging). The proper solution is to consider the condition in which a wire may be localized. Specifically, if there are no feedback arcs through this wire, and no part of the wire is driven by an output of a sync cell, then the wire holds no state and is localizable. After this commit, the original condition for not localizing a wire is replaced by a check for any sync cell driving it. This makes it unnecessary to run `splitnets -driver` in the majority of cases to get a design with no buffered wires, and -O5 no longer includes that pass. As a result, Minerva SRAM SoC no longer has any buffered wires, and runs ~27% faster. In addition, this commit prepares the flow graph for introduction of sync outputs of black boxes. Co-authored-by: Jean-François Nguyen <jf@lambdaconcept.com>
2020-04-21 08:33:42 -05:00
dict<const RTLIL::Wire*, pool<Node*, hash_ptr_ops>> wire_comb_defs, wire_sync_defs, wire_uses;
dict<const RTLIL::Wire*, bool> wire_def_elidable, wire_use_elidable;
~FlowGraph()
{
for (auto node : nodes)
delete node;
}
void add_defs(Node *node, const RTLIL::SigSpec &sig, bool fully_sync, bool elidable)
{
for (auto chunk : sig.chunks())
cxxrtl: localize wires with multiple comb drivers, too. Before this commit, any wire that was not driven by an output port of exactly one comb cell would not be localized, even if there were no feedback arcs through that wire. This would cause the wire to become buffered and require (often quite a few) extraneous delta cycles during evaluation. To alleviate this problem, -O5 was running `splitnets -driver`. However, this solution was mistaken. Because `splitnets -driver` followed by `opt_clean -purge` would produce more nets with multiple drivers, it would have to be iterated to fixpoint. Moreover, even if this was done, it would not be sufficient because `opt_clean -purge` does not currently remove wires with the `\init` attribute (and it is not desirable to remove such wires, since they correspond to registers and may be useful for debugging). The proper solution is to consider the condition in which a wire may be localized. Specifically, if there are no feedback arcs through this wire, and no part of the wire is driven by an output of a sync cell, then the wire holds no state and is localizable. After this commit, the original condition for not localizing a wire is replaced by a check for any sync cell driving it. This makes it unnecessary to run `splitnets -driver` in the majority of cases to get a design with no buffered wires, and -O5 no longer includes that pass. As a result, Minerva SRAM SoC no longer has any buffered wires, and runs ~27% faster. In addition, this commit prepares the flow graph for introduction of sync outputs of black boxes. Co-authored-by: Jean-François Nguyen <jf@lambdaconcept.com>
2020-04-21 08:33:42 -05:00
if (chunk.wire) {
if (fully_sync)
cxxrtl: localize wires with multiple comb drivers, too. Before this commit, any wire that was not driven by an output port of exactly one comb cell would not be localized, even if there were no feedback arcs through that wire. This would cause the wire to become buffered and require (often quite a few) extraneous delta cycles during evaluation. To alleviate this problem, -O5 was running `splitnets -driver`. However, this solution was mistaken. Because `splitnets -driver` followed by `opt_clean -purge` would produce more nets with multiple drivers, it would have to be iterated to fixpoint. Moreover, even if this was done, it would not be sufficient because `opt_clean -purge` does not currently remove wires with the `\init` attribute (and it is not desirable to remove such wires, since they correspond to registers and may be useful for debugging). The proper solution is to consider the condition in which a wire may be localized. Specifically, if there are no feedback arcs through this wire, and no part of the wire is driven by an output of a sync cell, then the wire holds no state and is localizable. After this commit, the original condition for not localizing a wire is replaced by a check for any sync cell driving it. This makes it unnecessary to run `splitnets -driver` in the majority of cases to get a design with no buffered wires, and -O5 no longer includes that pass. As a result, Minerva SRAM SoC no longer has any buffered wires, and runs ~27% faster. In addition, this commit prepares the flow graph for introduction of sync outputs of black boxes. Co-authored-by: Jean-François Nguyen <jf@lambdaconcept.com>
2020-04-21 08:33:42 -05:00
wire_sync_defs[chunk.wire].insert(node);
else
wire_comb_defs[chunk.wire].insert(node);
}
// Only comb defs of an entire wire in the right order can be elided.
if (!fully_sync && sig.is_wire())
wire_def_elidable[sig.as_wire()] = elidable;
}
void add_uses(Node *node, const RTLIL::SigSpec &sig)
{
for (auto chunk : sig.chunks())
if (chunk.wire) {
wire_uses[chunk.wire].insert(node);
// Only a single use of an entire wire in the right order can be elided.
// (But the use can include other chunks.)
if (!wire_use_elidable.count(chunk.wire))
wire_use_elidable[chunk.wire] = true;
else
wire_use_elidable[chunk.wire] = false;
}
}
bool is_elidable(const RTLIL::Wire *wire) const
{
if (wire_def_elidable.count(wire) && wire_use_elidable.count(wire))
return wire_def_elidable.at(wire) && wire_use_elidable.at(wire);
return false;
}
// Connections
void add_connect_defs_uses(Node *node, const RTLIL::SigSig &conn)
{
add_defs(node, conn.first, /*fully_sync=*/false, /*elidable=*/true);
add_uses(node, conn.second);
}
Node *add_node(const RTLIL::SigSig &conn)
{
Node *node = new Node;
node->type = Node::Type::CONNECT;
node->connect = conn;
nodes.push_back(node);
add_connect_defs_uses(node, conn);
return node;
}
// Cells
void add_cell_sync_defs(Node *node, const RTLIL::Cell *cell)
{
// To understand why this node type is necessary and why it produces comb defs, consider a cell
// with input \i and sync output \o, used in a design such that \i is connected to \o. This does
// not result in a feedback arc because the output is synchronous. However, a naive implementation
// of code generation for cells that assigns to inputs, evaluates cells, assigns from outputs
// would not be able to immediately converge...
//
// wire<1> i_tmp;
// cell->p_i = i_tmp.curr;
// cell->eval();
// i_tmp.next = cell->p_o.curr;
//
// ... since the wire connecting the input and output ports would not be localizable. To solve
// this, the cell is split into two scheduling nodes; one exclusively for sync outputs, and
// another for inputs and all non-sync outputs. This way the generated code can be rearranged...
//
// value<1> i_tmp;
// i_tmp = cell->p_o.curr;
// cell->p_i = i_tmp;
// cell->eval();
//
// eliminating the unnecessary delta cycle. Conceptually, the CELL_SYNC node type is a series of
// connections of the form `connect \lhs \cell.\sync_output`; the right-hand side of these is not
2020-06-07 23:08:09 -05:00
// expressible as a wire in RTLIL. If it was expressible, then `\cell.\sync_output` would have
// a sync def, and this node would be an ordinary CONNECT node, with `\lhs` having a comb def.
// Because it isn't, a special node type is used, the right-hand side does not appear anywhere,
// and the left-hand side has a comb def.
for (auto conn : cell->connections())
if (cell->output(conn.first))
if (is_cxxrtl_sync_port(cell, conn.first)) {
// See note regarding elidability below.
add_defs(node, conn.second, /*fully_sync=*/false, /*elidable=*/false);
}
}
void add_cell_eval_defs_uses(Node *node, const RTLIL::Cell *cell)
{
for (auto conn : cell->connections()) {
if (cell->output(conn.first)) {
cxxrtl: localize wires with multiple comb drivers, too. Before this commit, any wire that was not driven by an output port of exactly one comb cell would not be localized, even if there were no feedback arcs through that wire. This would cause the wire to become buffered and require (often quite a few) extraneous delta cycles during evaluation. To alleviate this problem, -O5 was running `splitnets -driver`. However, this solution was mistaken. Because `splitnets -driver` followed by `opt_clean -purge` would produce more nets with multiple drivers, it would have to be iterated to fixpoint. Moreover, even if this was done, it would not be sufficient because `opt_clean -purge` does not currently remove wires with the `\init` attribute (and it is not desirable to remove such wires, since they correspond to registers and may be useful for debugging). The proper solution is to consider the condition in which a wire may be localized. Specifically, if there are no feedback arcs through this wire, and no part of the wire is driven by an output of a sync cell, then the wire holds no state and is localizable. After this commit, the original condition for not localizing a wire is replaced by a check for any sync cell driving it. This makes it unnecessary to run `splitnets -driver` in the majority of cases to get a design with no buffered wires, and -O5 no longer includes that pass. As a result, Minerva SRAM SoC no longer has any buffered wires, and runs ~27% faster. In addition, this commit prepares the flow graph for introduction of sync outputs of black boxes. Co-authored-by: Jean-François Nguyen <jf@lambdaconcept.com>
2020-04-21 08:33:42 -05:00
if (is_elidable_cell(cell->type))
add_defs(node, conn.second, /*fully_sync=*/false, /*elidable=*/true);
cxxrtl: localize wires with multiple comb drivers, too. Before this commit, any wire that was not driven by an output port of exactly one comb cell would not be localized, even if there were no feedback arcs through that wire. This would cause the wire to become buffered and require (often quite a few) extraneous delta cycles during evaluation. To alleviate this problem, -O5 was running `splitnets -driver`. However, this solution was mistaken. Because `splitnets -driver` followed by `opt_clean -purge` would produce more nets with multiple drivers, it would have to be iterated to fixpoint. Moreover, even if this was done, it would not be sufficient because `opt_clean -purge` does not currently remove wires with the `\init` attribute (and it is not desirable to remove such wires, since they correspond to registers and may be useful for debugging). The proper solution is to consider the condition in which a wire may be localized. Specifically, if there are no feedback arcs through this wire, and no part of the wire is driven by an output of a sync cell, then the wire holds no state and is localizable. After this commit, the original condition for not localizing a wire is replaced by a check for any sync cell driving it. This makes it unnecessary to run `splitnets -driver` in the majority of cases to get a design with no buffered wires, and -O5 no longer includes that pass. As a result, Minerva SRAM SoC no longer has any buffered wires, and runs ~27% faster. In addition, this commit prepares the flow graph for introduction of sync outputs of black boxes. Co-authored-by: Jean-François Nguyen <jf@lambdaconcept.com>
2020-04-21 08:33:42 -05:00
else if (is_sync_ff_cell(cell->type) || (cell->type == ID($memrd) && cell->getParam(ID::CLK_ENABLE).as_bool()))
add_defs(node, conn.second, /*fully_sync=*/true, /*elidable=*/false);
else if (is_internal_cell(cell->type))
add_defs(node, conn.second, /*fully_sync=*/false, /*elidable=*/false);
else if (!is_cxxrtl_sync_port(cell, conn.first)) {
// Although at first it looks like outputs of user-defined cells may always be elided, the reality is
// more complex. Fully sync outputs produce no defs and so don't participate in elision. Fully comb
// outputs are assigned in a different way depending on whether the cell's eval() immediately converged.
// Unknown/mixed outputs could be elided, but should be rare in practical designs and don't justify
// the infrastructure required to elide outputs of cells with many of them.
