replace complex128 Vec with a struct
This commit is contained in:
parent
8221ab58bc
commit
fcfeb200b6
26
data.go
26
data.go
|
@ -45,7 +45,7 @@ func (td *TrianglesData) SetLen(len int) {
|
|||
Color RGBA
|
||||
Picture Vec
|
||||
Intensity float64
|
||||
}{V(0, 0), Alpha(1), V(0, 0), 0})
|
||||
}{ZV, Alpha(1), ZV, 0})
|
||||
}
|
||||
}
|
||||
if len < td.Len() {
|
||||
|
@ -136,8 +136,8 @@ type PictureData struct {
|
|||
|
||||
// MakePictureData creates a zero-initialized PictureData covering the given rectangle.
|
||||
func MakePictureData(rect Rect) *PictureData {
|
||||
w := int(math.Ceil(rect.Max.X())) - int(math.Floor(rect.Min.X()))
|
||||
h := int(math.Ceil(rect.Max.Y())) - int(math.Floor(rect.Min.Y()))
|
||||
w := int(math.Ceil(rect.Max.X)) - int(math.Floor(rect.Min.X))
|
||||
h := int(math.Ceil(rect.Max.Y)) - int(math.Floor(rect.Min.Y))
|
||||
pd := &PictureData{
|
||||
Stride: w,
|
||||
Rect: rect,
|
||||
|
@ -205,12 +205,12 @@ func PictureDataFromPicture(pic Picture) *PictureData {
|
|||
pd := MakePictureData(bounds)
|
||||
|
||||
if pic, ok := pic.(PictureColor); ok {
|
||||
for y := math.Floor(bounds.Min.Y()); y < bounds.Max.Y(); y++ {
|
||||
for x := math.Floor(bounds.Min.X()); x < bounds.Max.X(); x++ {
|
||||
for y := math.Floor(bounds.Min.Y); y < bounds.Max.Y; y++ {
|
||||
for x := math.Floor(bounds.Min.X); x < bounds.Max.X; x++ {
|
||||
// this together with the Floor is a trick to get all of the pixels
|
||||
at := V(
|
||||
math.Max(x, bounds.Min.X()),
|
||||
math.Max(y, bounds.Min.Y()),
|
||||
math.Max(x, bounds.Min.X),
|
||||
math.Max(y, bounds.Min.Y),
|
||||
)
|
||||
col := pic.Color(at)
|
||||
pd.Pix[pd.Index(at)] = color.RGBA{
|
||||
|
@ -231,10 +231,10 @@ func PictureDataFromPicture(pic Picture) *PictureData {
|
|||
// The resulting image.RGBA's Bounds will be equivalent of the PictureData's Bounds.
|
||||
func (pd *PictureData) Image() *image.RGBA {
|
||||
bounds := image.Rect(
|
||||
int(math.Floor(pd.Rect.Min.X())),
|
||||
int(math.Floor(pd.Rect.Min.Y())),
|
||||
int(math.Ceil(pd.Rect.Max.X())),
|
||||
int(math.Ceil(pd.Rect.Max.Y())),
|
||||
int(math.Floor(pd.Rect.Min.X)),
|
||||
int(math.Floor(pd.Rect.Min.Y)),
|
||||
int(math.Ceil(pd.Rect.Max.X)),
|
||||
int(math.Ceil(pd.Rect.Max.Y)),
|
||||
)
|
||||
rgba := image.NewRGBA(bounds)
|
||||
|
||||
|
@ -257,8 +257,8 @@ func (pd *PictureData) Image() *image.RGBA {
|
|||
|
||||
// Index returns the index of the pixel at the specified position inside the Pix slice.
|
||||
func (pd *PictureData) Index(at Vec) int {
|
||||
at -= pd.Rect.Min.Map(math.Floor)
|
||||
x, y := int(at.X()), int(at.Y())
|
||||
at = at.Sub(pd.Rect.Min.Map(math.Floor))
|
||||
x, y := int(at.X), int(at.Y)
|
||||
return y*pd.Stride + x
|
||||
}
|
||||
|
||||
|
|
209
geometry.go
209
geometry.go
|
@ -3,50 +3,38 @@ package pixel
|
|||
import (
|
||||
"fmt"
|
||||
"math"
|
||||
"math/cmplx"
|
||||
|
||||
"github.com/go-gl/mathgl/mgl64"
|
||||
)
|
||||
|
||||
// Vec is a 2D vector type. It is unusually implemented as complex128 for convenience. Since
|
||||
// Go does not allow operator overloading, implementing vector as a struct leads to a bunch of
|
||||
// methods for addition, subtraction and multiplication of vectors. With complex128, much of
|
||||
// this functionality is given through operators.
|
||||
// Vec is a 2D vector type with X and Y coordinates.
|
||||
//
|
||||
// Create vectors with the V constructor:
|
||||
//
|
||||
// u := pixel.V(1, 2)
|
||||
// v := pixel.V(8, -3)
|
||||
//
|
||||
// Add and subtract them using the standard + and - operators:
|
||||
// Use various methods to manipulate them:
|
||||
//
|
||||
// w := u + v
|
||||
// fmt.Println(w) // Vec(9, -1)
|
||||
// fmt.Println(u - v) // Vec(-7, 5)
|
||||
//
|
||||
// Additional standard vector operations can be obtained with methods:
|
||||
//
|
||||
// u := pixel.V(2, 3)
|
||||
// v := pixel.V(8, 1)
|
||||
// if u.X() < 0 {
|
||||
// w := u.Add(v)
|
||||
// fmt.Println(w) // Vec(9, -1)
|
||||
// fmt.Println(u.Sub(v)) // Vec(-7, 5)
|
||||
// u = pixel.V(2, 3)
|
||||
// v = pixel.V(8, 1)
|
||||
// if u.X < 0 {
|
||||
// fmt.Println("this won't happen")
|
||||
// }
|
||||
// x := u.Unit().Dot(v.Unit())
|
||||
type Vec complex128
|
||||
type Vec struct {
|
||||
X, Y float64
|
||||
}
|
||||
|
||||
// ZV is a zero vector.
|
||||
var ZV = Vec{0, 0}
|
||||
|
||||
// V returns a new 2D vector with the given coordinates.
|
||||
func V(x, y float64) Vec {
|
||||
return Vec(complex(x, y))
|
||||
}
|
||||
|
||||
// X returns a 2D vector with coordinates (x, 0).
|
||||
func X(x float64) Vec {
|
||||
return V(x, 0)
|
||||
}
|
||||
|
||||
// Y returns a 2D vector with coordinates (0, y).
|
||||
func Y(y float64) Vec {
|
||||
return V(0, y)
|
||||
return Vec{x, y}
|
||||
}
|
||||
|
||||
// String returns the string representation of the vector u.
