go-opengl-pixel/geometry.go

588 lines
16 KiB
Go
Raw Normal View History

2016-11-19 06:08:42 -06:00
package pixel
import (
"fmt"
"math"
)
2017-10-15 12:42:13 -05:00
// Clamp returns x clamped to the interval [min, max].
//
// If x is less than min, min is returned. If x is more than max, max is returned. Otherwise, x is
// returned.
func Clamp(x, min, max float64) float64 {
if x < min {
return min
}
if x > max {
return max
}
return x
}
2017-05-21 12:25:06 -05:00
// Vec is a 2D vector type with X and Y coordinates.
2016-11-19 06:08:42 -06:00
//
// Create vectors with the V constructor:
//
// u := pixel.V(1, 2)
// v := pixel.V(8, -3)
//
2017-05-21 12:25:06 -05:00
// Use various methods to manipulate them:
2016-11-19 06:08:42 -06:00
//
2017-05-21 12:25:06 -05:00
// w := u.Add(v)
// fmt.Println(w) // Vec(9, -1)
// fmt.Println(u.Sub(v)) // Vec(-7, 5)
// u = pixel.V(2, 3)
// v = pixel.V(8, 1)
// if u.X < 0 {
// fmt.Println("this won't happen")
2016-11-19 06:08:42 -06:00
// }
// x := u.Unit().Dot(v.Unit())
2017-05-21 12:25:06 -05:00
type Vec struct {
X, Y float64
2016-11-19 06:08:42 -06:00
}
2017-05-21 12:25:06 -05:00
// ZV is a zero vector.
var ZV = Vec{0, 0}
2017-03-14 07:27:18 -05:00
2017-05-21 12:25:06 -05:00
// V returns a new 2D vector with the given coordinates.
func V(x, y float64) Vec {
return Vec{x, y}
2017-03-14 07:27:18 -05:00
}
2017-10-15 12:43:12 -05:00
// Unit returns a vector of length 1 facing the given angle.
func Unit(angle float64) Vec {
return Vec{1, 0}.Rotated(angle)
}
2017-01-25 11:55:17 -06:00
// String returns the string representation of the vector u.
2016-11-19 07:34:37 -06:00
//
// u := pixel.V(4.5, -1.3)
// u.String() // returns "Vec(4.5, -1.3)"
// fmt.Println(u) // Vec(4.5, -1.3)
2016-11-19 07:06:52 -06:00
func (u Vec) String() string {
2017-05-21 12:25:06 -05:00
return fmt.Sprintf("Vec(%v, %v)", u.X, u.Y)
2016-11-19 06:08:42 -06:00
}
2017-05-21 12:25:06 -05:00
// XY returns the components of the vector in two return values.
func (u Vec) XY() (x, y float64) {
return u.X, u.Y
2016-11-19 06:08:42 -06:00
}
2017-05-21 12:25:06 -05:00
// Add returns the sum of vectors u and v.
func (u Vec) Add(v Vec) Vec {
return Vec{
u.X + v.X,
u.Y + v.Y,
}
2016-11-19 06:08:42 -06:00
}
2017-05-21 12:25:06 -05:00
// Sub returns the difference betweeen vectors u and v.
func (u Vec) Sub(v Vec) Vec {
return Vec{
u.X - v.X,
u.Y - v.Y,
}
}
// Floor converts x and y to their integer equivalents.
2019-01-20 09:00:35 -06:00
func (u Vec) Floor() Vec {
return Vec{
math.Floor(u.X),
math.Floor(u.Y),
}
}
2017-06-10 18:17:37 -05:00
// To returns the vector from u to v. Equivalent to v.Sub(u).
func (u Vec) To(v Vec) Vec {
return Vec{
v.X - u.X,
v.Y - u.Y,
}
}
2017-05-21 12:25:06 -05:00
// Scaled returns the vector u multiplied by c.
func (u Vec) Scaled(c float64) Vec {
return Vec{u.X * c, u.Y * c}
}
// ScaledXY returns the vector u multiplied by the vector v component-wise.
func (u Vec) ScaledXY(v Vec) Vec {
return Vec{u.X * v.X, u.Y * v.Y}
2016-11-30 18:01:36 -06:00
}
2017-01-25 11:55:17 -06:00
// Len returns the length of the vector u.