add_defs(node, conn.second, /*fully_sync=*/false, /*elidable=*/false);
}
}
if (cell->input(conn.first))
add_uses(node, conn.second);
}
}
Node *add_node(const RTLIL::Cell *cell)
{
log_assert(cell->known());
bool has_fully_sync_outputs = false;
for (auto conn : cell->connections())
if (cell->output(conn.first) && is_cxxrtl_sync_port(cell, conn.first)) {
has_fully_sync_outputs = true;
break;
}
if (has_fully_sync_outputs) {
Node *node = new Node;
node->type = Node::Type::CELL_SYNC;
node->cell = cell;
nodes.push_back(node);
add_cell_sync_defs(node, cell);
}
Node *node = new Node;
node->type = Node::Type::CELL_EVAL;
node->cell = cell;
nodes.push_back(node);
add_cell_eval_defs_uses(node, cell);
return node;
}
// Processes
void add_case_defs_uses(Node *node, const RTLIL::CaseRule *case_)
{
for (auto &action : case_->actions) {
cxxrtl: localize wires with multiple comb drivers, too. Before this commit, any wire that was not driven by an output port of exactly one comb cell would not be localized, even if there were no feedback arcs through that wire. This would cause the wire to become buffered and require (often quite a few) extraneous delta cycles during evaluation. To alleviate this problem, -O5 was running `splitnets -driver`. However, this solution was mistaken. Because `splitnets -driver` followed by `opt_clean -purge` would produce more nets with multiple drivers, it would have to be iterated to fixpoint. Moreover, even if this was done, it would not be sufficient because `opt_clean -purge` does not currently remove wires with the `\init` attribute (and it is not desirable to remove such wires, since they correspond to registers and may be useful for debugging). The proper solution is to consider the condition in which a wire may be localized. Specifically, if there are no feedback arcs through this wire, and no part of the wire is driven by an output of a sync cell, then the wire holds no state and is localizable. After this commit, the original condition for not localizing a wire is replaced by a check for any sync cell driving it. This makes it unnecessary to run `splitnets -driver` in the majority of cases to get a design with no buffered wires, and -O5 no longer includes that pass. As a result, Minerva SRAM SoC no longer has any buffered wires, and runs ~27% faster. In addition, this commit prepares the flow graph for introduction of sync outputs of black boxes. Co-authored-by: Jean-François Nguyen <jf@lambdaconcept.com>
2020-04-21 08:33:42 -05:00
add_defs(node, action.first, /*is_sync=*/false, /*elidable=*/false);
add_uses(node, action.second);
}
for (auto sub_switch : case_->switches) {
add_uses(node, sub_switch->signal);
for (auto sub_case : sub_switch->cases) {
for (auto &compare : sub_case->compare)
add_uses(node, compare);
add_case_defs_uses(node, sub_case);
}
}
}
void add_process_defs_uses(Node *node, const RTLIL::Process *process)
{
add_case_defs_uses(node, &process->root_case);
for (auto sync : process->syncs)
for (auto action : sync->actions) {
if (sync->type == RTLIL::STp || sync->type == RTLIL::STn || sync->type == RTLIL::STe)
cxxrtl: localize wires with multiple comb drivers, too. Before this commit, any wire that was not driven by an output port of exactly one comb cell would not be localized, even if there were no feedback arcs through that wire. This would cause the wire to become buffered and require (often quite a few) extraneous delta cycles during evaluation. To alleviate this problem, -O5 was running `splitnets -driver`. However, this solution was mistaken. Because `splitnets -driver` followed by `opt_clean -purge` would produce more nets with multiple drivers, it would have to be iterated to fixpoint. Moreover, even if this was done, it would not be sufficient because `opt_clean -purge` does not currently remove wires with the `\init` attribute (and it is not desirable to remove such wires, since they correspond to registers and may be useful for debugging). The proper solution is to consider the condition in which a wire may be localized. Specifically, if there are no feedback arcs through this wire, and no part of the wire is driven by an output of a sync cell, then the wire holds no state and is localizable. After this commit, the original condition for not localizing a wire is replaced by a check for any sync cell driving it. This makes it unnecessary to run `splitnets -driver` in the majority of cases to get a design with no buffered wires, and -O5 no longer includes that pass. As a result, Minerva SRAM SoC no longer has any buffered wires, and runs ~27% faster. In addition, this commit prepares the flow graph for introduction of sync outputs of black boxes. Co-authored-by: Jean-François Nguyen <jf@lambdaconcept.com>
2020-04-21 08:33:42 -05:00
add_defs(node, action.first, /*is_sync=*/true, /*elidable=*/false);
else
cxxrtl: localize wires with multiple comb drivers, too. Before this commit, any wire that was not driven by an output port of exactly one comb cell would not be localized, even if there were no feedback arcs through that wire. This would cause the wire to become buffered and require (often quite a few) extraneous delta cycles during evaluation. To alleviate this problem, -O5 was running `splitnets -driver`. However, this solution was mistaken. Because `splitnets -driver` followed by `opt_clean -purge` would produce more nets with multiple drivers, it would have to be iterated to fixpoint. Moreover, even if this was done, it would not be sufficient because `opt_clean -purge` does not currently remove wires with the `\init` attribute (and it is not desirable to remove such wires, since they correspond to registers and may be useful for debugging). The proper solution is to consider the condition in which a wire may be localized. Specifically, if there are no feedback arcs through this wire, and no part of the wire is driven by an output of a sync cell, then the wire holds no state and is localizable. After this commit, the original condition for not localizing a wire is replaced by a check for any sync cell driving it. This makes it unnecessary to run `splitnets -driver` in the majority of cases to get a design with no buffered wires, and -O5 no longer includes that pass. As a result, Minerva SRAM SoC no longer has any buffered wires, and runs ~27% faster. In addition, this commit prepares the flow graph for introduction of sync outputs of black boxes. Co-authored-by: Jean-François Nguyen <jf@lambdaconcept.com>
2020-04-21 08:33:42 -05:00
add_defs(node, action.first, /*is_sync=*/false, /*elidable=*/false);
add_uses(node, action.second);
}
}
Node *add_node(const RTLIL::Process *process)
{
Node *node = new Node;
node->type = Node::Type::PROCESS;
node->process = process;
nodes.push_back(node);
add_process_defs_uses(node, process);
return node;
}
};
std::vector<std::string> split_by(const std::string &str, const std::string &sep)
{
std::vector<std::string> result;
size_t prev = 0;
while (true) {
size_t curr = str.find_first_of(sep, prev);
if (curr == std::string::npos) {
std::string part = str.substr(prev);
if (!part.empty()) result.push_back(part);
break;
} else {
std::string part = str.substr(prev, curr - prev);
if (!part.empty()) result.push_back(part);
prev = curr + 1;
}
}
return result;
}
std::string escape_cxx_string(const std::string &input)
{
std::string output = "\"";
for (auto c : input) {
if (::isprint(c)) {
if (c == '\\')
output.push_back('\\');
output.push_back(c);
} else {
char l = c & 0xf, h = (c >> 4) & 0xf;
output.append("\\x");
output.push_back((h < 10 ? '0' + h : 'a' + h - 10));
output.push_back((l < 10 ? '0' + l : 'a' + l - 10));
}
}
output.push_back('"');
if (output.find('\0') != std::string::npos) {
output.insert(0, "std::string {");
output.append(stringf(", %zu}", input.size()));
}
return output;
}
template<class T>
std::string get_hdl_name(T *object)
{
if (object->has_attribute(ID::hdlname))
return object->get_string_attribute(ID::hdlname);
else
return object->name.str().substr(1);
}
struct CxxrtlWorker {
bool split_intf = false;
std::string intf_filename;
std::string design_ns = "cxxrtl_design";
std::ostream *impl_f = nullptr;
std::ostream *intf_f = nullptr;
bool run_flatten = false;
bool run_proc = false;
bool unbuffer_internal = false;
bool unbuffer_public = false;
bool localize_internal = false;
bool localize_public = false;
bool elide_internal = false;
bool elide_public = false;
bool debug_info = false;
std::ostringstream f;
std::string indent;
int temporary = 0;
dict<const RTLIL::Module*, SigMap> sigmaps;
pool<const RTLIL::Wire*> edge_wires;
dict<RTLIL::SigBit, RTLIL::SyncType> edge_types;
pool<const RTLIL::Memory*> writable_memories;
dict<const RTLIL::Cell*, pool<const RTLIL::Cell*>> transparent_for;
dict<const RTLIL::Wire*, FlowGraph::Node> elided_wires;
dict<const RTLIL::Module*, std::vector<FlowGraph::Node>> schedule;
pool<const RTLIL::Wire*> unbuffered_wires;
pool<const RTLIL::Wire*> localized_wires;
dict<const RTLIL::Wire*, const RTLIL::Wire*> debug_alias_wires;
dict<const RTLIL::Wire*, RTLIL::Const> debug_const_wires;
dict<const RTLIL::Module*, pool<std::string>> blackbox_specializations;
dict<const RTLIL::Module*, bool> eval_converges;
void inc_indent() {
indent += "\t";
}
void dec_indent() {
indent.resize(indent.size() - 1);
}
// RTLIL allows any characters in names other than whitespace. This presents an issue for generating C++ code
// because C++ identifiers may be only alphanumeric, cannot clash with C++ keywords, and cannot clash with cxxrtl
// identifiers. This issue can be solved with a name mangling scheme. We choose a name mangling scheme that results
// in readable identifiers, does not depend on an up-to-date list of C++ keywords, and is easy to apply. Its rules:
// 1. All generated identifiers start with `_`.
// 1a. Generated identifiers for public names (beginning with `\`) start with `p_`.
// 1b. Generated identifiers for internal names (beginning with `$`) start with `i_`.
// 2. An underscore is escaped with another underscore, i.e. `__`.
// 3. Any other non-alnum character is escaped with underscores around its lowercase hex code, e.g. `@` as `_40_`.
std::string mangle_name(const RTLIL::IdString &name)
{
std::string mangled;
bool first = true;
for (char c : name.str()) {
if (first) {
first = false;
if (c == '\\')
mangled += "p_";
else if (c == '$')
mangled += "i_";
else
log_assert(false);
} else {
if (isalnum(c)) {
mangled += c;
} else if (c == '_') {
mangled += "__";
} else {
char l = c & 0xf, h = (c >> 4) & 0xf;
mangled += '_';
mangled += (h < 10 ? '0' + h : 'a' + h - 10);
mangled += (l < 10 ? '0' + l : 'a' + l - 10);
mangled += '_';
}
}
}
return mangled;
}
std::string mangle_module_name(const RTLIL::IdString &name, bool is_blackbox = false)
{
// Class namespace.
if (is_blackbox)
return "bb_" + mangle_name(name);
return mangle_name(name);
}
std::string mangle_memory_name(const RTLIL::IdString &name)
{
// Class member namespace.
return "memory_" + mangle_name(name);
}
std::string mangle_cell_name(const RTLIL::IdString &name)
{
// Class member namespace.
return "cell_" + mangle_name(name);
}
std::string mangle_wire_name(const RTLIL::IdString &name)
{
// Class member namespace.
return mangle_name(name);
}
std::string mangle(const RTLIL::Module *module)
{
return mangle_module_name(module->name, /*is_blackbox=*/module->get_bool_attribute(ID(cxxrtl_blackbox)));
}
std::string mangle(const RTLIL::Memory *memory)
{
return mangle_memory_name(memory->name);
}
std::string mangle(const RTLIL::Cell *cell)
{
return mangle_cell_name(cell->name);
}
std::string mangle(const RTLIL::Wire *wire)
{
return mangle_wire_name(wire->name);
}
std::string mangle(RTLIL::SigBit sigbit)
{
log_assert(sigbit.wire != NULL);
if (sigbit.wire->width == 1)
return mangle(sigbit.wire);
return mangle(sigbit.wire) + "_" + std::to_string(sigbit.offset);
}
std::vector<std::string> template_param_names(const RTLIL::Module *module)
{
if (!module->has_attribute(ID(cxxrtl_template)))
return {};
if (module->attributes.at(ID(cxxrtl_template)).flags != RTLIL::CONST_FLAG_STRING)
log_cmd_error("Attribute `cxxrtl_template' of module `%s' is not a string.\n", log_id(module));
std::vector<std::string> param_names = split_by(module->get_string_attribute(ID(cxxrtl_template)), " \t");
for (const auto &param_name : param_names) {
// Various lowercase prefixes (p_, i_, cell_, ...) are used for member variables, so require
// parameters to start with an uppercase letter to avoid name conflicts. (This is the convention
// in both Verilog and C++, anyway.)