|
||||
|
@ -55,76 +43,75 @@ func Y(y float64) Vec {
|
|||
// u.String() // returns "Vec(4.5, -1.3)"
|
||||
// fmt.Println(u) // Vec(4.5, -1.3)
|
||||
func (u Vec) String() string {
|
||||
return fmt.Sprintf("Vec(%v, %v)", u.X(), u.Y())
|
||||
}
|
||||
|
||||
// X returns the x coordinate of the vector u.
|
||||
func (u Vec) X() float64 {
|
||||
return real(u)
|
||||
}
|
||||
|
||||
// Y returns the y coordinate of the vector u.
|
||||
func (u Vec) Y() float64 {
|
||||
return imag(u)
|
||||
return fmt.Sprintf("Vec(%v, %v)", u.X, u.Y)
|
||||
}
|
||||
|
||||
// XY returns the components of the vector in two return values.
|
||||
func (u Vec) XY() (x, y float64) {
|
||||
return real(u), imag(u)
|
||||
return u.X, u.Y
|
||||
}
|
||||
|
||||
// Len returns the length of the vector u.
|
||||
func (u Vec) Len() float64 {
|
||||
return cmplx.Abs(complex128(u))
|
||||
}
|
||||
|
||||
// Angle returns the angle between the vector u and the x-axis. The result is in range [-Pi, Pi].
|
||||
func (u Vec) Angle() float64 {
|
||||
return cmplx.Phase(complex128(u))
|
||||
}
|
||||
|
||||
// Unit returns a vector of length 1 facing the direction of u (has the same angle).
|
||||
func (u Vec) Unit() Vec {
|
||||
if u == 0 {
|
||||
return 1
|
||||
// Add returns the sum of vectors u and v.
|
||||
func (u Vec) Add(v Vec) Vec {
|
||||
return Vec{
|
||||
u.X + v.X,
|
||||
u.Y + v.Y,
|
||||
}
|
||||
}
|
||||
|
||||
// Sub returns the difference betweeen vectors u and v.
|
||||
func (u Vec) Sub(v Vec) Vec {
|
||||
return Vec{
|
||||
u.X - v.X,
|
||||
u.Y - v.Y,
|
||||
}
|
||||
return u / V(u.Len(), 0)
|
||||
}
|
||||
|
||||
// Scaled returns the vector u multiplied by c.
|
||||
func (u Vec) Scaled(c float64) Vec {
|
||||
return u * V(c, 0)
|
||||
return Vec{u.X * c, u.Y * c}
|
||||
}
|
||||
|
||||
// ScaledXY returns the vector u multiplied by the vector v component-wise.
|
||||
func (u Vec) ScaledXY(v Vec) Vec {
|
||||
return V(u.X()*v.X(), u.Y()*v.Y())
|
||||
return Vec{u.X * v.X, u.Y * v.Y}
|
||||
}
|
||||
|
||||
// Len returns the length of the vector u.
|
||||
func (u Vec) Len() float64 {
|
||||
return math.Hypot(u.X, u.Y)
|
||||
}
|
||||
|
||||
// Angle returns the angle between the vector u and the x-axis. The result is in range [-Pi, Pi].
|
||||
func (u Vec) Angle() float64 {
|
||||
return math.Atan2(u.Y, u.X)
|
||||
}
|
||||
|
||||
// Unit returns a vector of length 1 facing the direction of u (has the same angle).
|
||||
func (u Vec) Unit() Vec {
|
||||
if u.X == 0 && u.Y == 0 {
|
||||
return Vec{1, 0}
|
||||
}
|
||||
return u.Scaled(1 / u.Len())
|
||||
}
|
||||
|
||||
// Rotated returns the vector u rotated by the given angle in radians.
|
||||
func (u Vec) Rotated(angle float64) Vec {
|
||||
sin, cos := math.Sincos(angle)
|
||||
return u * V(cos, sin)
|
||||
}
|
||||
|
||||
// WithX return the vector u with the x coordinate changed to the given value.
|
||||
func (u Vec) WithX(x float64) Vec {
|
||||
return V(x, u.Y())
|
||||
}
|
||||
|
||||
// WithY returns the vector u with the y coordinate changed to the given value.
|
||||
func (u Vec) WithY(y float64) Vec {
|
||||
return V(u.X(), y)
|
||||
return Vec{
|
||||
u.X*cos - u.Y*sin,
|
||||
u.X*sin + u.Y*cos,
|
||||
}
|
||||
}
|
||||
|
||||
// Dot returns the dot product of vectors u and v.
|
||||
func (u Vec) Dot(v Vec) float64 {
|
||||
return u.X()*v.X() + u.Y()*v.Y()
|
||||
return u.X*v.X + u.Y*v.Y
|
||||
}
|
||||
|
||||
// Cross return the cross product of vectors u and v.
|
||||
func (u Vec) Cross(v Vec) float64 {
|
||||
return u.X()*v.Y() - v.X()*u.Y()
|
||||
return u.X*v.Y - v.X*u.Y
|
||||
}
|
||||
|
||||
// Map applies the function f to both x and y components of the vector u and returns the modified
|
||||
|
@ -133,10 +120,10 @@ func (u Vec) Cross(v Vec) float64 {
|
|||
// u := pixel.V(10.5, -1.5)
|
||||
// v := u.Map(math.Floor) // v is Vec(10, -2), both components of u floored
|
||||
func (u Vec) Map(f func(float64) float64) Vec {
|
||||
return V(
|
||||
f(u.X()),
|
||||
f(u.Y()),
|
||||
)
|
||||
return Vec{
|
||||
f(u.X),
|
||||
f(u.Y),
|
||||
}
|
||||
}
|
||||
|
||||
// Lerp returns a linear interpolation between vectors a and b.
|
||||
|
@ -145,7 +132,7 @@ func (u Vec) Map(f func(float64) float64) Vec {
|
|||
// If t is 0, then a will be returned, if t is 1, b will be returned. Anything between 0 and 1 will
|
||||
// return the appropriate point between a and b and so on.
|
||||
func Lerp(a, b Vec, t float64) Vec {
|
||||
return a.Scaled(1-t) + b.Scaled(t)
|
||||
return a.Scaled(1 - t).Add(b.Scaled(t))
|
||||
}
|
||||
|
||||
// Rect is a 2D rectangle aligned with the axes of the coordinate system. It is defined by two
|
||||
|
@ -171,31 +158,31 @@ func R(minX, minY, maxX, maxY float64) Rect {
|
|||
// r.String() // returns "Rect(100, 50, 200, 300)"
|
||||
// fmt.Println(r) // Rect(100, 50, 200, 300)
|
||||
func (r Rect) String() string {
|
||||
return fmt.Sprintf("Rect(%v, %v, %v, %v)", r.Min.X(), r.Min.Y(), r.Max.X(), r.Max.Y())
|
||||
return fmt.Sprintf("Rect(%v, %v, %v, %v)", r.Min.X, r.Min.Y, r.Max.X, r.Max.Y)
|
||||
}
|
||||
|
||||
// Norm returns the Rect in normal form, such that Max is component-wise greater or equal than Min.