2016-11-19 07:06:52 -06:00
func (u Vec) Len() float64 {
2017-05-21 12:25:06 -05:00
return math.Hypot(u.X, u.Y)
2016-11-19 06:08:42 -06:00
}
2017-04-13 08:18:13 -05:00
// Angle returns the angle between the vector u and the x-axis. The result is in range [-Pi, Pi].
2016-11-19 07:06:52 -06:00
func (u Vec) Angle() float64 {
2017-05-21 12:25:06 -05:00
return math.Atan2(u.Y, u.X)
2016-11-19 06:08:42 -06:00
}
2017-03-15 13:40:39 -05:00
// Unit returns a vector of length 1 facing the direction of u (has the same angle).
2016-11-19 07:06:52 -06:00
func (u Vec) Unit() Vec {
2017-05-21 12:25:06 -05:00
if u.X == 0 && u.Y == 0 {
return Vec{1, 0}
2017-03-23 13:15:06 -05:00
}
2017-05-21 12:25:06 -05:00
return u.Scaled(1 / u.Len())
}
2017-01-25 11:55:17 -06:00
// Rotated returns the vector u rotated by the given angle in radians.
2016-11-19 07:06:52 -06:00
func (u Vec) Rotated(angle float64) Vec {
2016-11-20 12:21:20 -06:00
sin, cos := math.Sincos(angle)
2017-05-21 12:25:06 -05:00
return Vec{
u.X*cos - u.Y*sin,
u.X*sin + u.Y*cos,
}
}
2017-06-10 18:18:23 -05:00
// Normal returns a vector normal to u. Equivalent to u.Rotated(math.Pi / 2), but faster.
2017-06-10 18:17:37 -05:00
func (u Vec) Normal() Vec {
return Vec{-u.Y, u.X}
2017-06-10 18:17:37 -05:00
}
2016-11-19 06:08:42 -06:00
// Dot returns the dot product of vectors u and v.
2016-11-19 07:06:52 -06:00
func (u Vec) Dot(v Vec) float64 {
2017-05-21 12:25:06 -05:00
return u.X*v.X + u.Y*v.Y
2016-11-19 06:08:42 -06:00
}
// Cross return the cross product of vectors u and v.
2016-11-19 07:06:52 -06:00
func (u Vec) Cross(v Vec) float64 {
2017-05-21 12:25:06 -05:00
return u.X*v.Y - v.X*u.Y
2016-11-19 06:08:42 -06:00
}
2016-12-05 16:19:31 -06:00
2017-10-15 12:50:41 -05:00
// Project returns a projection (or component) of vector u in the direction of vector v.
//
// Behaviour is undefined if v is a zero vector.
func (u Vec) Project(v Vec) Vec {
len := u.Dot(v) / v.Len()
return v.Unit().Scaled(len)
}
2017-03-01 16:13:14 -06:00
// Map applies the function f to both x and y components of the vector u and returns the modified
2017-03-01 16:12:48 -06:00
// vector.
2017-03-15 13:40:39 -05:00
//
// u := pixel.V(10.5, -1.5)
// v := u.Map(math.Floor) // v is Vec(10, -2), both components of u floored
2017-03-01 16:13:14 -06:00
func (u Vec) Map(f func(float64) float64) Vec {
2017-05-21 12:25:06 -05:00
return Vec{
f(u.X),
f(u.Y),
}
2017-03-01 16:12:48 -06:00
}
2017-03-05 04:47:18 -06:00
// Lerp returns a linear interpolation between vectors a and b.
//
2017-03-15 13:40:39 -05:00
// This function basically returns a point along the line between a and b and t chooses which one.
2017-03-05 04:47:18 -06:00
// If t is 0, then a will be returned, if t is 1, b will be returned. Anything between 0 and 1 will
// return the appropriate point between a and b and so on.
func Lerp(a, b Vec, t float64) Vec {
2017-05-21 12:25:06 -05:00
return a.Scaled(1 - t).Add(b.Scaled(t))
2017-03-05 04:47:18 -06:00
}
// Rect is a 2D rectangle aligned with the axes of the coordinate system. It is defined by two
// points, Min and Max.
2016-12-05 16:19:31 -06:00
//
// The invariant should hold, that Max's components are greater or equal than Min's components
// respectively.
2016-12-05 16:19:31 -06:00
type Rect struct {
Min, Max Vec
2016-12-05 16:19:31 -06:00
}
// R returns a new Rect with given the Min and Max coordinates.
