2020-02-16 13:21:59 -06:00
/***************************************************************************************
* This file includes functions to generate Verilog modules of decoders
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
# include <string>
/* Headers from vtrutil library */
# include "vtr_assert.h"
# include "vtr_log.h"
/* Headers from openfpgautil library */
# include "openfpga_digest.h"
# include "openfpga_decode.h"
# include "decoder_library_utils.h"
# include "module_manager.h"
2020-05-27 15:25:06 -05:00
# include "openfpga_reserved_words.h"
2020-02-16 13:21:59 -06:00
# include "openfpga_naming.h"
# include "verilog_constants.h"
# include "verilog_writer_utils.h"
# include "verilog_decoders.h"
/* begin namespace openfpga */
namespace openfpga {
/***************************************************************************************
* Create a Verilog module for a decoder with a given output size
*
* Inputs
* | | . . . |
* v v v
* + - - - - - - - - - - - +
* / \
* / Decoder \
* + - - - - - - - - - - - - - - - - - +
* | | | . . . | | |
* v v v v v v
* Outputs
*
* The outputs are assumes to be one - hot codes ( at most only one ' 1 ' exist )
* Considering this fact , there are only num_of_outputs conditions to be encoded .
* Therefore , the number of inputs is ceil ( log ( num_of_outputs ) / log ( 2 ) )
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
static
void print_verilog_mux_local_decoder_module ( std : : fstream & fp ,
2020-02-16 17:35:26 -06:00
const ModuleManager & module_manager ,
2020-02-16 13:21:59 -06:00
const DecoderLibrary & decoder_lib ,
const DecoderId & decoder ) {
/* Get the number of inputs */
size_t addr_size = decoder_lib . addr_size ( decoder ) ;
size_t data_size = decoder_lib . data_size ( decoder ) ;
/* Validate the FILE handler */
VTR_ASSERT ( true = = valid_file_stream ( fp ) ) ;
/* TODO: create a name for the local encoder */
std : : string module_name = generate_mux_local_decoder_subckt_name ( addr_size , data_size ) ;
/* Create a Verilog Module based on the circuit model, and add to module manager */
ModuleId module_id = module_manager . find_module ( module_name ) ;
VTR_ASSERT ( true = = module_manager . valid_module_id ( module_id ) ) ;
/* Add module ports */
/* Add each input port */
BasicPort addr_port ( generate_mux_local_decoder_addr_port_name ( ) , addr_size ) ;
/* Add each output port */
BasicPort data_port ( generate_mux_local_decoder_data_port_name ( ) , data_size ) ;
/* Data port is registered. It should be outputted as
* output reg [ lsb : msb ] data
*/
/* Add data_in port */
BasicPort data_inv_port ( generate_mux_local_decoder_data_inv_port_name ( ) , data_size ) ;
VTR_ASSERT ( true = = decoder_lib . use_data_inv_port ( decoder ) ) ;
/* dump module definition + ports */
print_verilog_module_declaration ( fp , module_manager , module_id ) ;
/* Finish dumping ports */
print_verilog_comment ( fp , std : : string ( " ----- BEGIN Verilog codes for Decoder convert " + std : : to_string ( addr_size ) + " -bit addr to " + std : : to_string ( data_size ) + " -bit data ----- " ) ) ;
/* Print the truth table of this decoder */
/* Internal logics */
/* Early exit: Corner case for data size = 1 the logic is very simple:
* data = addr ;
* data_inv = ~ data_inv
*/
if ( 1 = = data_size ) {
print_verilog_wire_connection ( fp , data_port , addr_port , false ) ;
print_verilog_wire_connection ( fp , data_inv_port , addr_port , true ) ;