|
||||
func (r Rect) Norm() Rect {
|
||||
return Rect{
|
||||
Min: V(
|
||||
math.Min(r.Min.X(), r.Max.X()),
|
||||
math.Min(r.Min.Y(), r.Max.Y()),
|
||||
),
|
||||
Max: V(
|
||||
math.Max(r.Min.X(), r.Max.X()),
|
||||
math.Max(r.Min.Y(), r.Max.Y()),
|
||||
),
|
||||
Min: Vec{
|
||||
math.Min(r.Min.X, r.Max.X),
|
||||
math.Min(r.Min.Y, r.Max.Y),
|
||||
},
|
||||
Max: Vec{
|
||||
math.Max(r.Min.X, r.Max.X),
|
||||
math.Max(r.Min.Y, r.Max.Y),
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
// W returns the width of the Rect.
|
||||
func (r Rect) W() float64 {
|
||||
return r.Max.X() - r.Min.X()
|
||||
return r.Max.X - r.Min.X
|
||||
}
|
||||
|
||||
// H returns the height of the Rect.
|
||||
func (r Rect) H() float64 {
|
||||
return r.Max.Y() - r.Min.Y()
|
||||
return r.Max.Y - r.Min.Y
|
||||
}
|
||||
|
||||
// Size returns the vector of width and height of the Rect.
|
||||
|
@ -205,34 +192,14 @@ func (r Rect) Size() Vec {
|
|||
|
||||
// Center returns the position of the center of the Rect.
|
||||
func (r Rect) Center() Vec {
|
||||
return (r.Min + r.Max) / 2
|
||||
return Lerp(r.Min, r.Max, 0.5)
|
||||
}
|
||||
|
||||
// Moved returns the Rect moved (both Min and Max) by the given vector delta.
|
||||
func (r Rect) Moved(delta Vec) Rect {
|
||||
return Rect{
|
||||
Min: r.Min + delta,
|
||||
Max: r.Max + delta,
|
||||
}
|
||||
}
|
||||
|
||||
// WithMin returns the Rect with it's Min changed to the given position.
|
||||
//
|
||||
// Note, that the Rect is not automatically normalized.
|
||||
func (r Rect) WithMin(min Vec) Rect {
|
||||
return Rect{
|
||||
Min: min,
|
||||
Max: r.Max,
|
||||
}
|
||||
}
|
||||
|
||||
// WithMax returns the Rect with it's Max changed to the given position.
|
||||
//
|
||||
// Note, that the Rect is not automatically normalized.
|
||||
func (r Rect) WithMax(max Vec) Rect {
|
||||
return Rect{
|
||||
Min: r.Min,
|
||||
Max: max,
|
||||
Min: r.Min.Add(delta),
|
||||
Max: r.Max.Add(delta),
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -249,10 +216,10 @@ func (r Rect) Resized(anchor, size Vec) Rect {
|
|||
if r.W()*r.H() == 0 {
|
||||
panic(fmt.Errorf("(%T).Resize: zero area", r))
|
||||
}
|
||||
fraction := V(size.X()/r.W(), size.Y()/r.H())
|
||||
fraction := Vec{size.X / r.W(), size.Y / r.H()}
|
||||
return Rect{
|
||||
Min: anchor + (r.Min - anchor).ScaledXY(fraction),
|
||||
Max: anchor + (r.Max - anchor).ScaledXY(fraction),
|
||||
Min: anchor.Add(r.Min.Sub(anchor)).ScaledXY(fraction),
|
||||
Max: anchor.Add(r.Max.Sub(anchor)).ScaledXY(fraction),
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -263,22 +230,22 @@ func (r Rect) Resized(anchor, size Vec) Rect {
|
|||
func (r Rect) ResizedMin(size Vec) Rect {
|
||||
return Rect{
|
||||
Min: r.Min,
|
||||
Max: r.Min + size,
|
||||
Max: r.Min.Add(size),
|
||||
}
|
||||
}
|
||||
|
||||
// Contains checks whether a vector u is contained within this Rect (including it's borders).
|
||||
func (r Rect) Contains(u Vec) bool {
|
||||
return r.Min.X() <= u.X() && u.X() <= r.Max.X() && r.Min.Y() <= u.Y() && u.Y() <= r.Max.Y()
|
||||
return r.Min.X <= u.X && u.X <= r.Max.X && r.Min.Y <= u.Y && u.Y <= r.Max.Y
|
||||
}
|
||||
|
||||
// Union returns a minimal Rect which covers both r and s. Rects r and s should be normalized.
|
||||
func (r Rect) Union(s Rect) Rect {
|
||||
return R(
|
||||
math.Min(r.Min.X(), s.Min.X()),
|
||||
math.Min(r.Min.Y(), s.Min.Y()),
|
||||
math.Max(r.Max.X(), s.Max.X()),
|
||||
math.Max(r.Max.Y(), s.Max.Y()),
|
||||
math.Min(r.Min.X, s.Min.X),
|
||||
math.Min(r.Min.Y, s.Min.Y),
|
||||
math.Max(r.Max.X, s.Max.X),
|
||||
math.Max(r.Max.Y, s.Max.Y),
|
||||
)
|
||||
}
|
||||
|
||||
|
@ -320,7 +287,7 @@ func (m Matrix) Moved(delta Vec) Matrix {
|
|||
// ScaledXY scales everything around a given point by the scale factor in each axis respectively.
|
||||
func (m Matrix) ScaledXY(around Vec, scale Vec) Matrix {
|
||||
m3 := mgl64.Mat3(m)
|
||||
m3 = mgl64.Translate2D((-around).XY()).Mul3(m3)
|
||||
m3 = mgl64.Translate2D(around.Scaled(-1).XY()).Mul3(m3)
|
||||
m3 = mgl64.Scale2D(scale.XY()).Mul3(m3)
|
||||
m3 = mgl64.Translate2D(around.XY()).Mul3(m3)
|
||||
return Matrix(m3)
|
||||
|
@ -334,7 +301,7 @@ func (m Matrix) Scaled(around Vec, scale float64) Matrix {
|
|||
// Rotated rotates everything around a given point by the given angle in radians.
