Drop use_selection flag from Json and Jny Writers, instead they always operate on selections and if the write_* pass is called without -selected then it pushes the complete selection.
rtlil_backend prints differently if it is dumping a portion or whole design, so push the complete selection inside of the dump if needed.
Also update `Design::selected_modules()` error message for partially selected modules to match the existing error messages that it replaces.
New methods on Design to push/pop selection instead of accessing the selection stack directly. Includes methods for pushing a full/complete/empty selection.
Also helper methods on modules to check `is_selected` and `is_selected_whole`.
Now uses two enums, one to control whether or not to include partially selected
modules (and what to do if they are encountered), and one to control whether or
not to include boxed modules (and what to do if they are encountered).
Mark Design::selected{modules, whole_modules}() deprecated and make them
provide warnings on boxes. There are a lot of places that use them and I can't
always tell which ones support boxed modules and which don't.
The `Design::selected_*()` methods no longer unconditionally skip boxed modules. Instead, selections are now box and design aware.
The selection constructor now optionally takes a design pointer, and has a new `selects_boxes` flag. If the selection has an assigned design, then `Selection::selected_*()` will only return true for boxed modules if the selects_boxes flag is set. A warning is raised if a selection is checked and no design is set. Selections can change design via the `Selection::optimize()` method.
Most places that iterate over `Design::modules()` and check `Selection::selected_module()` should instead use `Design::selected_modules()`.
Since boxed modules should only ever be selected explicitly, and `full_selection` (now) refers to all non-boxed modules, `Selection::optimize()` will clear the `full_selection` flag if the `selects_boxes` flag is enabled, and instead explicitly selects all modules (including boxed modules). This also means that `full_selection` will only get automatically applied to a design without any boxed modules.
These changes necessitated a number of changes to `select.cc` in order to support this functionality when operating on selections, in particular when combining selections (e.g. by union or difference).
To minimize redundancy, a number of places that previously iterated over `design->modules()` now push the current selection to the design, use `design->selected_modules()`, and then pop the selection when done.
Introduce `RTLIL::NamedObject`, to allow for iterating over all members of a module with a single iterator instead of needing to iterate over wires, cells, memories, and processes separately.
Also implement `Module::selected_{memories, processes, members}()` to match wires and cells methods. The `selected_members()` method combines each of the other `selected_*()` methods into a single list.
There's a mismatch between what `kernel/mem.cc` emits for memories
with no read ports and what the internal RTLIL check expects.
The point of dispute it whether some of the parameters relating to read
ports have a zero-width value in this case. The `mem.cc` code says no,
the internal checker says yes.
Surveying the other `$mem_v2` parameters, and internal cell parameters
in general, I am inclined to side with the `mem.cc` code.
This breaks RTLIL compatibility but for an obscure edge case.
This is already supported by `SigSpec` and since both `SigChunk` and
`SigSpec` implement `extract` which is the multi-bit variant of this,
there is no good reason for `SigChunk` to not support
`SigBit operator[](int offset)`.
Only the `B` input (the shift amount) can be marked as signed on a
`$shiftx` cell. Adapt the helper accordingly and prevent it from
creating invalid RTLIL when called with `is_signed` set. Previously
it would mark both `A` and `B` as signed.
Previously `extract` on a `SigSpec` would always unpack it. Since a
significant amount of `SigSpec`s have one or few chunks, it's worth
having a dedicated implementation.
This is especially true, since the RTLIL frontend calls into this for
every `wire [lhs:rhs]` slice, making this `extract` take up 40% when
profiling `read_rtlil` with one of the largest coarse grained RTLIL
designs I had on hand.
With this change the `read_rtlil` profile looks like I would expect it
to look like, but I noticed that a lot of the other core RTLIL methods
also are a bit too eager with unpacking or implementing
`SigChunk`/`Const` overloads that just convert to a single chunk
`SigSpec` and forward to the implementation for that, when a direct
implementation would avoid temporary std::vector allocations. While not
relevant for `read_rtlil`, to me it looks like there might be a few easy
overall performance gains to be had by addressing this more generally.
This PR speeds up by roughly 17% across a wide spectrum of designs
tested at Google. Particularly for the mux generation pass.
Co-authored-by: Rasmus Larsen <rmlarsen@google.com>
Signed-off-by: Ethan Mahintorabi <ethanmoon@google.com>
This does not correctly handle an `$overwrite_tag` on a module output,
but since we currently require the user to flatten the design for
cross-module dft, this cannot be observed from within the design, only
by manually inspecting the signals in the design.
The guard is optimised out on some compilers under certain conditions (eg: LTO on GCC) as constant under C++ lifetime rules.
This is because the guard type's member is invalid to access (UB) after the type has been destroyed, resulting in
`destruct_guard.ok` being unable to be `false` according to the optimiser, based on the lifetime rules.
This patch still invokes UB (all accesses to the destroyed IdString instance are), but at least the optimiser
can't reason that destruct_guard_ok cannot be false and therefore it's safe to optimise out from its guard role.
The new bitwise case equality (`$bweqx`) and bitwise mux (`$bwmux`)
cells enable compact encoding and decoding of 3-valued logic signals
using multiple 2-valued signals.
These can be used to protect undefined flip-flop initialization values
from optimizations that are not sound for formal verification and can
help mapping all solver-provided values in witness traces for flows that
use different backends simultaneously.