print_verilog_comment ( fp , std : : string ( " ----- END Verilog codes for Decoder convert " + std : : to_string ( addr_size ) + " -bit addr to " + std : : to_string ( data_size ) + " -bit data ----- " ) ) ;
/* Put an end to the Verilog module */
print_verilog_module_end ( fp , module_name ) ;
return ;
}
/* We use a magic number -1 as the addr=1 should be mapped to ...1
* Otherwise addr will map addr = 1 to . .10
* Note that there should be a range for the shift operators
* We should narrow the encoding to be applied to a given set of data
* This will lead to that any addr which falls out of the op code of data
* will give a all - zero code
* For example :
* data is 5 - bit while addr is 3 - bit
* data = 8 ' b0_0000 will be encoded to addr = 3 ' b001 ;
* data = 8 ' b0_0001 will be encoded to addr = 3 ' b010 ;
* data = 8 ' b0_0010 will be encoded to addr = 3 ' b011 ;
* data = 8 ' b0_0100 will be encoded to addr = 3 ' b100 ;
* data = 8 ' b0_1000 will be encoded to addr = 3 ' b101 ;
* data = 8 ' b1_0000 will be encoded to addr = 3 ' b110 ;
* The rest of addr codes 3 ' b110 , 3 ' b111 will be decoded to data = 8 ' b0_0000 ;
*/
fp < < " \t " < < " always@( " < < generate_verilog_port ( VERILOG_PORT_CONKT , addr_port ) < < " ) " < < std : : endl ;
fp < < " \t " < < " case ( " < < generate_verilog_port ( VERILOG_PORT_CONKT , addr_port ) < < " ) " < < std : : endl ;
/* Create a string for addr and data */
for ( size_t i = 0 ; i < data_size ; + + i ) {
fp < < " \t \t " < < generate_verilog_constant_values ( itobin_vec ( i , addr_size ) ) ;
fp < < " : " ;
fp < < generate_verilog_port_constant_values ( data_port , ito1hot_vec ( i , data_size ) ) ;
fp < < " ; " < < std : : endl ;
}
fp < < " \t \t " < < " default : " ;
fp < < generate_verilog_port_constant_values ( data_port , ito1hot_vec ( data_size - 1 , data_size ) ) ;
fp < < " ; " < < std : : endl ;
fp < < " \t " < < " endcase " < < std : : endl ;
print_verilog_wire_connection ( fp , data_inv_port , data_port , true ) ;
print_verilog_comment ( fp , std : : string ( " ----- END Verilog codes for Decoder convert " + std : : to_string ( addr_size ) + " -bit addr to " + std : : to_string ( data_size ) + " -bit data ----- " ) ) ;
/* Put an end to the Verilog module */
print_verilog_module_end ( fp , module_name ) ;
}
/***************************************************************************************
* This function will generate all the unique Verilog modules of local decoders for
* the multiplexers used in a FPGA fabric
* It will reach the goal in two steps :
* 1. Find the unique local decoders w . r . t . the number of inputs / outputs
* We will generate the subgraphs from the multiplexing graph of each multiplexers
* The number of memory bits is the number of outputs .
* From that we can infer the number of inputs of each local decoders .
* Here is an illustrative example of how local decoders are interfaced with multi - level MUXes
*
* + - - - - - - - - - + + - - - - - - - - - +
* | Local | | Local |
* | Decoder | | Decoder |
* | A | | B |
* + - - - - - - - - - + + - - - - - - - - - +
* | . . . | | . . . |
* v v v v
* + - - - - - - - - - - - - - - + + - - - - - - - - - - - - - - +
* | MUX Level 0 | - - - > | MUX Level 1 |
* + - - - - - - - - - - - - - - + + - - - - - - - - - - - - - - +
* 2. Generate local decoder Verilog modules using behavioral description .
* Note that the implementation of local decoders can be dependent on the technology
* and standard cell libraries .