if (!isupper(param_name[0]))
log_cmd_error("Attribute `cxxrtl_template' of module `%s' includes a parameter `%s', "
"which does not start with an uppercase letter.\n",
log_id(module), param_name.c_str());
}
return param_names;
}
std::string template_params(const RTLIL::Module *module, bool is_decl)
{
std::vector<std::string> param_names = template_param_names(module);
if (param_names.empty())
return "";
std::string params = "<";
bool first = true;
for (const auto &param_name : param_names) {
if (!first)
params += ", ";
first = false;
if (is_decl)
params += "size_t ";
params += param_name;
}
params += ">";
return params;
}
std::string template_args(const RTLIL::Cell *cell)
{
RTLIL::Module *cell_module = cell->module->design->module(cell->type);
log_assert(cell_module != nullptr);
if (!cell_module->get_bool_attribute(ID(cxxrtl_blackbox)))
return "";
std::vector<std::string> param_names = template_param_names(cell_module);
if (param_names.empty())
return "";
std::string params = "<";
bool first = true;
for (const auto &param_name : param_names) {
if (!first)
params += ", ";
first = false;
params += "/*" + param_name + "=*/";
RTLIL::IdString id_param_name = '\\' + param_name;
if (!cell->hasParam(id_param_name))
log_cmd_error("Cell `%s.%s' does not have a parameter `%s', which is required by the templated module `%s'.\n",
log_id(cell->module), log_id(cell), param_name.c_str(), log_id(cell_module));
RTLIL::Const param_value = cell->getParam(id_param_name);
if (((param_value.flags & ~RTLIL::CONST_FLAG_SIGNED) != 0) || param_value.as_int() < 0)
log_cmd_error("Parameter `%s' of cell `%s.%s', which is required by the templated module `%s', "
"is not a positive integer.\n",
param_name.c_str(), log_id(cell->module), log_id(cell), log_id(cell_module));
params += std::to_string(cell->getParam(id_param_name).as_int());
}
params += ">";
return params;
}
std::string fresh_temporary()
{
return stringf("tmp_%d", temporary++);
}
void dump_attrs(const RTLIL::AttrObject *object)
{
for (auto attr : object->attributes) {
f << indent << "// " << attr.first.str() << ": ";
if (attr.second.flags & RTLIL::CONST_FLAG_STRING) {
f << attr.second.decode_string();
} else {
f << attr.second.as_int(/*is_signed=*/attr.second.flags & RTLIL::CONST_FLAG_SIGNED);
}
f << "\n";
}
}
void dump_const_init(const RTLIL::Const &data, int width, int offset = 0, bool fixed_width = false)
{
const int CHUNK_SIZE = 32;
f << "{";
while (width > 0) {
int chunk_width = min(width, CHUNK_SIZE);
uint32_t chunk = data.extract(offset, chunk_width).as_int();
if (fixed_width)
f << stringf("0x%.*xu", (3 + chunk_width) / 4, chunk);
else
f << stringf("%#xu", chunk);
if (width > CHUNK_SIZE)
f << ',';
offset += CHUNK_SIZE;
width -= CHUNK_SIZE;
}
f << "}";
}
void dump_const_init(const RTLIL::Const &data)
{
dump_const_init(data, data.size());
}
void dump_const(const RTLIL::Const &data, int width, int offset = 0, bool fixed_width = false)
{
f << "value<" << width << ">";
dump_const_init(data, width, offset, fixed_width);
}
void dump_const(const RTLIL::Const &data)
{
dump_const(data, data.size());
}
bool dump_sigchunk(const RTLIL::SigChunk &chunk, bool is_lhs)
{
if (chunk.wire == NULL) {
dump_const(chunk.data, chunk.width, chunk.offset);
return false;
} else {
if (elided_wires.count(chunk.wire)) {
log_assert(!is_lhs);
const FlowGraph::Node &node = elided_wires[chunk.wire];
switch (node.type) {
case FlowGraph::Node::Type::CONNECT:
dump_connect_elided(node.connect);
break;
case FlowGraph::Node::Type::CELL_EVAL:
log_assert(is_elidable_cell(node.cell->type));
dump_cell_elided(node.cell);
break;
default:
log_assert(false);
}
} else if (unbuffered_wires[chunk.wire]) {
f << mangle(chunk.wire);
} else {
f << mangle(chunk.wire) << (is_lhs ? ".next" : ".curr");
}
if (chunk.width == chunk.wire->width && chunk.offset == 0)
return false;
else if (chunk.width == 1)
f << ".slice<" << chunk.offset << ">()";
else
f << ".slice<" << chunk.offset+chunk.width-1 << "," << chunk.offset << ">()";
return true;
}
}
bool dump_sigspec(const RTLIL::SigSpec &sig, bool is_lhs)
{
if (sig.empty()) {
f << "value<0>()";
return false;
} else if (sig.is_chunk()) {
return dump_sigchunk(sig.as_chunk(), is_lhs);
} else {
dump_sigchunk(*sig.chunks().rbegin(), is_lhs);
for (auto it = sig.chunks().rbegin() + 1; it != sig.chunks().rend(); ++it) {
f << ".concat(";
dump_sigchunk(*it, is_lhs);
f << ")";
}
return true;
}
}
void dump_sigspec_lhs(const RTLIL::SigSpec &sig)
{
dump_sigspec(sig, /*is_lhs=*/true);
}
void dump_sigspec_rhs(const RTLIL::SigSpec &sig)
{
// In the contexts where we want template argument deduction to occur for `template<size_t Bits> ... value<Bits>`,
// it is necessary to have the argument to already be a `value<N>`, since template argument deduction and implicit
// type conversion are mutually exclusive. In these contexts, we use dump_sigspec_rhs() to emit an explicit
// type conversion, but only if the expression needs it.
bool is_complex = dump_sigspec(sig, /*is_lhs=*/false);
if (is_complex)
f << ".val()";
}
void collect_sigspec_rhs(const RTLIL::SigSpec &sig, std::vector<RTLIL::IdString> &cells)
{
for (auto chunk : sig.chunks()) {
if (!chunk.wire || !elided_wires.count(chunk.wire))
continue;
const FlowGraph::Node &node = elided_wires[chunk.wire];
switch (node.type) {
case FlowGraph::Node::Type::CONNECT:
collect_connect(node.connect, cells);
break;
case FlowGraph::Node::Type::CELL_EVAL:
collect_cell_eval(node.cell, cells);
break;
default:
log_assert(false);
}
}
}
void dump_connect_elided(const RTLIL::SigSig &conn)
{
dump_sigspec_rhs(conn.second);
}
bool is_connect_elided(const RTLIL::SigSig &conn)
{
return conn.first.is_wire() && elided_wires.count(conn.first.as_wire());
}
void collect_connect(const RTLIL::SigSig &conn, std::vector<RTLIL::IdString> &cells)
{
if (!is_connect_elided(conn))
return;
collect_sigspec_rhs(conn.second, cells);
}
void dump_connect(const RTLIL::SigSig &conn)
{
if (is_connect_elided(conn))
return;
f << indent << "// connection\n";
f << indent;
dump_sigspec_lhs(conn.first);
f << " = ";
dump_connect_elided(conn);
f << ";\n";
}
void dump_cell_sync(const RTLIL::Cell *cell)
{
const char *access = is_cxxrtl_blackbox_cell(cell) ? "->" : ".";
f << indent << "// cell " << cell->name.str() << " syncs\n";
for (auto conn : cell->connections())
if (cell->output(conn.first))
if (is_cxxrtl_sync_port(cell, conn.first)) {
f << indent;
dump_sigspec_lhs(conn.second);
f << " = " << mangle(cell) << access << mangle_wire_name(conn.first) << ".curr;\n";
}
}
void dump_cell_elided(const RTLIL::Cell *cell)
{
// Unary cells
if (is_unary_cell(cell->type)) {
f << cell->type.substr(1);
if (is_extending_cell(cell->type))
f << '_' << (cell->getParam(ID::A_SIGNED).as_bool() ? 's' : 'u');
f << "<" << cell->getParam(ID::Y_WIDTH).as_int() << ">(";
dump_sigspec_rhs(cell->getPort(ID::A));
f << ")";
// Binary cells
} else if (is_binary_cell(cell->type)) {
f << cell->type.substr(1);
if (is_extending_cell(cell->type))
f << '_' << (cell->getParam(ID::A_SIGNED).as_bool() ? 's' : 'u') <<
(cell->getParam(ID::B_SIGNED).as_bool() ? 's' : 'u');
f << "<" << cell->getParam(ID::Y_WIDTH).as_int() << ">(";
dump_sigspec_rhs(cell->getPort(ID::A));
f << ", ";
dump_sigspec_rhs(cell->getPort(ID::B));
f << ")";
// Muxes
} else if (cell->type == ID($mux)) {
f << "(";
dump_sigspec_rhs(cell->getPort(ID::S));
f << " ? ";
dump_sigspec_rhs(cell->getPort(ID::B));
f << " : ";
dump_sigspec_rhs(cell->getPort(ID::A));
f << ")";
// Parallel (one-hot) muxes
} else if (cell->type == ID($pmux)) {
int width = cell->getParam(ID::WIDTH).as_int();
int s_width = cell->getParam(ID::S_WIDTH).as_int();
for (int part = 0; part < s_width; part++) {
f << "(";
dump_sigspec_rhs(cell->getPort(ID::S).extract(part));
f << " ? ";
dump_sigspec_rhs(cell->getPort(ID::B).extract(part * width, width));
f << " : ";
}
dump_sigspec_rhs(cell->getPort(ID::A));
for (int part = 0; part < s_width; part++) {
f << ")";
}
// Concats
} else if (cell->type == ID($concat)) {
dump_sigspec_rhs(cell->getPort(ID::B));
f << ".concat(";
dump_sigspec_rhs(cell->getPort(ID::A));
f << ").val()";
// Slices
} else if (cell->type == ID($slice)) {
dump_sigspec_rhs(cell->getPort(ID::A));
f << ".slice<";
f << cell->getParam(ID::OFFSET).as_int() + cell->getParam(ID::Y_WIDTH).as_int() - 1;
f << ",";
f << cell->getParam(ID::OFFSET).as_int();
f << ">().val()";
} else {
log_assert(false);
}
}
bool is_cell_elided(const RTLIL::Cell *cell)
{
return is_elidable_cell(cell->type) && cell->hasPort(ID::Y) && cell->getPort(ID::Y).is_wire() &&
elided_wires.count(cell->getPort(ID::Y).as_wire());
}
void collect_cell_eval(const RTLIL::Cell *cell, std::vector<RTLIL::IdString> &cells)
{
if (!is_cell_elided(cell))
return;
cells.push_back(cell->name);
for (auto port : cell->connections())
if (port.first != ID::Y)
collect_sigspec_rhs(port.second, cells);
}
void dump_cell_eval(const RTLIL::Cell *cell)
{
if (is_cell_elided(cell))
return;
if (cell->type == ID($meminit))
return; // Handled elsewhere.
std::vector<RTLIL::IdString> elided_cells;
if (is_elidable_cell(cell->type)) {
for (auto port : cell->connections())
if (port.first != ID::Y)
collect_sigspec_rhs(port.second, elided_cells);
}
if (elided_cells.empty()) {
dump_attrs(cell);
f << indent << "// cell " << cell->name.str() << "\n";
} else {
f << indent << "// cells";
for (auto elided_cell : elided_cells)
f << " " << elided_cell.str();
f << "\n";
}
// Elidable cells
if (is_elidable_cell(cell->type)) {
f << indent;
dump_sigspec_lhs(cell->getPort(ID::Y));
f << " = ";
dump_cell_elided(cell);
f << ";\n";
// Flip-flops
} else if (is_ff_cell(cell->type)) {
if (cell->hasPort(ID::CLK) && cell->getPort(ID::CLK).is_wire()) {
// Edge-sensitive logic
RTLIL::SigBit clk_bit = cell->getPort(ID::CLK)[0];
clk_bit = sigmaps[clk_bit.wire->module](clk_bit);
f << indent << "if (" << (cell->getParam(ID::CLK_POLARITY).as_bool() ? "posedge_" : "negedge_")
<< mangle(clk_bit) << ") {\n";
inc_indent();
if (cell->hasPort(ID::EN)) {
f << indent << "if (";
dump_sigspec_rhs(cell->getPort(ID::EN));
f << " == value<1> {" << cell->getParam(ID::EN_POLARITY).as_bool() << "u}) {\n";
inc_indent();
}
f << indent;
dump_sigspec_lhs(cell->getPort(ID::Q));
f << " = ";
dump_sigspec_rhs(cell->getPort(ID::D));
f << ";\n";
if (cell->hasPort(ID::EN) && cell->type != ID($sdffce)) {
dec_indent();
f << indent << "}\n";
}
if (cell->hasPort(ID::SRST)) {
f << indent << "if (";
dump_sigspec_rhs(cell->getPort(ID::SRST));
f << " == value<1> {" << cell->getParam(ID::SRST_POLARITY).as_bool() << "u}) {\n";
inc_indent();
f << indent;
dump_sigspec_lhs(cell->getPort(ID::Q));
f << " = ";
dump_const(cell->getParam(ID::SRST_VALUE));
f << ";\n";
dec_indent();
f << indent << "}\n";
}
if (cell->hasPort(ID::EN) && cell->type == ID($sdffce)) {
dec_indent();
f << indent << "}\n";
}
dec_indent();
f << indent << "}\n";
} else if (cell->hasPort(ID::EN)) {
// Level-sensitive logic
f << indent << "if (";
dump_sigspec_rhs(cell->getPort(ID::EN));
f << " == value<1> {" << cell->getParam(ID::EN_POLARITY).as_bool() << "u}) {\n";
inc_indent();
f << indent;
dump_sigspec_lhs(cell->getPort(ID::Q));
f << " = ";
dump_sigspec_rhs(cell->getPort(ID::D));
f << ";\n";
dec_indent();
f << indent << "}\n";
}
if (cell->hasPort(ID::ARST)) {
// Asynchronous reset (entire coarse cell at once)
f << indent << "if (";
dump_sigspec_rhs(cell->getPort(ID::ARST));
f << " == value<1> {" << cell->getParam(ID::ARST_POLARITY).as_bool() << "u}) {\n";
inc_indent();
f << indent;
dump_sigspec_lhs(cell->getPort(ID::Q));
f << " = ";
dump_const(cell->getParam(ID::ARST_VALUE));
f << ";\n";
dec_indent();
f << indent << "}\n";
}
if (cell->hasPort(ID::SET)) {
// Asynchronous set (for individual bits)
f << indent;
dump_sigspec_lhs(cell->getPort(ID::Q));
f << " = ";
dump_sigspec_lhs(cell->getPort(ID::Q));
f << ".update(";
dump_const(RTLIL::Const(RTLIL::S1, cell->getParam(ID::WIDTH).as_int()));
f << ", ";
dump_sigspec_rhs(cell->getPort(ID::SET));
f << (cell->getParam(ID::SET_POLARITY).as_bool() ? "" : ".bit_not()") << ");\n";
}
if (cell->hasPort(ID::CLR)) {
// Asynchronous clear (for individual bits; priority over set)
f << indent;
dump_sigspec_lhs(cell->getPort(ID::Q));
f << " = ";
dump_sigspec_lhs(cell->getPort(ID::Q));
f << ".update(";
dump_const(RTLIL::Const(RTLIL::S0, cell->getParam(ID::WIDTH).as_int()));
f << ", ";
dump_sigspec_rhs(cell->getPort(ID::CLR));
f << (cell->getParam(ID::CLR_POLARITY).as_bool() ? "" : ".bit_not()") << ");\n";
}
// Memory ports
} else if (cell->type.in(ID($memrd), ID($memwr))) {
if (cell->getParam(ID::CLK_ENABLE).as_bool()) {
RTLIL::SigBit clk_bit = cell->getPort(ID::CLK)[0];
clk_bit = sigmaps[clk_bit.wire->module](clk_bit);
f << indent << "if (" << (cell->getParam(ID::CLK_POLARITY).as_bool() ? "posedge_" : "negedge_")
<< mangle(clk_bit) << ") {\n";
inc_indent();
}
RTLIL::Memory *memory = cell->module->memories[cell->getParam(ID::MEMID).decode_string()];
std::string valid_index_temp = fresh_temporary();
f << indent << "auto " << valid_index_temp << " = memory_index(";
dump_sigspec_rhs(cell->getPort(ID::ADDR));
f << ", " << memory->start_offset << ", " << memory->size << ");\n";
if (cell->type == ID($memrd)) {
bool has_enable = cell->getParam(ID::CLK_ENABLE).as_bool() && !cell->getPort(ID::EN).is_fully_ones();
if (has_enable) {
f << indent << "if (";
dump_sigspec_rhs(cell->getPort(ID::EN));
f << ") {\n";
inc_indent();
}
// The generated code has two bounds checks; one in an assertion, and another that guards the read.