2017-05-21 12:38:21 -05:00
//
// Note that the returned rectangle is not automatically normalized.
func R(minX, minY, maxX, maxY float64) Rect {
2016-12-05 16:19:31 -06:00
return Rect{
2017-07-05 12:51:54 -05:00
Min: Vec{minX, minY},
Max: Vec{maxX, maxY},
}
}
2017-04-04 07:02:39 -05:00
// String returns the string representation of the Rect.
//
// r := pixel.R(100, 50, 200, 300)
// r.String() // returns "Rect(100, 50, 200, 300)"
// fmt.Println(r) // Rect(100, 50, 200, 300)
func (r Rect) String() string {
2017-05-21 12:25:06 -05:00
return fmt.Sprintf("Rect(%v, %v, %v, %v)", r.Min.X, r.Min.Y, r.Max.X, r.Max.Y)
2017-04-04 07:02:39 -05:00
}
// Norm returns the Rect in normal form, such that Max is component-wise greater or equal than Min.
func (r Rect) Norm() Rect {
return Rect{
2017-05-21 12:25:06 -05:00
Min: Vec{
math.Min(r.Min.X, r.Max.X),
math.Min(r.Min.Y, r.Max.Y),
},
Max: Vec{
math.Max(r.Min.X, r.Max.X),
math.Max(r.Min.Y, r.Max.Y),
},
2016-12-05 16:19:31 -06:00
}
}
2017-03-15 13:40:39 -05:00
// W returns the width of the Rect.
2016-12-05 16:19:31 -06:00
func (r Rect) W() float64 {
2017-05-21 12:25:06 -05:00
return r.Max.X - r.Min.X
2016-12-05 16:19:31 -06:00
}
2017-03-15 13:40:39 -05:00
// H returns the height of the Rect.
2016-12-05 16:19:31 -06:00
func (r Rect) H() float64 {
2017-05-21 12:25:06 -05:00
return r.Max.Y - r.Min.Y
2016-12-05 16:19:31 -06:00
}
2017-03-15 13:40:39 -05:00
// Size returns the vector of width and height of the Rect.
2017-03-14 12:25:39 -05:00
func (r Rect) Size() Vec {
return V(r.W(), r.H())
}
2017-07-05 12:35:11 -05:00
// Area returns the area of r. If r is not normalized, area may be negative.
func (r Rect) Area() float64 {
return r.W() * r.H()
}
2017-03-15 13:40:39 -05:00
// Center returns the position of the center of the Rect.
2016-12-05 16:19:31 -06:00
func (r Rect) Center() Vec {
2017-05-21 12:25:06 -05:00
return Lerp(r.Min, r.Max, 0.5)
}
// Moved returns the Rect moved (both Min and Max) by the given vector delta.
func (r Rect) Moved(delta Vec) Rect {
return Rect{
2017-05-21 12:25:06 -05:00
Min: r.Min.Add(delta),
Max: r.Max.Add(delta),
}
}
2017-03-15 13:40:39 -05:00
// Resized returns the Rect resized to the given size while keeping the position of the given
// anchor.
2017-03-14 07:20:26 -05:00
//
// r.Resized(r.Min, size) // resizes while keeping the position of the lower-left corner
// r.Resized(r.Max, size) // same with the top-right corner
// r.Resized(r.Center(), size) // resizes around the center
2017-03-14 07:20:26 -05:00
//
// This function does not make sense for resizing a rectangle of zero area and will panic. Use
// ResizedMin in the case of zero area.
func (r Rect) Resized(anchor, size Vec) Rect {
if r.W()*r.H() == 0 {
panic(fmt.Errorf("(%T).Resize: zero area", r))
}
2017-05-21 12:25:06 -05:00
fraction := Vec{size.X / r.W(), size.Y / r.H()}
return Rect{
Min: anchor.Add(r.Min.Sub(anchor).ScaledXY(fraction)),
Max: anchor.Add(r.Max.Sub(anchor).ScaledXY(fraction)),
}
}
// ResizedMin returns the Rect resized to the given size while keeping the position of the Rect's
// Min.