* Therefore , behavioral Verilog is used and the local decoders should be synthesized
* before running the back - end flow for FPGA fabric
* See more details in the function print_verilog_mux_local_decoder ( ) for more details
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2020-02-16 17:35:26 -06:00
void print_verilog_submodule_mux_local_decoders ( const ModuleManager & module_manager ,
2020-04-23 21:42:11 -05:00
NetlistManager & netlist_manager ,
2020-02-16 13:21:59 -06:00
const MuxLibrary & mux_lib ,
const CircuitLibrary & circuit_lib ,
const std : : string & submodule_dir ) {
std : : string verilog_fname ( submodule_dir + std : : string ( LOCAL_ENCODER_VERILOG_FILE_NAME ) ) ;
/* Create the file stream */
std : : fstream fp ;
fp . open ( verilog_fname , std : : fstream : : out | std : : fstream : : trunc ) ;
check_file_stream ( verilog_fname . c_str ( ) , fp ) ;
/* Print out debugging information for if the file is not opened/created properly */
VTR_LOG ( " Writing Verilog netlist for local decoders for multiplexers '%s'... " ,
verilog_fname . c_str ( ) ) ;
print_verilog_file_header ( fp , " Local Decoders for Multiplexers " ) ;
/* Create a library for local encoders with different sizes */
DecoderLibrary decoder_lib ;
/* Find unique local decoders for unique branches shared by the multiplexers */
for ( auto mux : mux_lib . muxes ( ) ) {
/* Local decoders are need only when users specify them */
CircuitModelId mux_circuit_model = mux_lib . mux_circuit_model ( mux ) ;
/* If this MUX does not need local decoder, we skip it */
if ( false = = circuit_lib . mux_use_local_encoder ( mux_circuit_model ) ) {
continue ;
}
const MuxGraph & mux_graph = mux_lib . mux_graph ( mux ) ;
/* Create a mux graph for the branch circuit */
std : : vector < MuxGraph > branch_mux_graphs = mux_graph . build_mux_branch_graphs ( ) ;
/* Add the decoder to the decoder library */
for ( auto branch_mux_graph : branch_mux_graphs ) {
/* The decoder size depends on the number of memories of a branch MUX.
* Note that only when there are > = 2 memories , a decoder is needed
*/
size_t decoder_data_size = branch_mux_graph . num_memory_bits ( ) ;
if ( 0 = = decoder_data_size ) {
continue ;
}
/* Try to find if the decoder already exists in the library,
* If there is no such decoder , add it to the library
*/
add_mux_local_decoder_to_library ( decoder_lib , decoder_data_size ) ;
}
}
/* Generate Verilog modules for the found unique local encoders */
for ( const auto & decoder : decoder_lib . decoders ( ) ) {
print_verilog_mux_local_decoder_module ( fp , module_manager , decoder_lib , decoder ) ;
}
/* Close the file stream */
fp . close ( ) ;
/* Add fname to the netlist name list */
2020-04-23 21:42:11 -05:00
NetlistId nlist_id = netlist_manager . add_netlist ( verilog_fname ) ;
VTR_ASSERT ( NetlistId : : INVALID ( ) ! = nlist_id ) ;
netlist_manager . set_netlist_type ( nlist_id , NetlistManager : : SUBMODULE_NETLIST ) ;
2020-02-16 13:21:59 -06:00
VTR_LOG ( " Done \n " ) ;
}
2020-05-27 15:25:06 -05:00
/***************************************************************************************
* Create a Verilog module for a decoder used as a configuration protocol
* in FPGA architecture
*
* Address
* | | . . . |
* v v v
* + - - - - - - - - - - - +
* Enable - > / \
* / Decoder \
* + - - - - - - - - - - - - - - - - - +
* | | | . . . | | |
* v v v v v v
* Data output
*
* The outputs are assumes to be one - hot codes ( at most only one ' 1 ' exist )
* Considering this fact , there are only num_of_outputs conditions to be encoded .
* Therefore , the number of inputs is ceil ( log ( num_of_outputs ) / log ( 2 ) )
*
* The decoder has an enable signal which is active at logic ' 1 ' .