// This is done so that the code does not invoke undefined behavior under any conditions, but nevertheless
// loudly crashes if an illegal condition is encountered. The assert may be turned off with -NDEBUG not
// just for release builds, but also to make sure the simulator (which is presumably embedded in some
// larger program) will never crash the code that calls into it.
//
// If assertions are disabled, out of bounds reads are defined to return zero.
f << indent << "assert(" << valid_index_temp << ".valid && \"out of bounds read\");\n";
f << indent << "if(" << valid_index_temp << ".valid) {\n";
inc_indent();
if (writable_memories[memory]) {
std::string lhs_temp = fresh_temporary();
f << indent << "value<" << memory->width << "> " << lhs_temp << " = "
<< mangle(memory) << "[" << valid_index_temp << ".index];\n";
std::vector<const RTLIL::Cell*> memwr_cells(transparent_for[cell].begin(), transparent_for[cell].end());
if (!memwr_cells.empty()) {
std::string addr_temp = fresh_temporary();
f << indent << "const value<" << cell->getPort(ID::ADDR).size() << "> &" << addr_temp << " = ";
dump_sigspec_rhs(cell->getPort(ID::ADDR));
f << ";\n";
std::sort(memwr_cells.begin(), memwr_cells.end(),
[](const RTLIL::Cell *a, const RTLIL::Cell *b) {
return a->getParam(ID::PRIORITY).as_int() < b->getParam(ID::PRIORITY).as_int();
});
for (auto memwr_cell : memwr_cells) {
f << indent << "if (" << addr_temp << " == ";
dump_sigspec_rhs(memwr_cell->getPort(ID::ADDR));
f << ") {\n";
inc_indent();
f << indent << lhs_temp << " = " << lhs_temp;
f << ".update(";
dump_sigspec_rhs(memwr_cell->getPort(ID::DATA));
f << ", ";
dump_sigspec_rhs(memwr_cell->getPort(ID::EN));
f << ");\n";
dec_indent();
f << indent << "}\n";
}
}
f << indent;
dump_sigspec_lhs(cell->getPort(ID::DATA));
f << " = " << lhs_temp << ";\n";
} else {
f << indent;
dump_sigspec_lhs(cell->getPort(ID::DATA));
f << " = " << mangle(memory) << "[" << valid_index_temp << ".index];\n";
}
dec_indent();
f << indent << "} else {\n";
inc_indent();
f << indent;
dump_sigspec_lhs(cell->getPort(ID::DATA));
f << " = value<" << memory->width << "> {};\n";
dec_indent();
f << indent << "}\n";
if (has_enable) {
dec_indent();
f << indent << "}\n";
}
} else /*if (cell->type == ID($memwr))*/ {
log_assert(writable_memories[memory]);
// See above for rationale of having both the assert and the condition.
//
// If assertions are disabled, out of bounds writes are defined to do nothing.
f << indent << "assert(" << valid_index_temp << ".valid && \"out of bounds write\");\n";
f << indent << "if (" << valid_index_temp << ".valid) {\n";
inc_indent();
f << indent << mangle(memory) << ".update(" << valid_index_temp << ".index, ";
dump_sigspec_rhs(cell->getPort(ID::DATA));
f << ", ";
dump_sigspec_rhs(cell->getPort(ID::EN));
f << ", " << cell->getParam(ID::PRIORITY).as_int() << ");\n";
dec_indent();
f << indent << "}\n";
}
if (cell->getParam(ID::CLK_ENABLE).as_bool()) {
dec_indent();
f << indent << "}\n";
}
// Internal cells
} else if (is_internal_cell(cell->type)) {
log_cmd_error("Unsupported internal cell `%s'.\n", cell->type.c_str());
// User cells
} else {
log_assert(cell->known());
const char *access = is_cxxrtl_blackbox_cell(cell) ? "->" : ".";
for (auto conn : cell->connections())
if (cell->input(conn.first) && !cell->output(conn.first)) {
f << indent << mangle(cell) << access << mangle_wire_name(conn.first) << " = ";
dump_sigspec_rhs(conn.second);
f << ";\n";
if (getenv("CXXRTL_VOID_MY_WARRANTY")) {
// Until we have proper clock tree detection, this really awful hack that opportunistically
// propagates prev_* values for clocks can be used to estimate how much faster a design could
// be if only one clock edge was simulated by replacing:
// top.p_clk = value<1>{0u}; top.step();
// top.p_clk = value<1>{1u}; top.step();
// with:
// top.prev_p_clk = value<1>{0u}; top.p_clk = value<1>{1u}; top.step();
// Don't rely on this; it will be removed without warning.
RTLIL::Module *cell_module = cell->module->design->module(cell->type);
if (cell_module != nullptr && cell_module->wire(conn.first) && conn.second.is_wire()) {
RTLIL::Wire *cell_module_wire = cell_module->wire(conn.first);
if (edge_wires[conn.second.as_wire()] && edge_wires[cell_module_wire]) {
f << indent << mangle(cell) << access << "prev_" << mangle(cell_module_wire) << " = ";
f << "prev_" << mangle(conn.second.as_wire()) << ";\n";
}
}
}
} else if (cell->input(conn.first)) {
f << indent << mangle(cell) << access << mangle_wire_name(conn.first) << ".next = ";
dump_sigspec_rhs(conn.second);
f << ";\n";
}
auto assign_from_outputs = [&](bool cell_converged) {
for (auto conn : cell->connections()) {
if (cell->output(conn.first)) {
if (conn.second.empty())
continue; // ignore disconnected ports
if (is_cxxrtl_sync_port(cell, conn.first))
continue; // fully sync ports are handled in CELL_SYNC nodes
f << indent;
dump_sigspec_lhs(conn.second);
f << " = " << mangle(cell) << access << mangle_wire_name(conn.first);
// Similarly to how there is no purpose to buffering cell inputs, there is also no purpose to buffering
// combinatorial cell outputs in case the cell converges within one cycle. (To convince yourself that
// this optimization is valid, consider that, since the cell converged within one cycle, it would not
// have any buffered wires if they were not output ports. Imagine inlining the cell's eval() function,
// and consider the fate of the localized wires that used to be output ports.)
//
// Unlike cell inputs (which are never buffered), it is not possible to know apriori whether the cell
// (which may be late bound) will converge immediately. Because of this, the choice between using .curr
// (appropriate for buffered outputs) and .next (appropriate for unbuffered outputs) is made at runtime.
if (cell_converged && is_cxxrtl_comb_port(cell, conn.first))
f << ".next;\n";
else
f << ".curr;\n";
}
}
};
f << indent << "if (" << mangle(cell) << access << "eval()) {\n";
inc_indent();
assign_from_outputs(/*cell_converged=*/true);
dec_indent();
f << indent << "} else {\n";
inc_indent();
f << indent << "converged = false;\n";
assign_from_outputs(/*cell_converged=*/false);
dec_indent();
f << indent << "}\n";
}
}
void dump_assign(const RTLIL::SigSig &sigsig)
{
f << indent;
dump_sigspec_lhs(sigsig.first);
f << " = ";
dump_sigspec_rhs(sigsig.second);
f << ";\n";
}
void dump_case_rule(const RTLIL::CaseRule *rule)
{
for (auto action : rule->actions)
dump_assign(action);
for (auto switch_ : rule->switches)
dump_switch_rule(switch_);
}
void dump_switch_rule(const RTLIL::SwitchRule *rule)
{
// The switch attributes are printed before the switch condition is captured.
dump_attrs(rule);
std::string signal_temp = fresh_temporary();
f << indent << "const value<" << rule->signal.size() << "> &" << signal_temp << " = ";
dump_sigspec(rule->signal, /*is_lhs=*/false);
f << ";\n";
bool first = true;
for (auto case_ : rule->cases) {
// The case attributes (for nested cases) are printed before the if/else if/else statement.
dump_attrs(rule);
f << indent;
if (!first)
f << "} else ";
first = false;
if (!case_->compare.empty()) {
f << "if (";
bool first = true;
for (auto &compare : case_->compare) {
if (!first)
f << " || ";
first = false;
if (compare.is_fully_def()) {
f << signal_temp << " == ";
dump_sigspec(compare, /*is_lhs=*/false);
} else if (compare.is_fully_const()) {
RTLIL::Const compare_mask, compare_value;
for (auto bit : compare.as_const()) {
switch (bit) {
case RTLIL::S0:
case RTLIL::S1:
compare_mask.bits.push_back(RTLIL::S1);
compare_value.bits.push_back(bit);
break;
case RTLIL::Sx:
case RTLIL::Sz:
case RTLIL::Sa:
compare_mask.bits.push_back(RTLIL::S0);
compare_value.bits.push_back(RTLIL::S0);
break;
default:
log_assert(false);
}
}
f << "and_uu<" << compare.size() << ">(" << signal_temp << ", ";
dump_const(compare_mask);
f << ") == ";
dump_const(compare_value);
} else {
log_assert(false);
}
}
f << ") ";
}
f << "{\n";
inc_indent();
dump_case_rule(case_);
dec_indent();
}
f << indent << "}\n";
}
void dump_process(const RTLIL::Process *proc)
{
dump_attrs(proc);
f << indent << "// process " << proc->name.str() << "\n";
// The case attributes (for root case) are always empty.