//
// Sizes of zero area are safe here.
func (r Rect) ResizedMin(size Vec) Rect {
return Rect{
Min: r.Min,
2017-05-21 12:25:06 -05:00
Max: r.Min.Add(size),
}
2016-12-05 16:19:31 -06:00
}
2017-02-25 11:38:22 -06:00
// Contains checks whether a vector u is contained within this Rect (including it's borders).
func (r Rect) Contains(u Vec) bool {
2017-05-21 12:25:06 -05:00
return r.Min.X <= u.X && u.X <= r.Max.X && r.Min.Y <= u.Y && u.Y <= r.Max.Y
2017-02-25 11:38:22 -06:00
}
2017-07-05 12:51:54 -05:00
// Union returns the minimal Rect which covers both r and s. Rects r and s must be normalized.
2017-05-05 08:43:24 -05:00
func (r Rect) Union(s Rect) Rect {
return R(
2017-05-21 12:25:06 -05:00
math.Min(r.Min.X, s.Min.X),
math.Min(r.Min.Y, s.Min.Y),
math.Max(r.Max.X, s.Max.X),
math.Max(r.Max.Y, s.Max.Y),
2017-05-05 08:43:24 -05:00
)
}
2017-07-05 12:51:54 -05:00
// Intersect returns the maximal Rect which is covered by both r and s. Rects r and s must be normalized.
2017-07-05 12:58:09 -05:00
//
// If r and s don't overlap, this function returns R(0, 0, 0, 0).
2017-07-05 12:51:54 -05:00
func (r Rect) Intersect(s Rect) Rect {
t := R(
math.Max(r.Min.X, s.Min.X),
math.Max(r.Min.Y, s.Min.Y),
2017-07-05 12:51:54 -05:00
math.Min(r.Max.X, s.Max.X),
math.Min(r.Max.Y, s.Max.Y),
2017-07-05 12:51:54 -05:00
)
if t.Min.X >= t.Max.X || t.Min.Y >= t.Max.Y {
return Rect{}
}
return t
}
// IntersectsCircle returns whether the Circle and the Rect intersect.
//
// This function will return true if:
// - The Rect contains the Circle, partially or fully
// - The Circle contains the Rect, partially of fully
// - An edge of the Rect is a tangent to the Circle
func (r Rect) IntersectsCircle(c Circle) bool {
return c.IntersectsRect(r)
}
2019-01-28 03:00:24 -06:00
// Circle is a 2D circle. It is defined by two properties:
// - Radius float64
// - Center vector
type Circle struct {
Radius float64
Center Vec
}
// C returns a new Circle with the given radius and center coordinates.
//
// Note that a negative radius is valid.
func C(radius float64, center Vec) Circle {
return Circle{
Radius: radius,
Center: center,
}
}
// String returns the string representation of the Circle.
//
// c := pixel.C(10.1234, pixel.ZV)
// c.String() // returns "Circle(10.12, Vec(0, 0))"
// fmt.Println(c) // Circle(10.12, Vec(0, 0))
func (c Circle) String() string {
return fmt.Sprintf("Circle(%.2f, %s)", c.Radius, c.Center)
}
2019-01-29 03:33:20 -06:00
// Norm returns the Circle in normalized form - this sets the radius to its absolute value.
2019-01-28 03:00:24 -06:00
//
// c := pixel.C(-10, pixel.ZV)
// c.Norm() // returns pixel.Circle{10, pixel.Vec{0, 0}}
func (c Circle) Norm() Circle {
return Circle{
Radius: math.Abs(c.Radius),
Center: c.Center,
}
}
// Area returns the area of the Circle.
func (c Circle) Area() float64 {
2019-01-29 05:23:55 -06:00
return math.Pi * c.Radius * 2
2019-01-28 03:00:24 -06:00
}
// Moved returns the Circle moved by the given vector delta.
func (c Circle) Moved(delta Vec) Circle {
return Circle{
Radius: c.Radius,
Center: c.Center.Add(delta),
}
}
2019-01-29 03:33:20 -06:00
// Resized returns the Circle resized by the given delta. The Circles center is use as the anchor.
