add 2d vector type
This commit is contained in:
parent
ca6a9865f6
commit
0974069426
|
@ -0,0 +1,88 @@
|
|||
package pixel
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"math"
|
||||
"math/cmplx"
|
||||
)
|
||||
|
||||
// Vec2 is a 2d vector type. It is unusually implemented as complex128 for convenience. Since Go
|
||||
// does not allow operator overloading, implementing vector as a struct leads to a bunch of methods
|
||||
// for addition, subtraction and multiplication of vectors. With complex128, much of this
|
||||
// functionality is given through operators.
|
||||
//
|
||||
// Create vectors with the V constructor:
|
||||
//
|
||||
// u := pixel.V(1, 2)
|
||||
// v := pixel.V(8, -3)
|
||||
//
|
||||
// Add and subtract them using the standard + and - operators:
|
||||
//
|
||||
// w := u + v
|
||||
// fmt.Println(w) // Vec2(9, -1)
|
||||
// fmt.Println(u - v) // Vec2(-7, 5)
|
||||
//
|
||||
// Additional standard vector operations can be obtained with methods:
|
||||
//
|
||||
// u := pixel.Vec(2, 3)
|
||||
// v := pixel.Vec(8, 1)
|
||||
// if u.X() < 0 {
|
||||
// fmt.Println("this won't happend")
|
||||
// }
|
||||
// x := u.Unit().Dot(v.Unit())
|
||||
type Vec2 complex128
|
||||
|
||||
// V returns a new 2d vector with the given coordinates.
|
||||
func V(x, y float64) Vec2 {
|
||||
return Vec2(complex(x, y))
|
||||
}
|
||||
|
||||
// String returns the string representation of a vector u as "Vec2(x, y)".
|
||||
func (u Vec2) String() string {
|
||||
return fmt.Sprintf("Vec2(%v, %v)", u.X(), u.Y())
|
||||
}
|
||||
|
||||
// X returns the x coordinate of a vector u.
|
||||
func (u Vec2) X() float64 {
|
||||
return real(u)
|
||||
}
|
||||
|
||||
// Y returns the y coordinate of a vector u.
|
||||
func (u Vec2) Y() float64 {
|
||||
return imag(u)
|
||||
}
|
||||
|
||||
// Len returns the length of a vector u.
|
||||
func (u Vec2) Len() float64 {
|
||||
return cmplx.Abs(complex128(u))
|
||||
}
|
||||
|
||||
// Angle returns the angle between a vector u and the x-axis. The result is in the range [-Pi, Pi].
|
||||
func (u Vec2) Angle() float64 {
|
||||
return cmplx.Phase(complex128(u))
|
||||
}
|
||||
|
||||
// Unit returns a vector of length 1 with the same angle as u.
|
||||
func (u Vec2) Unit() Vec2 {
|
||||
return u / V(u.Len(), 0)
|
||||
}
|
||||
|
||||
// Scaled returns a vector u multiplied by k.
|
||||
func (u Vec2) Scaled(k float64) Vec2 {
|
||||
return u * V(k, 0)
|
||||
}
|
||||
|
||||
// Rotated returns a vector u rotated by the given angle in radians.
|
||||
func (u Vec2) Rotated(angle float64) Vec2 {
|
||||
return u * V(math.Cos(angle), math.Sin(angle))
|
||||
}
|
||||
|
||||
// Dot returns the dot product of vectors u and v.
|
||||
func (u Vec2) Dot(v Vec2) float64 {
|
||||
return u.X()*v.X() + u.Y()*v.Y()
|
||||
}
|
||||
|
||||
// Cross return the cross product of vectors u and v.
|
||||
func (u Vec2) Cross(v Vec2) float64 {
|
||||
return u.X()*v.Y() - v.X()*u.Y()
|
||||
}
|
Loading…
Reference in New Issue