log_assert(proc->root_case.attributes.empty());
dump_case_rule(&proc->root_case);
for (auto sync : proc->syncs) {
RTLIL::SigBit sync_bit;
if (!sync->signal.empty()) {
sync_bit = sync->signal[0];
sync_bit = sigmaps[sync_bit.wire->module](sync_bit);
}
pool<std::string> events;
switch (sync->type) {
case RTLIL::STp:
log_assert(sync_bit.wire != nullptr);
events.insert("posedge_" + mangle(sync_bit));
break;
case RTLIL::STn:
log_assert(sync_bit.wire != nullptr);
events.insert("negedge_" + mangle(sync_bit));
break;
case RTLIL::STe:
log_assert(sync_bit.wire != nullptr);
events.insert("posedge_" + mangle(sync_bit));
events.insert("negedge_" + mangle(sync_bit));
break;
case RTLIL::STa:
events.insert("true");
break;
case RTLIL::ST0:
case RTLIL::ST1:
case RTLIL::STg:
case RTLIL::STi:
log_assert(false);
}
if (!events.empty()) {
f << indent << "if (";
bool first = true;
for (auto &event : events) {
if (!first)
f << " || ";
first = false;
f << event;
}
f << ") {\n";
inc_indent();
for (auto action : sync->actions)
dump_assign(action);
dec_indent();
f << indent << "}\n";
}
}
}
void dump_wire(const RTLIL::Wire *wire, bool is_local_context)
{
if (elided_wires.count(wire))
return;
if (localized_wires[wire] && is_local_context) {
dump_attrs(wire);
f << indent << "value<" << wire->width << "> " << mangle(wire) << ";\n";
}
if (!localized_wires[wire] && !is_local_context) {
std::string width;
if (wire->module->has_attribute(ID(cxxrtl_blackbox)) && wire->has_attribute(ID(cxxrtl_width))) {
width = wire->get_string_attribute(ID(cxxrtl_width));
} else {
width = std::to_string(wire->width);
}
dump_attrs(wire);
f << indent;
if (wire->port_input && wire->port_output)
f << "/*inout*/ ";
else if (wire->port_input)
f << "/*input*/ ";
else if (wire->port_output)
f << "/*output*/ ";
f << (unbuffered_wires[wire] ? "value" : "wire") << "<" << width << "> " << mangle(wire);
if (wire->has_attribute(ID::init)) {
f << " ";
dump_const_init(wire->attributes.at(ID::init));
}
f << ";\n";
if (edge_wires[wire]) {
if (unbuffered_wires[wire]) {
f << indent << "value<" << width << "> prev_" << mangle(wire);
if (wire->has_attribute(ID::init)) {
f << " ";
dump_const_init(wire->attributes.at(ID::init));
}
f << ";\n";
}
for (auto edge_type : edge_types) {
if (edge_type.first.wire == wire) {
std::string prev, next;
if (unbuffered_wires[wire]) {
prev = "prev_" + mangle(edge_type.first.wire);
next = mangle(edge_type.first.wire);
} else {
prev = mangle(edge_type.first.wire) + ".curr";
next = mangle(edge_type.first.wire) + ".next";
}
prev += ".slice<" + std::to_string(edge_type.first.offset) + ">().val()";
next += ".slice<" + std::to_string(edge_type.first.offset) + ">().val()";
if (edge_type.second != RTLIL::STn) {
f << indent << "bool posedge_" << mangle(edge_type.first) << "() const {\n";
inc_indent();
f << indent << "return !" << prev << " && " << next << ";\n";
dec_indent();
f << indent << "}\n";
}
if (edge_type.second != RTLIL::STp) {
f << indent << "bool negedge_" << mangle(edge_type.first) << "() const {\n";
inc_indent();
f << indent << "return " << prev << " && !" << next << ";\n";
dec_indent();
f << indent << "}\n";
}
}
}
}
}
}
void dump_memory(RTLIL::Module *module, const RTLIL::Memory *memory)
{
vector<const RTLIL::Cell*> init_cells;
for (auto cell : module->cells())
if (cell->type == ID($meminit) && cell->getParam(ID::MEMID).decode_string() == memory->name.str())
init_cells.push_back(cell);
std::sort(init_cells.begin(), init_cells.end(), [](const RTLIL::Cell *a, const RTLIL::Cell *b) {
int a_addr = a->getPort(ID::ADDR).as_int(), b_addr = b->getPort(ID::ADDR).as_int();
int a_prio = a->getParam(ID::PRIORITY).as_int(), b_prio = b->getParam(ID::PRIORITY).as_int();
return a_prio > b_prio || (a_prio == b_prio && a_addr < b_addr);
});
dump_attrs(memory);
f << indent << "memory<" << memory->width << "> " << mangle(memory)
<< " { " << memory->size << "u";
if (init_cells.empty()) {
f << " };\n";
} else {
f << ",\n";
inc_indent();
for (auto cell : init_cells) {
dump_attrs(cell);
RTLIL::Const data = cell->getPort(ID::DATA).as_const();
size_t width = cell->getParam(ID::WIDTH).as_int();
size_t words = cell->getParam(ID::WORDS).as_int();
f << indent << "memory<" << memory->width << ">::init<" << words << "> { "
<< stringf("%#x", cell->getPort(ID::ADDR).as_int()) << ", {";
inc_indent();
for (size_t n = 0; n < words; n++) {
if (n % 4 == 0)
f << "\n" << indent;
else
f << " ";
dump_const(data, width, n * width, /*fixed_width=*/true);
f << ",";
}
dec_indent();
f << "\n" << indent << "}},\n";
}
dec_indent();
f << indent << "};\n";
}
}
void dump_eval_method(RTLIL::Module *module)
{
inc_indent();
f << indent << "bool converged = " << (eval_converges.at(module) ? "true" : "false") << ";\n";
if (!module->get_bool_attribute(ID(cxxrtl_blackbox))) {
for (auto wire : module->wires()) {
if (edge_wires[wire]) {
for (auto edge_type : edge_types) {
if (edge_type.first.wire == wire) {
if (edge_type.second != RTLIL::STn) {
f << indent << "bool posedge_" << mangle(edge_type.first) << " = ";
f << "this->posedge_" << mangle(edge_type.first) << "();\n";
}
if (edge_type.second != RTLIL::STp) {
f << indent << "bool negedge_" << mangle(edge_type.first) << " = ";
f << "this->negedge_" << mangle(edge_type.first) << "();\n";
}
}
}
}
}
for (auto wire : module->wires())
dump_wire(wire, /*is_local_context=*/true);
for (auto node : schedule[module]) {
switch (node.type) {
case FlowGraph::Node::Type::CONNECT:
dump_connect(node.connect);
break;
case FlowGraph::Node::Type::CELL_SYNC:
dump_cell_sync(node.cell);
break;
case FlowGraph::Node::Type::CELL_EVAL:
dump_cell_eval(node.cell);
break;
case FlowGraph::Node::Type::PROCESS:
dump_process(node.process);
break;
}
}
}
f << indent << "return converged;\n";
dec_indent();
}
void dump_commit_method(RTLIL::Module *module)
{
inc_indent();
f << indent << "bool changed = false;\n";
for (auto wire : module->wires()) {
if (elided_wires.count(wire))
continue;
if (unbuffered_wires[wire]) {
if (edge_wires[wire])
f << indent << "prev_" << mangle(wire) << " = " << mangle(wire) << ";\n";
continue;
}
if (!module->get_bool_attribute(ID(cxxrtl_blackbox)) || wire->port_id != 0)
f << indent << "changed |= " << mangle(wire) << ".commit();\n";
}
if (!module->get_bool_attribute(ID(cxxrtl_blackbox))) {
for (auto memory : module->memories) {
if (!writable_memories[memory.second])
continue;
f << indent << "changed |= " << mangle(memory.second) << ".commit();\n";
}
for (auto cell : module->cells()) {
if (is_internal_cell(cell->type))
continue;
const char *access = is_cxxrtl_blackbox_cell(cell) ? "->" : ".";
f << indent << "changed |= " << mangle(cell) << access << "commit();\n";
}
}
f << indent << "return changed;\n";
dec_indent();
}
void dump_debug_info_method(RTLIL::Module *module)
{
size_t count_public_wires = 0;
size_t count_const_wires = 0;
size_t count_alias_wires = 0;
size_t count_member_wires = 0;
size_t count_skipped_wires = 0;
inc_indent();
f << indent << "assert(path.empty() || path[path.size() - 1] == ' ');\n";
for (auto wire : module->wires()) {
if (wire->name[0] != '\\')
continue;
if (module->get_bool_attribute(ID(cxxrtl_blackbox)) && (wire->port_id == 0))
continue;
count_public_wires++;
if (debug_const_wires.count(wire)) {
// Wire tied to a constant
f << indent << "static const value<" << wire->width << "> const_" << mangle(wire) << " = ";
dump_const(debug_const_wires[wire]);
f << ";\n";
f << indent << "items.add(path + " << escape_cxx_string(get_hdl_name(wire));
f << ", debug_item(const_" << mangle(wire) << ", ";
f << wire->start_offset << "));\n";
count_const_wires++;
} else if (debug_alias_wires.count(wire)) {
// Alias of a member wire
f << indent << "items.add(path + " << escape_cxx_string(get_hdl_name(wire));
f << ", debug_item(debug_alias(), " << mangle(debug_alias_wires[wire]) << ", ";
f << wire->start_offset << "));\n";
count_alias_wires++;
} else if (!localized_wires.count(wire)) {
// Member wire
f << indent << "items.add(path + " << escape_cxx_string(get_hdl_name(wire));
f << ", debug_item(" << mangle(wire) << ", ";
f << wire->start_offset << "));\n";
count_member_wires++;
} else {
count_skipped_wires++;
}
}
if (!module->get_bool_attribute(ID(cxxrtl_blackbox))) {
for (auto &memory_it : module->memories) {
if (memory_it.first[0] != '\\')
continue;
f << indent << "items.add(path + " << escape_cxx_string(get_hdl_name(memory_it.second));
f << ", debug_item(" << mangle(memory_it.second) << ", ";
f << memory_it.second->start_offset << "));\n";
}
for (auto cell : module->cells()) {
if (is_internal_cell(cell->type))
continue;
const char *access = is_cxxrtl_blackbox_cell(cell) ? "->" : ".";
f << indent << mangle(cell) << access << "debug_info(items, ";
f << "path + " << escape_cxx_string(get_hdl_name(cell) + ' ') << ");\n";
}
}
dec_indent();
log_debug("Debug information statistics for module `%s':\n", log_id(module));
log_debug(" Public wires: %zu, of which:\n", count_public_wires);
log_debug(" Const wires: %zu\n", count_const_wires);
log_debug(" Alias wires: %zu\n", count_alias_wires);
log_debug(" Member wires: %zu\n", count_member_wires);
log_debug(" Other wires: %zu (no debug information)\n", count_skipped_wires);
}
void dump_metadata_map(const dict<RTLIL::IdString, RTLIL::Const> &metadata_map)
{
if (metadata_map.empty()) {
f << "metadata_map()";
return;
}
f << "metadata_map({\n";
inc_indent();
for (auto metadata_item : metadata_map) {
if (!metadata_item.first.begins_with("\\"))
continue;
f << indent << "{ " << escape_cxx_string(metadata_item.first.str().substr(1)) << ", ";
if (metadata_item.second.flags & RTLIL::CONST_FLAG_REAL) {
f << std::showpoint << std::stod(metadata_item.second.decode_string()) << std::noshowpoint;
} else if (metadata_item.second.flags & RTLIL::CONST_FLAG_STRING) {
f << escape_cxx_string(metadata_item.second.decode_string());
} else {
f << metadata_item.second.as_int(/*is_signed=*/metadata_item.second.flags & RTLIL::CONST_FLAG_SIGNED);
if (!(metadata_item.second.flags & RTLIL::CONST_FLAG_SIGNED))
f << "u";
}
f << " },\n";
}
dec_indent();
f << indent << "})";
}
void dump_module_intf(RTLIL::Module *module)
{
dump_attrs(module);
if (module->get_bool_attribute(ID(cxxrtl_blackbox))) {
if (module->has_attribute(ID(cxxrtl_template)))
f << indent << "template" << template_params(module, /*is_decl=*/true) << "\n";
f << indent << "struct " << mangle(module) << " : public module {\n";
inc_indent();
for (auto wire : module->wires()) {
if (wire->port_id != 0)
dump_wire(wire, /*is_local_context=*/false);
}
f << "\n";
f << indent << "bool eval() override {\n";
dump_eval_method(module);
f << indent << "}\n";
f << "\n";
f << indent << "bool commit() override {\n";
dump_commit_method(module);
f << indent << "}\n";
f << "\n";
if (debug_info) {
f << indent << "void debug_info(debug_items &items, std::string path = \"\") override {\n";
dump_debug_info_method(module);
f << indent << "}\n";
f << "\n";
}
f << indent << "static std::unique_ptr<" << mangle(module);
f << template_params(module, /*is_decl=*/false) << "> ";
f << "create(std::string name, metadata_map parameters, metadata_map attributes);\n";
dec_indent();
f << indent << "}; // struct " << mangle(module) << "\n";
f << "\n";
if (blackbox_specializations.count(module)) {
// If templated black boxes are used, the constructor of any module which includes the black box cell
// (which calls the declared but not defined in the generated code `create` function) may only be used
// if (a) the create function is defined in the same translation unit, or (b) the create function has
// a forward-declared explicit specialization.