|
||||
func (m Matrix) Rotated(around Vec, angle float64) Matrix {
|
||||
m3 := mgl64.Mat3(m)
|
||||
m3 = mgl64.Translate2D((-around).XY()).Mul3(m3)
|
||||
m3 = mgl64.Translate2D(around.Scaled(-1).XY()).Mul3(m3)
|
||||
m3 = mgl64.Rotate3DZ(angle).Mul3(m3)
|
||||
m3 = mgl64.Translate2D(around.XY()).Mul3(m3)
|
||||
return Matrix(m3)
|
||||
|
@ -353,7 +320,7 @@ func (m Matrix) Chained(next Matrix) Matrix {
|
|||
// Time complexity is O(1).
|
||||
func (m Matrix) Project(u Vec) Vec {
|
||||
m3 := mgl64.Mat3(m)
|
||||
proj := m3.Mul3x1(mgl64.Vec3{u.X(), u.Y(), 1})
|
||||
proj := m3.Mul3x1(mgl64.Vec3{u.X, u.Y, 1})
|
||||
return V(proj.X(), proj.Y())
|
||||
}
|
||||
|
||||
|
@ -363,6 +330,6 @@ func (m Matrix) Project(u Vec) Vec {
|
|||
func (m Matrix) Unproject(u Vec) Vec {
|
||||
m3 := mgl64.Mat3(m)
|
||||
inv := m3.Inv()
|
||||
unproj := inv.Mul3x1(mgl64.Vec3{u.X(), u.Y(), 1})
|
||||
unproj := inv.Mul3x1(mgl64.Vec3{u.X, u.Y, 1})
|
||||
return V(unproj.X(), unproj.Y())
|
||||
}
|
||||
|
|
150
imdraw/imdraw.go
150
imdraw/imdraw.go
|
@ -111,7 +111,7 @@ func (imd *IMDraw) Clear() {
|
|||
func (imd *IMDraw) Reset() {
|
||||
imd.points = nil
|
||||
imd.Color = pixel.Alpha(1)
|
||||
imd.Picture = 0
|
||||
imd.Picture = pixel.ZV
|
||||
imd.Intensity = 0
|
||||
imd.Precision = 64
|
||||
imd.EndShape = NoEndShape
|
||||
|
@ -280,15 +280,15 @@ func (imd *IMDraw) fillRectangle() {
|
|||
for i, j := 0, off; i+1 < len(points); i, j = i+1, j+6 {
|
||||
a, b := points[i], points[i+1]
|
||||
c := point{
|
||||
pos: pixel.V(a.pos.X(), b.pos.Y()),
|
||||
pos: pixel.V(a.pos.X, b.pos.Y),
|
||||
col: a.col.Add(b.col).Mul(pixel.Alpha(0.5)),
|
||||
pic: pixel.V(a.pic.X(), b.pic.Y()),
|
||||
pic: pixel.V(a.pic.X, b.pic.Y),
|
||||
in: (a.in + b.in) / 2,
|
||||
}
|
||||
d := point{
|
||||
pos: pixel.V(b.pos.X(), a.pos.Y()),
|
||||
pos: pixel.V(b.pos.X, a.pos.Y),
|
||||
col: a.col.Add(b.col).Mul(pixel.Alpha(0.5)),
|
||||
pic: pixel.V(b.pic.X(), a.pic.Y()),
|
||||
pic: pixel.V(b.pic.X, a.pic.Y),
|
||||
in: (a.in + b.in) / 2,
|
||||
}
|
||||
|
||||
|
@ -318,9 +318,9 @@ func (imd *IMDraw) outlineRectangle(thickness float64) {
|
|||
mid.in = (a.in + b.in) / 2
|
||||
|
||||
imd.pushPt(a.pos, a)
|
||||
imd.pushPt(pixel.V(a.pos.X(), b.pos.Y()), mid)
|
||||
imd.pushPt(pixel.V(a.pos.X, b.pos.Y), mid)
|
||||
imd.pushPt(b.pos, b)
|
||||
imd.pushPt(pixel.V(b.pos.X(), a.pos.Y()), mid)
|
||||
imd.pushPt(pixel.V(b.pos.X, a.pos.Y), mid)
|
||||
imd.polyline(thickness, true)
|
||||
}
|
||||
}
|
||||
|
@ -360,24 +360,24 @@ func (imd *IMDraw) fillEllipseArc(radius pixel.Vec, low, high float64) {
|
|||
|
||||
for i := range (*imd.tri)[off:] {
|
||||
(*imd.tri)[off+i].Color = pt.col
|
||||
(*imd.tri)[off+i].Picture = 0
|
||||
(*imd.tri)[off+i].Picture = pixel.ZV
|
||||
(*imd.tri)[off+i].Intensity = 0
|
||||
}
|
||||
|
||||
for i, j := 0.0, off; i < num; i, j = i+1, j+3 {
|
||||
angle := low + i*delta
|
||||
sin, cos := math.Sincos(angle)
|
||||
a := pt.pos + pixel.V(
|
||||
radius.X()*cos,
|
||||
radius.Y()*sin,
|
||||
)
|
||||
a := pt.pos.Add(pixel.V(
|
||||
radius.X*cos,
|
||||
radius.Y*sin,
|
||||
))
|
||||
|
||||
angle = low + (i+1)*delta
|
||||
sin, cos = math.Sincos(angle)
|
||||
b := pt.pos + pixel.V(
|
||||
radius.X()*cos,
|
||||
radius.Y()*sin,
|
||||
)
|
||||
b := pt.pos.Add(pixel.V(
|
||||
radius.X*cos,
|
||||
radius.Y*sin,
|
||||
))
|
||||
|
||||
(*imd.tri)[j+0].Position = pt.pos
|
||||
(*imd.tri)[j+1].Position = a
|
||||
|
@ -401,7 +401,7 @@ func (imd *IMDraw) outlineEllipseArc(radius pixel.Vec, low, high, thickness floa
|
|||
|
||||
for i := range (*imd.tri)[off:] {
|
||||
(*imd.tri)[off+i].Color = pt.col
|
||||
(*imd.tri)[off+i].Picture = 0
|
||||
(*imd.tri)[off+i].Picture = pixel.ZV
|
||||
(*imd.tri)[off+i].Intensity = 0
|
||||
}
|
||||
|
||||
|
@ -409,26 +409,26 @@ func (imd *IMDraw) outlineEllipseArc(radius pixel.Vec, low, high, thickness floa
|
|||
angle := low + i*delta
|
||||
sin, cos := math.Sincos(angle)
|
||||
normalSin, normalCos := pixel.V(sin, cos).ScaledXY(radius).Unit().XY()
|
||||
a := pt.pos + pixel.V(
|
||||
radius.X()*cos-thickness/2*normalCos,
|
||||
radius.Y()*sin-thickness/2*normalSin,
|
||||
)
|
||||
b := pt.pos + pixel.V(
|
||||
radius.X()*cos+thickness/2*normalCos,
|
||||
radius.Y()*sin+thickness/2*normalSin,
|
||||
)
|
||||
a := pt.pos.Add(pixel.V(
|
||||
radius.X*cos-thickness/2*normalCos,
|
||||
radius.Y*sin-thickness/2*normalSin,