2019-01-28 03:00:24 -06:00
//
// c := pixel.C(10, pixel.ZV)
// c.Resized(-5) // returns pixel.Circle{5, pixel.Vec{0, 0}}
// c.Resized(25) // returns pixel.Circle{35, pixel.Vec{0, 0}}
func (c Circle) Resized(radiusDelta float64) Circle {
return Circle{
Radius: c.Radius + radiusDelta,
Center: c.Center,
}
}
// Contains checks whether a vector `u` is contained within this Circle (including it's perimeter).
func (c Circle) Contains(u Vec) bool {
toCenter := c.Center.To(u)
return c.Radius >= toCenter.Len()
}
2019-01-29 03:38:24 -06:00
// maxCircle will return the larger circle based on the radius.
func maxCircle(c, d Circle) Circle {
2019-01-29 03:33:20 -06:00
if c.Radius < d.Radius {
return d
}
return c
}
2019-01-29 03:38:24 -06:00
// minCircle will return the smaller circle based on the radius.
func minCircle(c, d Circle) Circle {
2019-01-28 03:00:24 -06:00
if c.Radius < d.Radius {
2019-01-29 03:33:20 -06:00
return c
2019-01-28 03:00:24 -06:00
}
2019-01-29 03:33:20 -06:00
return d
}
// Union returns the minimal Circle which covers both `c` and `d`.
func (c Circle) Union(d Circle) Circle {
biggerC := maxCircle(c.Norm(), d.Norm())
smallerC := minCircle(c.Norm(), d.Norm())
2019-01-28 03:00:24 -06:00
// Get distance between centers
dist := c.Center.To(d.Center).Len()
// If the bigger Circle encompasses the smaller one, we have the result
if dist+smallerC.Radius <= biggerC.Radius {
return biggerC
}
// Calculate radius for encompassing Circle
r := (dist + biggerC.Radius + smallerC.Radius) / 2
// Calculate center for encompassing Circle
theta := .5 + (biggerC.Radius-smallerC.Radius)/(2*dist)
2019-01-29 05:45:00 -06:00
center := Lerp(smallerC.Center, biggerC.Center, theta)
2019-01-28 03:00:24 -06:00
return Circle{
Radius: r,
Center: center,
}
}
// Intersect returns the maximal Circle which is covered by both `c` and `d`.
//
// If `c` and `d` don't overlap, this function returns a zero-sized circle at the centerpoint between the two Circle's
// centers.
func (c Circle) Intersect(d Circle) Circle {
2019-01-29 03:33:20 -06:00
// Check if one of the circles encompasses the other; if so, return that one
biggerC := maxCircle(c.Norm(), d.Norm())
smallerC := minCircle(c.Norm(), d.Norm())
2019-01-29 03:33:20 -06:00
if biggerC.Radius >= biggerC.Center.To(smallerC.Center).Len()+smallerC.Radius {
return biggerC
}
// Calculate the midpoint between the two radii
// Distance between centers
dist := c.Center.To(d.Center).Len()
// Difference between radii
diff := dist - (c.Radius + d.Radius)
// Distance from c.Center to the weighted midpoint
distToMidpoint := c.Radius + 0.5*diff
// Weighted midpoint
center := Lerp(c.Center, d.Center, distToMidpoint/dist)
// No need to calculate radius if the circles do not overlap
if c.Center.To(d.Center).Len() >= c.Radius+d.Radius {
return C(0, center)
}
2019-01-28 03:00:24 -06:00
radius := math.Min(0, c.Center.To(d.Center).Len()-(c.Radius+d.Radius))
return Circle{
Radius: math.Abs(radius),
Center: center,
}
}
// IntersectsRect returns whether the Circle and the Rect intersect.
//
// This function will return true if:
// - The Rect contains the Circle, partially or fully
// - The Circle contains the Rect, partially of fully
// - An edge of the Rect is a tangent to the Circle
func (c Circle) IntersectsRect(r Rect) bool {
// Checks if the c.Center is not in the diagonal quadrants of the rectangle
if (r.Min.X <= c.Center.X && c.Center.X <= r.Max.X) || (r.Min.Y <= c.Center.Y && c.Center.Y <= r.Max.Y) {
2019-01-29 05:47:49 -06:00
// 'grow' the Rect by c.Radius in each orthagonal
2019-01-29 05:34:59 -06:00
return Rect{
Min: r.Min.Sub(V(c.Radius, c.Radius)),
Max: r.Max.Add(V(c.Radius, c.Radius)),
2019-01-29 05:34:59 -06:00
}.Contains(c.Center)
}
// The center is in the diagonal quadrants
return c.Center.To(r.Min).Len() <= c.Radius || c.Center.To(r.Max).Len() <= c.Radius
}
2018-09-04 22:53:25 -05:00
// Matrix is a 2x3 affine matrix that can be used for all kinds of spatial transforms, such
// as movement, scaling and rotations.