//
// Option (b) makes it possible to have the generated code and the black box implementation in different
// translation units, which is convenient. Of course, its downside is that black boxes must predefine
// a specialization for every combination of parameters the generated code may use; but since the main
// purpose of templated black boxes is abstracting over datapath width, it is expected that there would
// be very few such combinations anyway.
for (auto specialization : blackbox_specializations[module]) {
f << indent << "template<>\n";
f << indent << "std::unique_ptr<" << mangle(module) << specialization << "> ";
f << mangle(module) << specialization << "::";
f << "create(std::string name, metadata_map parameters, metadata_map attributes);\n";
f << "\n";
}
}
} else {
f << indent << "struct " << mangle(module) << " : public module {\n";
inc_indent();
for (auto wire : module->wires())
dump_wire(wire, /*is_local_context=*/false);
f << "\n";
bool has_memories = false;
for (auto memory : module->memories) {
dump_memory(module, memory.second);
has_memories = true;
}
if (has_memories)
f << "\n";
bool has_cells = false;
for (auto cell : module->cells()) {
if (is_internal_cell(cell->type))
continue;
dump_attrs(cell);
RTLIL::Module *cell_module = module->design->module(cell->type);
log_assert(cell_module != nullptr);
if (cell_module->get_bool_attribute(ID(cxxrtl_blackbox))) {
f << indent << "std::unique_ptr<" << mangle(cell_module) << template_args(cell) << "> ";
f << mangle(cell) << " = " << mangle(cell_module) << template_args(cell);
f << "::create(" << escape_cxx_string(get_hdl_name(cell)) << ", ";
dump_metadata_map(cell->parameters);
f << ", ";
dump_metadata_map(cell->attributes);
f << ");\n";
} else {
f << indent << mangle(cell_module) << " " << mangle(cell) << ";\n";
}
has_cells = true;
}
if (has_cells)
f << "\n";
f << indent << "bool eval() override;\n";
f << indent << "bool commit() override;\n";
if (debug_info)
f << indent << "void debug_info(debug_items &items, std::string path = \"\") override;\n";
dec_indent();
f << indent << "}; // struct " << mangle(module) << "\n";
f << "\n";
}
}
void dump_module_impl(RTLIL::Module *module)
{
if (module->get_bool_attribute(ID(cxxrtl_blackbox)))
return;
f << indent << "bool " << mangle(module) << "::eval() {\n";
dump_eval_method(module);
f << indent << "}\n";
f << "\n";
f << indent << "bool " << mangle(module) << "::commit() {\n";
dump_commit_method(module);
f << indent << "}\n";
f << "\n";
if (debug_info) {
f << indent << "void " << mangle(module) << "::debug_info(debug_items &items, std::string path) {\n";
dump_debug_info_method(module);
f << indent << "}\n";
f << "\n";
}
}
void dump_design(RTLIL::Design *design)
{
RTLIL::Module *top_module = nullptr;
std::vector<RTLIL::Module*> modules;
TopoSort<RTLIL::Module*> topo_design;
for (auto module : design->modules()) {
if (!design->selected_module(module))
continue;
if (module->get_bool_attribute(ID(cxxrtl_blackbox)))
modules.push_back(module); // cxxrtl blackboxes first
if (module->get_blackbox_attribute() || module->get_bool_attribute(ID(cxxrtl_blackbox)))
continue;
if (module->get_bool_attribute(ID::top))
top_module = module;
topo_design.node(module);
for (auto cell : module->cells()) {
if (is_internal_cell(cell->type) || is_cxxrtl_blackbox_cell(cell))
continue;
RTLIL::Module *cell_module = design->module(cell->type);
log_assert(cell_module != nullptr);
topo_design.edge(cell_module, module);
}
}
bool no_loops = topo_design.sort();
log_assert(no_loops);
modules.insert(modules.end(), topo_design.sorted.begin(), topo_design.sorted.end());
if (split_intf) {
// The only thing more depraved than include guards, is mangling filenames to turn them into include guards.
std::string include_guard = design_ns + "_header";
std::transform(include_guard.begin(), include_guard.end(), include_guard.begin(), ::toupper);
f << "#ifndef " << include_guard << "\n";
f << "#define " << include_guard << "\n";
f << "\n";
if (top_module != nullptr && debug_info) {
f << "#include <backends/cxxrtl/cxxrtl_capi.h>\n";
f << "\n";
f << "#ifdef __cplusplus\n";
f << "extern \"C\" {\n";
f << "#endif\n";
f << "\n";
f << "cxxrtl_toplevel " << design_ns << "_create();\n";
f << "\n";
f << "#ifdef __cplusplus\n";
f << "}\n";
f << "#endif\n";
f << "\n";
} else {
f << "// The CXXRTL C API is not available because the design is built without debug information.\n";
f << "\n";
}
f << "#ifdef __cplusplus\n";
f << "\n";
f << "#include <backends/cxxrtl/cxxrtl.h>\n";
f << "\n";
f << "using namespace cxxrtl;\n";
f << "\n";
f << "namespace " << design_ns << " {\n";
f << "\n";
for (auto module : modules)
dump_module_intf(module);
f << "} // namespace " << design_ns << "\n";
f << "\n";
f << "#endif // __cplusplus\n";
f << "\n";
f << "#endif\n";
*intf_f << f.str(); f.str("");
}
if (split_intf)
f << "#include \"" << intf_filename << "\"\n";
else
f << "#include <backends/cxxrtl/cxxrtl.h>\n";
f << "\n";
f << "#if defined(CXXRTL_INCLUDE_CAPI_IMPL) || \\\n";
f << " defined(CXXRTL_INCLUDE_VCD_CAPI_IMPL)\n";
f << "#include <backends/cxxrtl/cxxrtl_capi.cc>\n";
f << "#endif\n";
f << "\n";
f << "#if defined(CXXRTL_INCLUDE_VCD_CAPI_IMPL)\n";
f << "#include <backends/cxxrtl/cxxrtl_vcd_capi.cc>\n";
f << "#endif\n";
f << "\n";
f << "using namespace cxxrtl_yosys;\n";
f << "\n";
f << "namespace " << design_ns << " {\n";
f << "\n";
for (auto module : modules) {
if (!split_intf)
dump_module_intf(module);
dump_module_impl(module);
}
f << "} // namespace " << design_ns << "\n";
f << "\n";
if (top_module != nullptr && debug_info) {
f << "cxxrtl_toplevel " << design_ns << "_create() {\n";
inc_indent();
std::string top_type = design_ns + "::" + mangle(top_module);
f << indent << "return new _cxxrtl_toplevel { ";
f << "std::unique_ptr<" << top_type << ">(new " + top_type + ")";
f << " };\n";
dec_indent();
f << "}\n";
}
*impl_f << f.str(); f.str("");
}
// Edge-type sync rules require us to emit edge detectors, which require coordination between
// eval and commit phases. To do this we need to collect them upfront.
//
// Note that the simulator commit phase operates at wire granularity but edge-type sync rules
// operate at wire bit granularity; it is possible to have code similar to:
// wire [3:0] clocks;
// always @(posedge clocks[0]) ...
// To handle this we track edge sensitivity both for wires and wire bits.
void register_edge_signal(SigMap &sigmap, RTLIL::SigSpec signal, RTLIL::SyncType type)
{
signal = sigmap(signal);
log_assert(signal.is_wire() && signal.is_bit());
log_assert(type == RTLIL::STp || type == RTLIL::STn || type == RTLIL::STe);
RTLIL::SigBit sigbit = signal[0];
if (!edge_types.count(sigbit))
edge_types[sigbit] = type;
else if (edge_types[sigbit] != type)
edge_types[sigbit] = RTLIL::STe;
edge_wires.insert(signal.as_wire());
}
void analyze_design(RTLIL::Design *design)
{
bool has_feedback_arcs = false;
bool has_buffered_comb_wires = false;
for (auto module : design->modules()) {
if (!design->selected_module(module))
continue;
SigMap &sigmap = sigmaps[module];
sigmap.set(module);
if (module->get_bool_attribute(ID(cxxrtl_blackbox))) {
for (auto port : module->ports) {
RTLIL::Wire *wire = module->wire(port);
if (wire->port_input && !wire->port_output)
unbuffered_wires.insert(wire);
if (wire->has_attribute(ID(cxxrtl_edge))) {
RTLIL::Const edge_attr = wire->attributes[ID(cxxrtl_edge)];
if (!(edge_attr.flags & RTLIL::CONST_FLAG_STRING) || (int)edge_attr.decode_string().size() != GetSize(wire))
log_cmd_error("Attribute `cxxrtl_edge' of port `%s.%s' is not a string with one character per bit.\n",
log_id(module), log_signal(wire));
std::string edges = wire->get_string_attribute(ID(cxxrtl_edge));
for (int i = 0; i < GetSize(wire); i++) {
RTLIL::SigSpec wire_sig = wire;
switch (edges[i]) {
case '-': break;
case 'p': register_edge_signal(sigmap, wire_sig[i], RTLIL::STp); break;
case 'n': register_edge_signal(sigmap, wire_sig[i], RTLIL::STn); break;
case 'a': register_edge_signal(sigmap, wire_sig[i], RTLIL::STe); break;
default:
log_cmd_error("Attribute `cxxrtl_edge' of port `%s.%s' contains specifiers "
"other than '-', 'p', 'n', or 'a'.\n",
log_id(module), log_signal(wire));
}
}
}
}
// Black boxes converge by default, since their implementations are quite unlikely to require
// internal propagation of comb signals.
eval_converges[module] = true;
continue;
}
FlowGraph flow;
for (auto conn : module->connections())
flow.add_node(conn);
dict<const RTLIL::Cell*, FlowGraph::Node*> memrw_cell_nodes;
dict<std::pair<RTLIL::SigBit, const RTLIL::Memory*>,
pool<const RTLIL::Cell*>> memwr_per_domain;
for (auto cell : module->cells()) {
if (!cell->known())
log_cmd_error("Unknown cell `%s'.\n", log_id(cell->type));
RTLIL::Module *cell_module = design->module(cell->type);
if (cell_module &&
cell_module->get_blackbox_attribute() &&
!cell_module->get_bool_attribute(ID(cxxrtl_blackbox)))
log_cmd_error("External blackbox cell `%s' is not marked as a CXXRTL blackbox.\n", log_id(cell->type));
if (cell_module &&
cell_module->get_bool_attribute(ID(cxxrtl_blackbox)) &&
cell_module->get_bool_attribute(ID(cxxrtl_template)))
blackbox_specializations[cell_module].insert(template_args(cell));
FlowGraph::Node *node = flow.add_node(cell);
// Various DFF cells are treated like posedge/negedge processes, see above for details.
if (cell->type.in(ID($dff), ID($dffe), ID($adff), ID($adffe), ID($dffsr), ID($dffsre), ID($sdff), ID($sdffe), ID($sdffce))) {
if (cell->getPort(ID::CLK).is_wire())
register_edge_signal(sigmap, cell->getPort(ID::CLK),
cell->parameters[ID::CLK_POLARITY].as_bool() ? RTLIL::STp : RTLIL::STn);
}
// Similar for memory port cells.
if (cell->type.in(ID($memrd), ID($memwr))) {
if (cell->getParam(ID::CLK_ENABLE).as_bool()) {
if (cell->getPort(ID::CLK).is_wire())
register_edge_signal(sigmap, cell->getPort(ID::CLK),
cell->parameters[ID::CLK_POLARITY].as_bool() ? RTLIL::STp : RTLIL::STn);
}
memrw_cell_nodes[cell] = node;
}
// Optimize access to read-only memories.
if (cell->type == ID($memwr))
writable_memories.insert(module->memories[cell->getParam(ID::MEMID).decode_string()]);
// Collect groups of memory write ports in the same domain.
if (cell->type == ID($memwr) && cell->getParam(ID::CLK_ENABLE).as_bool() && cell->getPort(ID::CLK).is_wire()) {
RTLIL::SigBit clk_bit = sigmap(cell->getPort(ID::CLK))[0];
const RTLIL::Memory *memory = module->memories[cell->getParam(ID::MEMID).decode_string()];
memwr_per_domain[{clk_bit, memory}].insert(cell);
}
// Handling of packed memories is delegated to the `memory_unpack` pass, so we can rely on the presence
// of RTLIL memory objects and $memrd/$memwr/$meminit cells.
if (cell->type.in(ID($mem)))
log_assert(false);
}
for (auto cell : module->cells()) {
// Collect groups of memory write ports read by every transparent read port.
if (cell->type == ID($memrd) && cell->getParam(ID::CLK_ENABLE).as_bool() && cell->getPort(ID::CLK).is_wire() &&
cell->getParam(ID::TRANSPARENT).as_bool()) {
RTLIL::SigBit clk_bit = sigmap(cell->getPort(ID::CLK))[0];
const RTLIL::Memory *memory = module->memories[cell->getParam(ID::MEMID).decode_string()];
for (auto memwr_cell : memwr_per_domain[{clk_bit, memory}]) {
transparent_for[cell].insert(memwr_cell);
// Our implementation of transparent $memrd cells reads \EN, \ADDR and \DATA from every $memwr cell
// in the same domain, which isn't directly visible in the netlist. Add these uses explicitly.
flow.add_uses(memrw_cell_nodes[cell], memwr_cell->getPort(ID::EN));
flow.add_uses(memrw_cell_nodes[cell], memwr_cell->getPort(ID::ADDR));
flow.add_uses(memrw_cell_nodes[cell], memwr_cell->getPort(ID::DATA));
}
}
}
for (auto proc : module->processes) {
flow.add_node(proc.second);
for (auto sync : proc.second->syncs)
switch (sync->type) {
// Edge-type sync rules require pre-registration.
case RTLIL::STp:
case RTLIL::STn:
case RTLIL::STe:
register_edge_signal(sigmap, sync->signal, sync->type);
break;
// Level-type sync rules require no special handling.
case RTLIL::ST0:
case RTLIL::ST1:
case RTLIL::STa:
break;
case RTLIL::STg:
log_cmd_error("Global clock is not supported.\n");
// Handling of init-type sync rules is delegated to the `proc_init` pass, so we can use the wire
// attribute regardless of input.