|
||||
))
|
||||
b := pt.pos.Add(pixel.V(
|
||||
radius.X*cos+thickness/2*normalCos,
|
||||
radius.Y*sin+thickness/2*normalSin,
|
||||
))
|
||||
|
||||
angle = low + (i+1)*delta
|
||||
sin, cos = math.Sincos(angle)
|
||||
normalSin, normalCos = pixel.V(sin, cos).ScaledXY(radius).Unit().XY()
|
||||
c := pt.pos + pixel.V(
|
||||
radius.X()*cos-thickness/2*normalCos,
|
||||
radius.Y()*sin-thickness/2*normalSin,
|
||||
)
|
||||
d := pt.pos + pixel.V(
|
||||
radius.X()*cos+thickness/2*normalCos,
|
||||
radius.Y()*sin+thickness/2*normalSin,
|
||||
)
|
||||
c := pt.pos.Add(pixel.V(
|
||||
radius.X*cos-thickness/2*normalCos,
|
||||
radius.Y*sin-thickness/2*normalSin,
|
||||
))
|
||||
d := pt.pos.Add(pixel.V(
|
||||
radius.X*cos+thickness/2*normalCos,
|
||||
radius.Y*sin+thickness/2*normalSin,
|
||||
))
|
||||
|
||||
(*imd.tri)[j+0].Position = a
|
||||
(*imd.tri)[j+1].Position = b
|
||||
|
@ -443,18 +443,18 @@ func (imd *IMDraw) outlineEllipseArc(radius pixel.Vec, low, high, thickness floa
|
|||
|
||||
if doEndShape {
|
||||
lowSin, lowCos := math.Sincos(low)
|
||||
lowCenter := pt.pos + pixel.V(
|
||||
radius.X()*lowCos,
|
||||
radius.Y()*lowSin,
|
||||
)
|
||||
lowCenter := pt.pos.Add(pixel.V(
|
||||
radius.X*lowCos,
|
||||
radius.Y*lowSin,
|
||||
))
|
||||
normalLowSin, normalLowCos := pixel.V(lowSin, lowCos).ScaledXY(radius).Unit().XY()
|
||||
normalLow := pixel.V(normalLowCos, normalLowSin).Angle()
|
||||
|
||||
highSin, highCos := math.Sincos(high)
|
||||
highCenter := pt.pos + pixel.V(
|
||||
radius.X()*highCos,
|
||||
radius.Y()*highSin,
|
||||
)
|
||||
highCenter := pt.pos.Add(pixel.V(
|
||||
radius.X*highCos,
|
||||
radius.Y*highSin,
|
||||
))
|
||||
normalHighSin, normalHighCos := pixel.V(highSin, highCos).ScaledXY(radius).Unit().XY()
|
||||
normalHigh := pixel.V(normalHighCos, normalHighSin).Angle()
|
||||
|
||||
|
@ -467,21 +467,21 @@ func (imd *IMDraw) outlineEllipseArc(radius pixel.Vec, low, high, thickness floa
|
|||
case NoEndShape:
|
||||
// nothing
|
||||
case SharpEndShape:
|
||||
thick := pixel.X(thickness / 2).Rotated(normalLow)
|
||||
imd.pushPt(lowCenter+thick, pt)
|
||||
imd.pushPt(lowCenter-thick, pt)
|
||||
imd.pushPt(lowCenter-thick.Rotated(math.Pi/2*orientation), pt)
|
||||
thick := pixel.V(thickness/2, 0).Rotated(normalLow)
|
||||
imd.pushPt(lowCenter.Add(thick), pt)
|
||||
imd.pushPt(lowCenter.Sub(thick), pt)
|
||||
imd.pushPt(lowCenter.Sub(thick.Rotated(math.Pi/2*orientation)), pt)
|
||||
imd.fillPolygon()
|
||||
thick = pixel.X(thickness / 2).Rotated(normalHigh)
|
||||
imd.pushPt(highCenter+thick, pt)
|
||||
imd.pushPt(highCenter-thick, pt)
|
||||
imd.pushPt(highCenter+thick.Rotated(math.Pi/2*orientation), pt)
|
||||
thick = pixel.V(thickness/2, 0).Rotated(normalHigh)
|
||||
imd.pushPt(highCenter.Add(thick), pt)
|
||||
imd.pushPt(highCenter.Sub(thick), pt)
|
||||
imd.pushPt(highCenter.Add(thick.Rotated(math.Pi/2*orientation)), pt)
|
||||
imd.fillPolygon()
|
||||
case RoundEndShape:
|
||||
imd.pushPt(lowCenter, pt)
|
||||
imd.fillEllipseArc(pixel.V(thickness, thickness)/2, normalLow, normalLow-math.Pi*orientation)
|
||||
imd.fillEllipseArc(pixel.V(thickness/2, thickness/2), normalLow, normalLow-math.Pi*orientation)
|
||||
imd.pushPt(highCenter, pt)
|
||||
imd.fillEllipseArc(pixel.V(thickness, thickness)/2, normalHigh, normalHigh+math.Pi*orientation)
|
||||
imd.fillEllipseArc(pixel.V(thickness/2, thickness/2), normalHigh, normalHigh+math.Pi*orientation)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -500,25 +500,25 @@ func (imd *IMDraw) polyline(thickness float64, closed bool) {
|
|||
|
||||
// first point
|
||||
j, i := 0, 1
|
||||
normal := (points[i].pos - points[j].pos).Rotated(math.Pi / 2).Unit().Scaled(thickness / 2)
|
||||
normal := points[i].pos.Sub(points[j].pos).Rotated(math.Pi / 2).Unit().Scaled(thickness / 2)
|
||||
|
||||
if !closed {
|
||||
switch points[j].endshape {
|
||||
case NoEndShape:
|
||||
// nothing
|
||||
case SharpEndShape:
|
||||
imd.pushPt(points[j].pos+normal, points[j])
|
||||
imd.pushPt(points[j].pos-normal, points[j])
|
||||
imd.pushPt(points[j].pos+normal.Rotated(math.Pi/2), points[j])
|
||||
imd.pushPt(points[j].pos.Add(normal), points[j])
|
||||
imd.pushPt(points[j].pos.Sub(normal), points[j])
|
||||
imd.pushPt(points[j].pos.Add(normal.Rotated(math.Pi/2)), points[j])
|
||||
imd.fillPolygon()
|
||||
case RoundEndShape:
|
||||
imd.pushPt(points[j].pos, points[j])