//
// Matrix has a handful of useful methods, each of which adds a transformation to the matrix. For
// example:
//
2017-05-21 12:30:29 -05:00
// pixel.IM.Moved(pixel.V(100, 200)).Rotated(pixel.ZV, math.Pi/2)
//
2017-03-15 18:47:50 -05:00
// This code creates a Matrix that first moves everything by 100 units horizontally and 200 units
// vertically and then rotates everything by 90 degrees around the origin.
//
// Layout is:
// [0] [2] [4]
// [1] [3] [5]
2017-06-09 11:13:05 -05:00
// 0 0 1 (implicit row)
type Matrix [6]float64
2017-03-14 10:19:58 -05:00
// IM stands for identity matrix. Does nothing, no transformation.
var IM = Matrix{1, 0, 0, 1, 0, 0}
2017-04-04 07:08:37 -05:00
// String returns a string representation of the Matrix.
//
// m := pixel.IM
// fmt.Println(m) // Matrix(1 0 0 | 0 1 0)
2017-04-04 07:08:37 -05:00
func (m Matrix) String() string {
return fmt.Sprintf(
"Matrix(%v %v %v | %v %v %v)",
m[0], m[2], m[4],
m[1], m[3], m[5],
2017-04-04 07:08:37 -05:00
)
}
// Moved moves everything by the delta vector.
func (m Matrix) Moved(delta Vec) Matrix {
m[4], m[5] = m[4]+delta.X, m[5]+delta.Y
return m
}
// ScaledXY scales everything around a given point by the scale factor in each axis respectively.
func (m Matrix) ScaledXY(around Vec, scale Vec) Matrix {
m[4], m[5] = m[4]-around.X, m[5]-around.Y
m[0], m[2], m[4] = m[0]*scale.X, m[2]*scale.X, m[4]*scale.X
m[1], m[3], m[5] = m[1]*scale.Y, m[3]*scale.Y, m[5]*scale.Y
m[4], m[5] = m[4]+around.X, m[5]+around.Y
return m
}
// Scaled scales everything around a given point by the scale factor.
func (m Matrix) Scaled(around Vec, scale float64) Matrix {
return m.ScaledXY(around, V(scale, scale))
}
// Rotated rotates everything around a given point by the given angle in radians.
func (m Matrix) Rotated(around Vec, angle float64) Matrix {
sint, cost := math.Sincos(angle)
m[4], m[5] = m[4]-around.X, m[5]-around.Y
m = m.Chained(Matrix{cost, sint, -sint, cost, 0, 0})
m[4], m[5] = m[4]+around.X, m[5]+around.Y
return m
}
2017-03-18 18:08:46 -05:00
// Chained adds another Matrix to this one. All tranformations by the next Matrix will be applied
// after the transformations of this Matrix.
func (m Matrix) Chained(next Matrix) Matrix {
return Matrix{
next[0]*m[0] + next[2]*m[1],
next[1]*m[0] + next[3]*m[1],
next[0]*m[2] + next[2]*m[3],
next[1]*m[2] + next[3]*m[3],
next[0]*m[4] + next[2]*m[5] + next[4],
next[1]*m[4] + next[3]*m[5] + next[5],
}
2017-03-18 18:08:46 -05:00
}
// Project applies all transformations added to the Matrix to a vector u and returns the result.
2017-03-14 18:15:02 -05:00
//
// Time complexity is O(1).
func (m Matrix) Project(u Vec) Vec {
2017-06-11 07:14:02 -05:00
return Vec{m[0]*u.X + m[2]*u.Y + m[4], m[1]*u.X + m[3]*u.Y + m[5]}
}
// Unproject does the inverse operation to Project.
2017-03-14 18:15:02 -05:00
//
// Time complexity is O(1).
func (m Matrix) Unproject(u Vec) Vec {
2019-02-12 07:57:03 -06:00
det := m[0]*m[3] - m[2]*m[1]
return Vec{
(m[3]*(u.X-m[4]) - m[2]*(u.Y-m[5])) / det,
(-m[1]*(u.X-m[4]) + m[0]*(u.Y-m[5])) / det,
2019-02-12 07:57:03 -06:00
}
}