case RTLIL::STi:
log_assert(false);
}
}
for (auto wire : module->wires()) {
if (!flow.is_elidable(wire)) continue;
if (wire->port_id != 0) continue;
if (wire->get_bool_attribute(ID::keep)) continue;
if (wire->name.begins_with("$") && !elide_internal) continue;
if (wire->name.begins_with("\\") && !elide_public) continue;
if (edge_wires[wire]) continue;
cxxrtl: localize wires with multiple comb drivers, too. Before this commit, any wire that was not driven by an output port of exactly one comb cell would not be localized, even if there were no feedback arcs through that wire. This would cause the wire to become buffered and require (often quite a few) extraneous delta cycles during evaluation. To alleviate this problem, -O5 was running `splitnets -driver`. However, this solution was mistaken. Because `splitnets -driver` followed by `opt_clean -purge` would produce more nets with multiple drivers, it would have to be iterated to fixpoint. Moreover, even if this was done, it would not be sufficient because `opt_clean -purge` does not currently remove wires with the `\init` attribute (and it is not desirable to remove such wires, since they correspond to registers and may be useful for debugging). The proper solution is to consider the condition in which a wire may be localized. Specifically, if there are no feedback arcs through this wire, and no part of the wire is driven by an output of a sync cell, then the wire holds no state and is localizable. After this commit, the original condition for not localizing a wire is replaced by a check for any sync cell driving it. This makes it unnecessary to run `splitnets -driver` in the majority of cases to get a design with no buffered wires, and -O5 no longer includes that pass. As a result, Minerva SRAM SoC no longer has any buffered wires, and runs ~27% faster. In addition, this commit prepares the flow graph for introduction of sync outputs of black boxes. Co-authored-by: Jean-François Nguyen <jf@lambdaconcept.com>
2020-04-21 08:33:42 -05:00
log_assert(flow.wire_comb_defs[wire].size() == 1);
elided_wires[wire] = **flow.wire_comb_defs[wire].begin();
}
dict<FlowGraph::Node*, pool<const RTLIL::Wire*>, hash_ptr_ops> node_defs;
cxxrtl: localize wires with multiple comb drivers, too. Before this commit, any wire that was not driven by an output port of exactly one comb cell would not be localized, even if there were no feedback arcs through that wire. This would cause the wire to become buffered and require (often quite a few) extraneous delta cycles during evaluation. To alleviate this problem, -O5 was running `splitnets -driver`. However, this solution was mistaken. Because `splitnets -driver` followed by `opt_clean -purge` would produce more nets with multiple drivers, it would have to be iterated to fixpoint. Moreover, even if this was done, it would not be sufficient because `opt_clean -purge` does not currently remove wires with the `\init` attribute (and it is not desirable to remove such wires, since they correspond to registers and may be useful for debugging). The proper solution is to consider the condition in which a wire may be localized. Specifically, if there are no feedback arcs through this wire, and no part of the wire is driven by an output of a sync cell, then the wire holds no state and is localizable. After this commit, the original condition for not localizing a wire is replaced by a check for any sync cell driving it. This makes it unnecessary to run `splitnets -driver` in the majority of cases to get a design with no buffered wires, and -O5 no longer includes that pass. As a result, Minerva SRAM SoC no longer has any buffered wires, and runs ~27% faster. In addition, this commit prepares the flow graph for introduction of sync outputs of black boxes. Co-authored-by: Jean-François Nguyen <jf@lambdaconcept.com>
2020-04-21 08:33:42 -05:00
for (auto wire_comb_def : flow.wire_comb_defs)
for (auto node : wire_comb_def.second)
node_defs[node].insert(wire_comb_def.first);
Scheduler<FlowGraph::Node> scheduler;
dict<FlowGraph::Node*, Scheduler<FlowGraph::Node>::Vertex*, hash_ptr_ops> node_map;
for (auto node : flow.nodes)
node_map[node] = scheduler.add(node);
for (auto node_def : node_defs) {
auto vertex = node_map[node_def.first];
for (auto wire : node_def.second)
for (auto succ_node : flow.wire_uses[wire]) {
auto succ_vertex = node_map[succ_node];
vertex->succs.insert(succ_vertex);
succ_vertex->preds.insert(vertex);
}
}
auto eval_order = scheduler.schedule();
pool<FlowGraph::Node*, hash_ptr_ops> evaluated;
pool<const RTLIL::Wire*> feedback_wires;
for (auto vertex : eval_order) {
auto node = vertex->data;
schedule[module].push_back(*node);
// Any wire that is an output of node vo and input of node vi where vo is scheduled later than vi
// is a feedback wire. Feedback wires indicate apparent logic loops in the design, which may be
// caused by a true logic loop, but usually are a benign result of dependency tracking that works
// on wire, not bit, level. Nevertheless, feedback wires cannot be localized.
evaluated.insert(node);
for (auto wire : node_defs[node])
for (auto succ_node : flow.wire_uses[wire])
if (evaluated[succ_node]) {
feedback_wires.insert(wire);
// Feedback wires may never be elided because feedback requires state, but the point of elision
// (and localization) is to eliminate state.
elided_wires.erase(wire);
}
}
if (!feedback_wires.empty()) {
has_feedback_arcs = true;
log("Module `%s' contains feedback arcs through wires:\n", log_id(module));
for (auto wire : feedback_wires)
log(" %s\n", log_id(wire));
}
for (auto wire : module->wires()) {
if (feedback_wires[wire]) continue;
if (wire->port_output && !module->get_bool_attribute(ID::top)) continue;
if (wire->name.begins_with("$") && !unbuffer_internal) continue;
if (wire->name.begins_with("\\") && !unbuffer_public) continue;
cxxrtl: localize wires with multiple comb drivers, too. Before this commit, any wire that was not driven by an output port of exactly one comb cell would not be localized, even if there were no feedback arcs through that wire. This would cause the wire to become buffered and require (often quite a few) extraneous delta cycles during evaluation. To alleviate this problem, -O5 was running `splitnets -driver`. However, this solution was mistaken. Because `splitnets -driver` followed by `opt_clean -purge` would produce more nets with multiple drivers, it would have to be iterated to fixpoint. Moreover, even if this was done, it would not be sufficient because `opt_clean -purge` does not currently remove wires with the `\init` attribute (and it is not desirable to remove such wires, since they correspond to registers and may be useful for debugging). The proper solution is to consider the condition in which a wire may be localized. Specifically, if there are no feedback arcs through this wire, and no part of the wire is driven by an output of a sync cell, then the wire holds no state and is localizable. After this commit, the original condition for not localizing a wire is replaced by a check for any sync cell driving it. This makes it unnecessary to run `splitnets -driver` in the majority of cases to get a design with no buffered wires, and -O5 no longer includes that pass. As a result, Minerva SRAM SoC no longer has any buffered wires, and runs ~27% faster. In addition, this commit prepares the flow graph for introduction of sync outputs of black boxes. Co-authored-by: Jean-François Nguyen <jf@lambdaconcept.com>
2020-04-21 08:33:42 -05:00
if (flow.wire_sync_defs.count(wire) > 0) continue;
unbuffered_wires.insert(wire);
if (edge_wires[wire]) continue;
if (wire->get_bool_attribute(ID::keep)) continue;
if (wire->port_input || wire->port_output) continue;
if (wire->name.begins_with("$") && !localize_internal) continue;
if (wire->name.begins_with("\\") && !localize_public) continue;
localized_wires.insert(wire);
}
// For maximum performance, the state of the simulation (which is the same as the set of its double buffered
// wires, since using a singly buffered wire for any kind of state introduces a race condition) should contain
// no wires attached to combinatorial outputs. Feedback wires, by definition, make that impossible. However,
// it is possible that a design with no feedback arcs would end up with doubly buffered wires in such cases
// as a wire with multiple drivers where one of them is combinatorial and the other is synchronous. Such designs
// also require more than one delta cycle to converge.
pool<const RTLIL::Wire*> buffered_comb_wires;
for (auto wire : module->wires()) {
if (flow.wire_comb_defs[wire].size() > 0 && !unbuffered_wires[wire] && !feedback_wires[wire])
buffered_comb_wires.insert(wire);
}
if (!buffered_comb_wires.empty()) {
has_buffered_comb_wires = true;
log("Module `%s' contains buffered combinatorial wires:\n", log_id(module));
for (auto wire : buffered_comb_wires)
log(" %s\n", log_id(wire));
}
eval_converges[module] = feedback_wires.empty() && buffered_comb_wires.empty();
if (debug_info) {
// Find wires that alias other wires or are tied to a constant; debug information can be enriched with these
// at essentially zero additional cost.
//
// Note that the information collected here can't be used for optimizing the netlist: debug information queries
// are pure and run on a design in a stable state, which allows assumptions that do not otherwise hold.
for (auto wire : module->wires()) {
if (wire->name[0] != '\\')
continue;
if (!unbuffered_wires[wire])
continue;
const RTLIL::Wire *wire_it = wire;
while (1) {
if (!(flow.wire_def_elidable.count(wire_it) && flow.wire_def_elidable[wire_it]))
break; // not an alias: complex def
log_assert(flow.wire_comb_defs[wire_it].size() == 1);
FlowGraph::Node *node = *flow.wire_comb_defs[wire_it].begin();
if (node->type != FlowGraph::Node::Type::CONNECT)
break; // not an alias: def by cell
RTLIL::SigSpec rhs_sig = node->connect.second;
if (rhs_sig.is_wire()) {
RTLIL::Wire *rhs_wire = rhs_sig.as_wire();
if (unbuffered_wires[rhs_wire]) {
wire_it = rhs_wire; // maybe an alias
} else {
debug_alias_wires[wire] = rhs_wire; // is an alias
break;
}
} else if (rhs_sig.is_fully_const()) {
debug_const_wires[wire] = rhs_sig.as_const(); // is a const
break;
} else {
break; // not an alias: complex rhs
}
}
}
}
}
if (has_feedback_arcs || has_buffered_comb_wires) {
// Although both non-feedback buffered combinatorial wires and apparent feedback wires may be eliminated
// by optimizing the design, if after `proc; flatten` there are any feedback wires remaining, it is very
// likely that these feedback wires are indicative of a true logic loop, so they get emphasized in the message.
const char *why_pessimistic = nullptr;
if (has_feedback_arcs)
why_pessimistic = "feedback wires";
else if (has_buffered_comb_wires)
why_pessimistic = "buffered combinatorial wires";
log_warning("Design contains %s, which require delta cycles during evaluation.\n", why_pessimistic);
if (!run_flatten)
log("Flattening may eliminate %s from the design.\n", why_pessimistic);
if (!run_proc)
log("Converting processes to netlists may eliminate %s from the design.\n", why_pessimistic);
}
}
void check_design(RTLIL::Design *design, bool &has_sync_init, bool &has_packed_mem)
{
has_sync_init = has_packed_mem = false;
for (auto module : design->modules()) {
if (module->get_blackbox_attribute() && !module->has_attribute(ID(cxxrtl_blackbox)))
continue;
if (!design->selected_whole_module(module))
if (design->selected_module(module))
log_cmd_error("Can't handle partially selected module `%s'!\n", id2cstr(module->name));
if (!design->selected_module(module))
continue;
for (auto proc : module->processes)
for (auto sync : proc.second->syncs)
if (sync->type == RTLIL::STi)
has_sync_init = true;
for (auto cell : module->cells())
if (cell->type == ID($mem))
has_packed_mem = true;
}
}
void prepare_design(RTLIL::Design *design)
{
bool did_anything = false;
bool has_sync_init, has_packed_mem;
log_push();
check_design(design, has_sync_init, has_packed_mem);
if (run_flatten) {
Pass::call(design, "flatten");
did_anything = true;
}
if (run_proc) {
Pass::call(design, "proc");
did_anything = true;
} else if (has_sync_init) {
// We're only interested in proc_init, but it depends on proc_prune and proc_clean, so call those
// in case they weren't already. (This allows `yosys foo.v -o foo.cc` to work.)