|
||||
imd.fillEllipseArc(pixel.V(thickness, thickness)/2, normal.Angle(), normal.Angle()+math.Pi)
|
||||
imd.fillEllipseArc(pixel.V(thickness/2, thickness/2), normal.Angle(), normal.Angle()+math.Pi)
|
||||
}
|
||||
}
|
||||
|
||||
imd.pushPt(points[j].pos+normal, points[j])
|
||||
imd.pushPt(points[j].pos-normal, points[j])
|
||||
imd.pushPt(points[j].pos.Add(normal), points[j])
|
||||
imd.pushPt(points[j].pos.Sub(normal), points[j])
|
||||
|
||||
// middle points
|
||||
for i := 0; i < len(points); i++ {
|
||||
|
@ -536,16 +536,16 @@ func (imd *IMDraw) polyline(thickness float64, closed bool) {
|
|||
k %= len(points)
|
||||
}
|
||||
|
||||
ijNormal := (points[j].pos - points[i].pos).Rotated(math.Pi / 2).Unit().Scaled(thickness / 2)
|
||||
jkNormal := (points[k].pos - points[j].pos).Rotated(math.Pi / 2).Unit().Scaled(thickness / 2)
|
||||
ijNormal := points[j].pos.Sub(points[i].pos).Rotated(math.Pi / 2).Unit().Scaled(thickness / 2)
|
||||
jkNormal := points[k].pos.Sub(points[j].pos).Rotated(math.Pi / 2).Unit().Scaled(thickness / 2)
|
||||
|
||||
orientation := 1.0
|
||||
if ijNormal.Cross(jkNormal) > 0 {
|
||||
orientation = -1.0
|
||||
}
|
||||
|
||||
imd.pushPt(points[j].pos-ijNormal, points[j])
|
||||
imd.pushPt(points[j].pos+ijNormal, points[j])
|
||||
imd.pushPt(points[j].pos.Sub(ijNormal), points[j])
|
||||
imd.pushPt(points[j].pos.Add(ijNormal), points[j])
|
||||
imd.fillPolygon()
|
||||
|
||||
switch points[j].endshape {
|
||||
|
@ -553,28 +553,28 @@ func (imd *IMDraw) polyline(thickness float64, closed bool) {
|
|||
// nothing
|
||||
case SharpEndShape:
|
||||
imd.pushPt(points[j].pos, points[j])
|
||||
imd.pushPt(points[j].pos+ijNormal.Scaled(orientation), points[j])
|
||||
imd.pushPt(points[j].pos+jkNormal.Scaled(orientation), points[j])
|
||||
imd.pushPt(points[j].pos.Add(ijNormal.Scaled(orientation)), points[j])
|
||||
imd.pushPt(points[j].pos.Add(jkNormal.Scaled(orientation)), points[j])
|
||||
imd.fillPolygon()
|
||||
case RoundEndShape:
|
||||
imd.pushPt(points[j].pos, points[j])
|
||||
imd.fillEllipseArc(pixel.V(thickness, thickness)/2, ijNormal.Angle(), ijNormal.Angle()-math.Pi)
|
||||
imd.fillEllipseArc(pixel.V(thickness/2, thickness/2), ijNormal.Angle(), ijNormal.Angle()-math.Pi)
|
||||
imd.pushPt(points[j].pos, points[j])
|
||||
imd.fillEllipseArc(pixel.V(thickness, thickness)/2, jkNormal.Angle(), jkNormal.Angle()+math.Pi)
|
||||
imd.fillEllipseArc(pixel.V(thickness/2, thickness/2), jkNormal.Angle(), jkNormal.Angle()+math.Pi)
|
||||
}
|
||||
|
||||
if !closing {
|
||||
imd.pushPt(points[j].pos+jkNormal, points[j])
|
||||
imd.pushPt(points[j].pos-jkNormal, points[j])
|
||||
imd.pushPt(points[j].pos.Add(jkNormal), points[j])
|
||||
imd.pushPt(points[j].pos.Sub(jkNormal), points[j])
|
||||
}
|
||||
}
|
||||
|
||||
// last point
|
||||
i, j = len(points)-2, len(points)-1
|
||||
normal = (points[j].pos - points[i].pos).Rotated(math.Pi / 2).Unit().Scaled(thickness / 2)
|
||||
normal = points[j].pos.Sub(points[i].pos).Rotated(math.Pi / 2).Unit().Scaled(thickness / 2)
|
||||
|
||||
imd.pushPt(points[j].pos-normal, points[j])
|
||||
imd.pushPt(points[j].pos+normal, points[j])
|
||||
imd.pushPt(points[j].pos.Sub(normal), points[j])
|
||||
imd.pushPt(points[j].pos.Add(normal), points[j])
|
||||
imd.fillPolygon()
|
||||
|
||||
if !closed {
|
||||
|
@ -582,13 +582,13 @@ func (imd *IMDraw) polyline(thickness float64, closed bool) {
|
|||
case NoEndShape:
|
||||
// nothing
|
||||
case SharpEndShape:
|
||||
imd.pushPt(points[j].pos+normal, points[j])
|
||||
imd.pushPt(points[j].pos-normal, points[j])
|
||||
imd.pushPt(points[j].pos+normal.Rotated(-math.Pi/2), points[j])
|
||||
imd.pushPt(points[j].pos.Add(normal), points[j])
|
||||
imd.pushPt(points[j].pos.Sub(normal), points[j])
|
||||
imd.pushPt(points[j].pos.Add(normal.Rotated(-math.Pi/2)), points[j])
|
||||
imd.fillPolygon()
|
||||
case RoundEndShape:
|
||||
imd.pushPt(points[j].pos, points[j])
|
||||
imd.fillEllipseArc(pixel.V(thickness, thickness)/2, normal.Angle(), normal.Angle()-math.Pi)
|
||||
imd.fillEllipseArc(pixel.V(thickness/2, thickness/2), normal.Angle(), normal.Angle()-math.Pi)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -285,8 +285,8 @@ func (ct *canvasTriangles) draw(tex *glhf.Texture, bounds pixel.Rect) {
|
|||
|
||||
dstBounds := ct.dst.Bounds()
|
||||
shader.SetUniformAttr(canvasBounds, mgl32.Vec4{
|
||||