* When activated , the decoder will output decoding results to the data output port
* Otherwise , the data output port will be always all - zero
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
static
void print_verilog_arch_decoder_module ( std : : fstream & fp ,
const ModuleManager & module_manager ,
const DecoderLibrary & decoder_lib ,
const DecoderId & decoder ) {
/* Get the number of inputs */
size_t addr_size = decoder_lib . addr_size ( decoder ) ;
size_t data_size = decoder_lib . data_size ( decoder ) ;
/* Validate the FILE handler */
VTR_ASSERT ( true = = valid_file_stream ( fp ) ) ;
/* Create a name for the decoder */
2020-05-30 21:53:19 -05:00
std : : string module_name = generate_memory_decoder_subckt_name ( addr_size , data_size ) ;
2020-05-27 15:25:06 -05:00
/* Create a Verilog Module based on the circuit model, and add to module manager */
ModuleId module_id = module_manager . find_module ( module_name ) ;
VTR_ASSERT ( true = = module_manager . valid_module_id ( module_id ) ) ;
/* Find module ports */
/* Enable port */
ModulePortId enable_port_id = module_manager . find_module_port ( module_id , std : : string ( DECODER_ENABLE_PORT_NAME ) ) ;
BasicPort enable_port = module_manager . module_port ( module_id , enable_port_id ) ;
/* Address port */
ModulePortId addr_port_id = module_manager . find_module_port ( module_id , std : : string ( DECODER_ADDRESS_PORT_NAME ) ) ;
BasicPort addr_port = module_manager . module_port ( module_id , addr_port_id ) ;
/* Find each output port */
ModulePortId data_port_id = module_manager . find_module_port ( module_id , std : : string ( DECODER_DATA_OUT_PORT_NAME ) ) ;
BasicPort data_port = module_manager . module_port ( module_id , data_port_id ) ;
/* Data port is registered. It should be outputted as
* output reg [ lsb : msb ] data
*/
BasicPort data_inv_port ( std : : string ( DECODER_DATA_OUT_INV_PORT_NAME ) , data_size ) ;
if ( true = = decoder_lib . use_data_inv_port ( decoder ) ) {
ModulePortId data_inv_port_id = module_manager . find_module_port ( module_id , std : : string ( DECODER_DATA_OUT_INV_PORT_NAME ) ) ;
data_inv_port = module_manager . module_port ( module_id , data_inv_port_id ) ;
}
/* dump module definition + ports */
print_verilog_module_declaration ( fp , module_manager , module_id ) ;
/* Finish dumping ports */
print_verilog_comment ( fp , std : : string ( " ----- BEGIN Verilog codes for Decoder convert " + std : : to_string ( addr_size ) + " -bit addr to " + std : : to_string ( data_size ) + " -bit data ----- " ) ) ;
/* Print the truth table of this decoder */
/* Internal logics */
/* Early exit: Corner case for data size = 1 the logic is very simple:
* data = addr ;
* data_inv = ~ data_inv
*/
if ( 1 = = data_size ) {
2020-05-28 22:24:41 -05:00
fp < < " always@( " < < generate_verilog_port ( VERILOG_PORT_CONKT , addr_port ) ;
fp < < " or " < < generate_verilog_port ( VERILOG_PORT_CONKT , enable_port ) ;
fp < < " ) begin " < < std : : endl ;
2020-05-28 19:22:27 -05:00
fp < < " \t if ( " < < generate_verilog_port ( VERILOG_PORT_CONKT , enable_port ) < < " == 1'b1) begin " < < std : : endl ;
2020-05-28 22:24:41 -05:00
fp < < " \t \t " < < generate_verilog_port_constant_values ( data_port , std : : vector < size_t > ( 1 , 1 ) ) < < " ; " < < std : : endl ;
fp < < " \t " < < " end else begin " < < std : : endl ;
fp < < " \t \t " < < generate_verilog_port_constant_values ( data_port , std : : vector < size_t > ( 1 , 0 ) ) < < " ; " < < std : : endl ;
2020-05-28 19:22:27 -05:00
fp < < " \t " < < " end " < < std : : endl ;
fp < < " end " < < std : : endl ;
2020-05-27 15:25:06 -05:00
/* Depend on if the inverted data output port is needed or not */
if ( true = = decoder_lib . use_data_inv_port ( decoder ) ) {
