This tutorial will help the user to understand how to use the OpenFPGA flow.<br/>
During this tutorial, we consider that the user starts in the OpenFPGA folder and we will use tips and information provided in [tutorial index](https://github.com/LNIS-Projects/OpenFPGA/blob/master/tutorials/tutorial_index.md#tips-and-informations). Details on how the folder is organized are available [here](https://github.com/LNIS-Projects/OpenFPGA/blob/master/tutorials/fpga_flow/folder_organization.md).
The *fpga_flow.pl* script takes an architecture description file (.xml), generates its netlists and generates a bitstream to implement a benchmark on the FPGA fabric and verifis its correct implementation.<br/>
When you open the perl script, you can see that 2 scripts are called. The first one is **rewrite_path_in_file.pl** which allows us to make this tutorial generic by generating full path to the dependencies.<br/>
The second one is **fpga_flow.pl**. This script launches the OpenFPGA flow and can be used with many different [options](https://github.com/LNIS-Projects/OpenFPGA/blob/master/tutorials/fpga_flow/options.md).<br/>
There are 3 important things to observe here:
- All the FPGA-Verilog options have been activated
- fpga_flow.pl calls a configuration file through the "config_file" variable
- fpga_flow.pl calls a list of benchmark to be implemented and tested through the "bench_txt" variable
### Configuration File
In this file, paths have to be defined as **absolute** paths as relative paths could lead to errors.<br/>
Blif and Verilog folders are organized by folders using the name of the projects. **The folder, top module and top module file must share the same name.**<br/>
The benchmark list file can contain as many benchmarks as available in the same folder targetted by the "benchmark_dir" variable from the configuration file. It's written as:<br/>
* replace the architecture "k6_N10_sram_chain_HC_template.xml" and "k6_N10_sram_chain_HC.xml" respectively with "k8_N10_sram_chain_FC_template.xml" and "k8_N10_sram_chain_FC.xml" in tuto.conf
* replace the architecture "k6_N10_sram_chain_HC_template.xml" and "k6_N10_sram_chain_HC.xml" respectively with "k8_N10_sram_chain_FC_template.xml" and "k8_N10_sram_chain_FC.xml" in tuto_fpga_flow.sh
With this last experiment, the [**K6 architecture**](https://github.com/LNIS-Projects/OpenFPGA/blob/master/tutorials/images/architectures_schematics/frac_lut6.pdf) was replaced by a [**K8 architecture**](https://github.com/LNIS-Projects/OpenFPGA/blob/master/tutorials/images/architectures_schematics/frac_lut8.pdf), which means that an 8-input fracturable LUT (implemented by LUT6 and LUT4 with 2 shared inputs) is used. This architecture provides more modes for the CLB and the crossbar which is changed from a half-connected to a fully connected, implying bigger multiplexors between the CLB and LUT inputs. These requirements in term of interconnection will lead an increase in the routing channel width. Indeed, if the routing channel is too low, it could be impossible to route a benchmark or the FPGA output could be delayed.