float32(dstBounds.Min.X()),
|
||||
float32(dstBounds.Min.Y()),
|
||||
float32(dstBounds.Min.X),
|
||||
float32(dstBounds.Min.Y),
|
||||
float32(dstBounds.W()),
|
||||
float32(dstBounds.H()),
|
||||
})
|
||||
|
|
|
@ -70,7 +70,7 @@ func (gf *GLFrame) Color(at pixel.Vec) pixel.RGBA {
|
|||
return pixel.Alpha(0)
|
||||
}
|
||||
bx, by, bw, _ := intBounds(gf.bounds)
|
||||
x, y := int(at.X())-bx, int(at.Y())-by
|
||||
x, y := int(at.X)-bx, int(at.Y)-by
|
||||
off := y*bw + x
|
||||
return pixel.RGBA{
|
||||
R: float64(gf.pixels[off*4+0]) / 255,
|
||||
|
|
|
@ -42,8 +42,8 @@ func NewGLPicture(p pixel.Picture) GLPicture {
|
|||
for y := 0; y < bh; y++ {
|
||||
for x := 0; x < bw; x++ {
|
||||
at := pixel.V(
|
||||
math.Max(float64(bx+x), bounds.Min.X()),
|
||||
math.Max(float64(by+y), bounds.Min.Y()),
|
||||
math.Max(float64(bx+x), bounds.Min.X),
|
||||
math.Max(float64(by+y), bounds.Min.Y),
|
||||
)
|
||||
color := p.Color(at)
|
||||
off := (y*bw + x) * 4
|
||||
|
@ -87,7 +87,7 @@ func (gp *glPicture) Color(at pixel.Vec) pixel.RGBA {
|
|||
return pixel.Alpha(0)
|
||||
}
|
||||
bx, by, bw, _ := intBounds(gp.bounds)
|
||||
x, y := int(at.X())-bx, int(at.Y())-by
|
||||
x, y := int(at.X)-bx, int(at.Y)-by
|
||||
off := y*bw + x
|
||||
return pixel.RGBA{
|
||||
R: float64(gp.pixels[off*4+0]) / 255,
|
||||
|
|
|
@ -135,8 +135,8 @@ func (gt *GLTriangles) updateData(t pixel.Triangles) {
|
|||
if t, ok := t.(pixel.TrianglesPicture); ok {
|
||||
for i := 0; i < gt.Len(); i++ {
|
||||
pic, intensity := t.Picture(i)
|
||||
gt.data[i*gt.vs.Stride()+6] = float32(pic.X())
|
||||
gt.data[i*gt.vs.Stride()+7] = float32(pic.Y())
|
||||
gt.data[i*gt.vs.Stride()+6] = float32(pic.X)
|
||||
gt.data[i*gt.vs.Stride()+7] = float32(pic.Y)
|
||||
gt.data[i*gt.vs.Stride()+8] = float32(intensity)
|
||||
}
|
||||
}
|
||||
|
|
|
@ -356,13 +356,14 @@ func (w *Window) initInput() {
|
|||
|
||||
w.window.SetCursorPosCallback(func(_ *glfw.Window, x, y float64) {
|
||||
w.tempInp.mouse = pixel.V(
|
||||
x+w.bounds.Min.X(),
|
||||
(w.bounds.H()-y)+w.bounds.Min.Y(),
|
||||
x+w.bounds.Min.X,
|
||||
(w.bounds.H()-y)+w.bounds.Min.Y,
|
||||
)
|
||||
})
|
||||
|
||||
w.window.SetScrollCallback(func(_ *glfw.Window, xoff, yoff float64) {
|
||||
w.tempInp.scroll += pixel.V(xoff, yoff)
|
||||
w.tempInp.scroll.X += xoff
|
||||
w.tempInp.scroll.Y += yoff
|
||||
})
|
||||
|
||||
w.window.SetCharCallback(func(_ *glfw.Window, r rune) {
|
||||
|
@ -380,6 +381,6 @@ func (w *Window) updateInput() {
|
|||
w.currInp = w.tempInp
|
||||
|
||||
w.tempInp.repeat = [KeyLast + 1]bool{}
|
||||
w.tempInp.scroll = 0
|
||||
w.tempInp.scroll = pixel.ZV
|
||||
w.tempInp.typed = ""
|
||||
}
|
||||
|
|
|
@ -7,9 +7,9 @@ import (
|
|||
)
|
||||
|
||||
func intBounds(bounds pixel.Rect) (x, y, w, h int) {
|
||||
x0 := int(math.Floor(bounds.Min.X()))
|
||||
y0 := int(math.Floor(bounds.Min.Y()))
|
||||
x1 := int(math.Ceil(bounds.Max.X()))
|
||||
y1 := int(math.Ceil(bounds.Max.Y()))
|
||||
x0 := int(math.Floor(bounds.Min.X))
|
||||
y0 := int(math.Floor(bounds.Min.Y))
|
||||
x1 := int(math.Ceil(bounds.Max.X))
|
||||
y1 := int(math.Ceil(bounds.Max.Y))
|
||||
return x0, y0, x1 - x0, y1 - y0
|
||||
}
|
||||
|
|
|
@ -160,10 +160,10 @@ func (w *Window) Update() {
|
|||
mainthread.Call(func() {
|
||||
_, _, oldW, oldH := intBounds(w.bounds)
|
||||
newW, newH := w.window.GetSize()
|
||||
w.bounds = w.bounds.ResizedMin(w.bounds.Size() + pixel.V(
|
||||
w.bounds = w.bounds.ResizedMin(w.bounds.Size().Add(pixel.V(
|
||||
float64(newW-oldW),
|
||||
float64(newH-oldH),
|
||||
))
|
||||
)))
|
||||
})
|
||||
|
||||
w.canvas.SetBounds(w.bounds)
|
||||
|
|
18
sprite.go
18
sprite.go
|
@ -90,20 +90,20 @@ func (s *Sprite) DrawColorMask(t Target, matrix Matrix, mask color.Color) {
|
|||
func (s *Sprite) calcData() {
|
||||
var (
|
||||
center = s.frame.Center()
|
||||
horizontal = X(s.frame.W() / 2)
|
||||
vertical = Y(s.frame.H() / 2)
|
||||
horizontal = V(s.frame.W()/2, 0)
|
||||
vertical = V(0, s.frame.H()/2)
|
||||
)
|
||||
|
||||
(*s.tri)[0].Position = -horizontal - vertical
|
||||
(*s.tri)[1].Position = +horizontal - vertical
|
||||
(*s.tri)[2].Position = +horizontal + vertical
|
||||
(*s.tri)[3].Position = -horizontal - vertical
|
||||
(*s.tri)[4].Position = +horizontal + vertical
|
||||
(*s.tri)[5].Position = -horizontal + vertical
|
||||
(*s.tri)[0].Position = Vec{}.Sub(horizontal).Sub(vertical)
|
||||