Pass::call(design, "proc_prune");
Pass::call(design, "proc_clean");
Pass::call(design, "proc_init");
did_anything = true;
}
if (has_packed_mem) {
Pass::call(design, "memory_unpack");
did_anything = true;
}
// Recheck the design if it was modified.
if (has_sync_init || has_packed_mem)
check_design(design, has_sync_init, has_packed_mem);
log_assert(!(has_sync_init || has_packed_mem));
log_pop();
if (did_anything)
log_spacer();
analyze_design(design);
}
};
struct CxxrtlBackend : public Backend {
static const int DEFAULT_OPT_LEVEL = 6;
static const int OPT_LEVEL_DEBUG = 4;
static const int DEFAULT_DEBUG_LEVEL = 1;
CxxrtlBackend() : Backend("cxxrtl", "convert design to C++ RTL simulation") { }
2020-06-18 18:34:52 -05:00
void help() override
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" write_cxxrtl [options] [filename]\n");
log("\n");
log("Write C++ code that simulates the design. The generated code requires a driver\n");
log("that instantiates the design, toggles its clock, and interacts with its ports.\n");
log("\n");
log("The following driver may be used as an example for a design with a single clock\n");
log("driving rising edge triggered flip-flops:\n");
2020-04-05 05:03:23 -05:00
log("\n");
log(" #include \"top.cc\"\n");
log("\n");
log(" int main() {\n");
log(" cxxrtl_design::p_top top;\n");
log(" top.step();\n");
2020-04-05 05:03:23 -05:00
log(" while (1) {\n");
log(" /* user logic */\n");
2020-06-26 03:30:44 -05:00
log(" top.p_clk.set(false);\n");
2020-04-05 05:03:23 -05:00
log(" top.step();\n");
2020-06-26 03:30:44 -05:00
log(" top.p_clk.set(true);\n");
log(" top.step();\n");
2020-04-05 05:03:23 -05:00
log(" }\n");
log(" }\n");
log("\n");
log("Note that CXXRTL simulations, just like the hardware they are simulating, are\n");
log("subject to race conditions. If, in the example above, the user logic would run\n");
log("simultaneously with the rising edge of the clock, the design would malfunction.\n");
log("\n");
log("This backend supports replacing parts of the design with black boxes implemented\n");
log("in C++. If a module marked as a CXXRTL black box, its implementation is ignored,\n");
log("and the generated code consists only of an interface and a factory function.\n");
log("The driver must implement the factory function that creates an implementation of\n");
log("the black box, taking into account the parameters it is instantiated with.\n");
log("\n");
log("For example, the following Verilog code defines a CXXRTL black box interface for\n");
log("a synchronous debug sink:\n");
log("\n");
log(" (* cxxrtl_blackbox *)\n");
log(" module debug(...);\n");
log(" (* cxxrtl_edge = \"p\" *) input clk;\n");
log(" input en;\n");
log(" input [7:0] i_data;\n");
log(" (* cxxrtl_sync *) output [7:0] o_data;\n");
log(" endmodule\n");
log("\n");
log("For this HDL interface, this backend will generate the following C++ interface:\n");
log("\n");
log(" struct bb_p_debug : public module {\n");
log(" value<1> p_clk;\n");
log(" bool posedge_p_clk() const { /* ... */ }\n");
log(" value<1> p_en;\n");
log(" value<8> p_i_data;\n");
log(" wire<8> p_o_data;\n");
log("\n");
log(" bool eval() override;\n");
log(" bool commit() override;\n");
log("\n");
log(" static std::unique_ptr<bb_p_debug>\n");
log(" create(std::string name, metadata_map parameters, metadata_map attributes);\n");
log(" };\n");
log("\n");
log("The `create' function must be implemented by the driver. For example, it could\n");
log("always provide an implementation logging the values to standard error stream:\n");
log("\n");
log(" namespace cxxrtl_design {\n");
log("\n");
log(" struct stderr_debug : public bb_p_debug {\n");
log(" bool eval() override {\n");
log(" if (posedge_p_clk() && p_en)\n");
log(" fprintf(stderr, \"debug: %%02x\\n\", p_i_data.data[0]);\n");
log(" p_o_data.next = p_i_data;\n");
log(" return bb_p_debug::eval();\n");
log(" }\n");
log(" };\n");
log("\n");
log(" std::unique_ptr<bb_p_debug>\n");
log(" bb_p_debug::create(std::string name, cxxrtl::metadata_map parameters,\n");
log(" cxxrtl::metadata_map attributes) {\n");
log(" return std::make_unique<stderr_debug>();\n");
log(" }\n");
log("\n");
log(" }\n");
log("\n");
log("For complex applications of black boxes, it is possible to parameterize their\n");
log("port widths. For example, the following Verilog code defines a CXXRTL black box\n");
log("interface for a configurable width debug sink:\n");
log("\n");
log(" (* cxxrtl_blackbox, cxxrtl_template = \"WIDTH\" *)\n");
log(" module debug(...);\n");
log(" parameter WIDTH = 8;\n");
log(" (* cxxrtl_edge = \"p\" *) input clk;\n");
log(" input en;\n");
log(" (* cxxrtl_width = \"WIDTH\" *) input [WIDTH - 1:0] i_data;\n");
log(" (* cxxrtl_width = \"WIDTH\" *) output [WIDTH - 1:0] o_data;\n");
log(" endmodule\n");
log("\n");
log("For this parametric HDL interface, this backend will generate the following C++\n");
log("interface (only the differences are shown):\n");
log("\n");
log(" template<size_t WIDTH>\n");
log(" struct bb_p_debug : public module {\n");
log(" // ...\n");
log(" value<WIDTH> p_i_data;\n");
log(" wire<WIDTH> p_o_data;\n");
log(" // ...\n");
log(" static std::unique_ptr<bb_p_debug<WIDTH>>\n");
log(" create(std::string name, metadata_map parameters, metadata_map attributes);\n");
log(" };\n");
log("\n");
log("The `create' function must be implemented by the driver, specialized for every\n");
log("possible combination of template parameters. (Specialization is necessary to\n");
log("enable separate compilation of generated code and black box implementations.)\n");
log("\n");
log(" template<size_t SIZE>\n");
log(" struct stderr_debug : public bb_p_debug<SIZE> {\n");
log(" // ...\n");
log(" };\n");
log("\n");
log(" template<>\n");
log(" std::unique_ptr<bb_p_debug<8>>\n");
log(" bb_p_debug<8>::create(std::string name, cxxrtl::metadata_map parameters,\n");
log(" cxxrtl::metadata_map attributes) {\n");
log(" return std::make_unique<stderr_debug<8>>();\n");
log(" }\n");
log("\n");
log("The following attributes are recognized by this backend:\n");
log("\n");
log(" cxxrtl_blackbox\n");
log(" only valid on modules. if specified, the module contents are ignored,\n");
log(" and the generated code includes only the module interface and a factory\n");
log(" function, which will be called to instantiate the module.\n");
log("\n");
log(" cxxrtl_edge\n");
log(" only valid on inputs of black boxes. must be one of \"p\", \"n\", \"a\".\n");
log(" if specified on signal `clk`, the generated code includes edge detectors\n");
log(" `posedge_p_clk()` (if \"p\"), `negedge_p_clk()` (if \"n\"), or both (if\n");
log(" \"a\"), simplifying implementation of clocked black boxes.\n");
log("\n");
log(" cxxrtl_template\n");
log(" only valid on black boxes. must contain a space separated sequence of\n");
log(" identifiers that have a corresponding black box parameters. for each\n");
log(" of them, the generated code includes a `size_t` template parameter.\n");
log("\n");
log(" cxxrtl_width\n");
log(" only valid on ports of black boxes. must be a constant expression, which\n");
log(" is directly inserted into generated code.\n");
log("\n");
log(" cxxrtl_comb, cxxrtl_sync\n");
log(" only valid on outputs of black boxes. if specified, indicates that every\n");
log(" bit of the output port is driven, correspondingly, by combinatorial or\n");
log(" synchronous logic. this knowledge is used for scheduling optimizations.\n");
log(" if neither is specified, the output will be pessimistically treated as\n");
log(" driven by both combinatorial and synchronous logic.\n");
log("\n");
2020-04-05 05:03:23 -05:00
log("The following options are supported by this backend:\n");
log("\n");
log(" -header\n");
log(" generate separate interface (.h) and implementation (.cc) files.\n");
log(" if specified, the backend must be called with a filename, and filename\n");
log(" of the interface is derived from filename of the implementation.\n");
log(" otherwise, interface and implementation are generated together.\n");
log("\n");
log(" -namespace <ns-name>\n");
log(" place the generated code into namespace <ns-name>. if not specified,\n");
log(" \"cxxrtl_design\" is used.\n");
log("\n");
log(" -noflatten\n");
log(" don't flatten the design. fully flattened designs can evaluate within\n");
log(" one delta cycle if they have no combinatorial feedback.\n");
log(" note that the debug interface and waveform dumps use full hierarchical\n");
log(" names for all wires even in flattened designs.\n");
log("\n");
log(" -noproc\n");
log(" don't convert processes to netlists. in most designs, converting\n");
log(" processes significantly improves evaluation performance at the cost of\n");
log(" slight increase in compilation time.\n");
log("\n");
log(" -O <level>\n");
log(" set the optimization level. the default is -O%d. higher optimization\n", DEFAULT_OPT_LEVEL);
log(" levels dramatically decrease compile and run time, and highest level\n");
log(" possible for a design should be used.\n");
log("\n");
log(" -O0\n");
log(" no optimization.\n");
log("\n");
log(" -O1\n");
log(" localize internal wires if possible.\n");
log("\n");
log(" -O2\n");
log(" like -O1, and unbuffer internal wires if possible.\n");
log("\n");
log(" -O3\n");
log(" like -O2, and elide internal wires if possible.\n");
log("\n");
log(" -O4\n");
log(" like -O3, and unbuffer public wires not marked (*keep*) if possible.\n");
log("\n");
log(" -O5\n");
log(" like -O4, and localize public wires not marked (*keep*) if possible.\n");
log("\n");
log(" -O6\n");
log(" like -O5, and elide public wires not marked (*keep*) if possible.\n");
log("\n");
log(" -Og\n");
log(" highest optimization level that provides debug information for all\n");
log(" public wires. currently, alias for -O%d.\n", OPT_LEVEL_DEBUG);
log("\n");
log(" -g <level>\n");
log(" set the debug level. the default is -g%d. higher debug levels provide\n", DEFAULT_DEBUG_LEVEL);
log(" more visibility and generate more code, but do not pessimize evaluation.\n");
log("\n");
log(" -g0\n");
log(" no debug information.\n");
log("\n");
log(" -g1\n");
log(" debug information for non-optimized public wires. this also makes it\n");
log(" possible to use the C API.\n");
log("\n");
}
2020-06-18 18:34:52 -05:00
void execute(std::ostream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) override
{
bool noflatten = false;
bool noproc = false;
int opt_level = DEFAULT_OPT_LEVEL;
int debug_level = DEFAULT_DEBUG_LEVEL;
CxxrtlWorker worker;
log_header(design, "Executing CXXRTL backend.\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++)
{
if (args[argidx] == "-noflatten") {
noflatten = true;
continue;
}
if (args[argidx] == "-noproc") {
noproc = true;
continue;
}
if (args[argidx] == "-Og") {
opt_level = OPT_LEVEL_DEBUG;
continue;
}
if (args[argidx] == "-O" && argidx+1 < args.size() && args[argidx+1] == "g") {
argidx++;
opt_level = OPT_LEVEL_DEBUG;
continue;
}
if (args[argidx] == "-O" && argidx+1 < args.size()) {
opt_level = std::stoi(args[++argidx]);
continue;
}
if (args[argidx].substr(0, 2) == "-O" && args[argidx].size() == 3 && isdigit(args[argidx][2])) {
opt_level = std::stoi(args[argidx].substr(2));
continue;
}
if (args[argidx] == "-g" && argidx+1 < args.size()) {
debug_level = std::stoi(args[++argidx]);
continue;
}
if (args[argidx].substr(0, 2) == "-g" && args[argidx].size() == 3 && isdigit(args[argidx][2])) {
debug_level = std::stoi(args[argidx].substr(2));
continue;
}
if (args[argidx] == "-header") {
worker.split_intf = true;
continue;
}
if (args[argidx] == "-namespace" && argidx+1 < args.size()) {
worker.design_ns = args[++argidx];
continue;
}
break;
}
extra_args(f, filename, args, argidx);
worker.run_flatten = !noflatten;
worker.run_proc = !noproc;
switch (opt_level) {
// the highest level here must match DEFAULT_OPT_LEVEL
case 6:
worker.elide_public = true;
YS_FALLTHROUGH
case 5:
worker.localize_public = true;
YS_FALLTHROUGH
case 4:
worker.unbuffer_public = true;
YS_FALLTHROUGH
case 3:
worker.elide_internal = true;
YS_FALLTHROUGH
case 2:
worker.localize_internal = true;
YS_FALLTHROUGH
case 1:
worker.unbuffer_internal = true;
YS_FALLTHROUGH
case 0:
break;
default:
log_cmd_error("Invalid optimization level %d.\n", opt_level);
}
switch (debug_level) {
// the highest level here must match DEFAULT_DEBUG_LEVEL
case 1:
worker.debug_info = true;
YS_FALLTHROUGH
case 0:
break;
default:
log_cmd_error("Invalid debug information level %d.\n", debug_level);
}
std::ofstream intf_f;
if (worker.split_intf) {
if (filename == "<stdout>")
log_cmd_error("Option -header must be used with a filename.\n");
worker.intf_filename = filename.substr(0, filename.rfind('.')) + ".h";
intf_f.open(worker.intf_filename, std::ofstream::trunc);
if (intf_f.fail())
log_cmd_error("Can't open file `%s' for writing: %s\n",
worker.intf_filename.c_str(), strerror(errno));
worker.intf_f = &intf_f;
}
worker.impl_f = f;
worker.prepare_design(design);
worker.dump_design(design);
}
} CxxrtlBackend;
PRIVATE_NAMESPACE_END