(*s.tri)[1].Position = Vec{}.Add(horizontal).Sub(vertical)
|
||||
(*s.tri)[2].Position = Vec{}.Add(horizontal).Add(vertical)
|
||||
(*s.tri)[3].Position = Vec{}.Sub(horizontal).Sub(vertical)
|
||||
(*s.tri)[4].Position = Vec{}.Add(horizontal).Add(vertical)
|
||||
(*s.tri)[5].Position = Vec{}.Sub(horizontal).Add(vertical)
|
||||
|
||||
for i := range *s.tri {
|
||||
(*s.tri)[i].Color = s.mask
|
||||
(*s.tri)[i].Picture = center + (*s.tri)[i].Position
|
||||
(*s.tri)[i].Picture = center.Add((*s.tri)[i].Position)
|
||||
(*s.tri)[i].Intensity = 1
|
||||
}
|
||||
|
||||
|
|
|
@ -73,13 +73,13 @@ func NewAtlas(face font.Face, runeSets ...[]rune) *Atlas {
|
|||
mapping[r] = Glyph{
|
||||
Dot: pixel.V(
|
||||
i2f(fg.dot.X),
|
||||
bounds.Max.Y()-(i2f(fg.dot.Y)-bounds.Min.Y()),
|
||||
bounds.Max.Y-(i2f(fg.dot.Y)-bounds.Min.Y),
|
||||
),
|
||||
Frame: pixel.R(
|
||||
i2f(fg.frame.Min.X),
|
||||
bounds.Max.Y()-(i2f(fg.frame.Min.Y)-bounds.Min.Y()),
|
||||
bounds.Max.Y-(i2f(fg.frame.Min.Y)-bounds.Min.Y),
|
||||
i2f(fg.frame.Max.X),
|
||||
bounds.Max.Y()-(i2f(fg.frame.Max.Y)-bounds.Min.Y()),
|
||||
bounds.Max.Y-(i2f(fg.frame.Max.Y)-bounds.Min.Y),
|
||||
).Norm(),
|
||||
Advance: i2f(fg.advance),
|
||||
}
|
||||
|
@ -149,24 +149,24 @@ func (a *Atlas) DrawRune(prevR, r rune, dot pixel.Vec) (rect, frame, bounds pixe
|
|||
}
|
||||
|
||||
if prevR >= 0 {
|
||||
dot += pixel.X(a.Kern(prevR, r))
|
||||
dot.X += a.Kern(prevR, r)
|
||||
}
|
||||
|
||||
glyph := a.Glyph(r)
|
||||
|
||||
rect = glyph.Frame.Moved(dot - glyph.Dot)
|
||||
rect = glyph.Frame.Moved(dot.Sub(glyph.Dot))
|
||||
bounds = rect
|
||||
|
||||
if bounds.W()*bounds.H() != 0 {
|
||||
bounds = pixel.R(
|
||||
bounds.Min.X(),
|
||||
dot.Y()-a.Descent(),
|
||||
bounds.Max.X(),
|
||||
dot.Y()+a.Ascent(),
|
||||
bounds.Min.X,
|
||||
dot.Y-a.Descent(),
|
||||
bounds.Max.X,
|
||||
dot.Y+a.Ascent(),
|
||||
)
|
||||
}
|
||||
|
||||
dot += pixel.X(glyph.Advance)
|
||||
dot.X += glyph.Advance
|
||||
|
||||
return rect, glyph.Frame, bounds, dot
|
||||
}
|
||||
|
|
30
text/text.go
30
text/text.go
|
@ -39,7 +39,7 @@ func RangeTable(table *unicode.RangeTable) []rune {
|
|||
// Text allows for effiecient and convenient text drawing.
|
||||
//
|
||||
// To create a Text object, use the New constructor:
|
||||
// txt := text.New(pixel.V(0, 0), text.NewAtlas(face, text.ASCII))
|
||||
// txt := text.New(pixel.ZV, text.NewAtlas(face, text.ASCII))
|
||||
//
|
||||
// As suggested by the constructor, a Text object is always associated with one font face and a
|
||||
// fixed set of runes. For example, the Text we created above can draw text using the font face
|
||||
|
@ -274,17 +274,17 @@ func (txt *Text) DrawColorMask(t pixel.Target, matrix pixel.Matrix, mask color.C
|
|||
func (txt *Text) controlRune(r rune, dot pixel.Vec) (newDot pixel.Vec, control bool) {
|
||||
switch r {
|
||||
case '\n':
|
||||
dot -= pixel.Y(txt.LineHeight)
|
||||
dot = dot.WithX(txt.Orig.X())
|
||||
dot.X = txt.Orig.X
|
||||
dot.Y -= txt.LineHeight
|
||||
case '\r':
|
||||
dot = dot.WithX(txt.Orig.X())
|
||||
dot.X = txt.Orig.X
|
||||
case '\t':
|
||||
rem := math.Mod(dot.X()-txt.Orig.X(), txt.TabWidth)
|
||||
rem := math.Mod(dot.X-txt.Orig.X, txt.TabWidth)
|
||||
rem = math.Mod(rem, rem+txt.TabWidth)
|
||||
if rem == 0 {
|
||||
rem = txt.TabWidth
|
||||
}
|
||||
dot += pixel.X(rem)
|
||||
dot.X += rem
|
||||
default:
|
||||
return dot, false
|
||||
}
|
||||
|
@ -316,16 +316,18 @@ func (txt *Text) drawBuf() {
|
|||
|
||||
txt.prevR = r
|
||||
|
||||
rv := [...]pixel.Vec{pixel.V(rect.Min.X(), rect.Min.Y()),
|
||||
pixel.V(rect.Max.X(), rect.Min.Y()),
|
||||
pixel.V(rect.Max.X(), rect.Max.Y()),
|
||||
pixel.V(rect.Min.X(), rect.Max.Y()),
|
||||
rv := [...]pixel.Vec{
|
||||
{X: rect.Min.X, Y: rect.Min.Y},
|
||||
{X: rect.Max.X, Y: rect.Min.Y},
|
||||
{X: rect.Max.X, Y: rect.Max.Y},
|
||||
{X: rect.Min.X, Y: rect.Max.Y},
|
||||
}
|
||||
|
||||
fv := [...]pixel.Vec{pixel.V(frame.Min.X(), frame.Min.Y()),
|
||||
pixel.V(frame.Max.X(), frame.Min.Y()),
|
||||
pixel.V(frame.Max.X(), frame.Max.Y()),
|
||||
pixel.V(frame.Min.X(), frame.Max.Y()),
|
||||
fv := [...]pixel.Vec{
|
||||
{X: frame.Min.X, Y: frame.Min.Y},
|
||||
{X: frame.Max.X, Y: frame.Min.Y},
|
||||
{X: frame.Max.X, Y: frame.Max.Y},
|
||||
{X: frame.Min.X, Y: frame.Max.Y},
|
||||
}
|
||||
|
||||
for i, j := range [...]int{0, 1, 2, 0, 2, 3} {
|
||||
|
|
Loading…
Reference in New Issue