print_verilog_wire_connection ( fp , data_inv_port , addr_port , true ) ;
}
print_verilog_comment ( fp , std : : string ( " ----- END Verilog codes for Decoder convert " + std : : to_string ( addr_size ) + " -bit addr to " + std : : to_string ( data_size ) + " -bit data ----- " ) ) ;
/* Put an end to the Verilog module */
print_verilog_module_end ( fp , module_name ) ;
return ;
}
/* We use a magic number -1 as the addr=1 should be mapped to ...1
* Otherwise addr will map addr = 1 to . .10
* Note that there should be a range for the shift operators
* We should narrow the encoding to be applied to a given set of data
* This will lead to that any addr which falls out of the op code of data
* will give a all - zero code
* For example :
* data is 5 - bit while addr is 3 - bit
* data = 8 ' b0_0000 will be encoded to addr = 3 ' b001 ;
* data = 8 ' b0_0001 will be encoded to addr = 3 ' b010 ;
* data = 8 ' b0_0010 will be encoded to addr = 3 ' b011 ;
* data = 8 ' b0_0100 will be encoded to addr = 3 ' b100 ;
* data = 8 ' b0_1000 will be encoded to addr = 3 ' b101 ;
* data = 8 ' b1_0000 will be encoded to addr = 3 ' b110 ;
* The rest of addr codes 3 ' b110 , 3 ' b111 will be decoded to data = 8 ' b0_0000 ;
*/
2020-05-28 22:24:41 -05:00
fp < < " always@( " < < generate_verilog_port ( VERILOG_PORT_CONKT , addr_port ) ;
fp < < " or " < < generate_verilog_port ( VERILOG_PORT_CONKT , enable_port ) ;
fp < < " ) begin " < < std : : endl ;
2020-05-28 18:46:14 -05:00
fp < < " \t if ( " < < generate_verilog_port ( VERILOG_PORT_CONKT , enable_port ) < < " == 1'b1) begin " < < std : : endl ;
2020-05-27 15:25:06 -05:00
fp < < " \t \t " < < " case ( " < < generate_verilog_port ( VERILOG_PORT_CONKT , addr_port ) < < " ) " < < std : : endl ;
/* Create a string for addr and data */
for ( size_t i = 0 ; i < data_size ; + + i ) {
fp < < " \t \t \t " < < generate_verilog_constant_values ( itobin_vec ( i , addr_size ) ) ;
fp < < " : " ;
fp < < generate_verilog_port_constant_values ( data_port , ito1hot_vec ( i , data_size ) ) ;
fp < < " ; " < < std : : endl ;
}
2020-05-28 22:24:41 -05:00
/* Different from MUX decoder, we assign default values which is all zero */
fp < < " \t \t \t " < < " default " ;
fp < < " : " ;
2020-05-28 18:46:14 -05:00
fp < < generate_verilog_port_constant_values ( data_port , ito1hot_vec ( data_size , data_size ) ) ;
2020-05-27 15:25:06 -05:00
fp < < " ; " < < std : : endl ;
2020-05-28 22:24:41 -05:00
2020-05-27 15:25:06 -05:00
fp < < " \t \t " < < " endcase " < < std : : endl ;
fp < < " \t " < < " end " < < std : : endl ;
2020-05-28 22:24:41 -05:00
/* If enable is not active, we should give all zero */
2020-05-28 18:46:14 -05:00
fp < < " \t " < < " else begin " < < std : : endl ;
2020-05-28 22:24:41 -05:00
fp < < " \t \t " < < generate_verilog_port_constant_values ( data_port , ito1hot_vec ( data_size , data_size ) ) ;
fp < < " ; " < < std : : endl ;
2020-05-28 18:46:14 -05:00
fp < < " \t " < < " end " < < std : : endl ;
2020-05-28 22:24:41 -05:00
2020-05-28 18:46:14 -05:00
fp < < " end " < < std : : endl ;
2020-05-27 15:25:06 -05:00
if ( true = = decoder_lib . use_data_inv_port ( decoder ) ) {
print_verilog_wire_connection ( fp , data_inv_port , data_port , true ) ;
}
print_verilog_comment ( fp , std : : string ( " ----- END Verilog codes for Decoder convert " + std : : to_string ( addr_size ) + " -bit addr to " + std : : to_string ( data_size ) + " -bit data ----- " ) ) ;
/* Put an end to the Verilog module */
print_verilog_module_end ( fp , module_name ) ;
}
2020-05-30 21:53:19 -05:00
/***************************************************************************************
* Create a Verilog module for a decoder with data_in used as a configuration protocol
* in FPGA architecture
*
* Address
* | | . . . |
* v v v
* + - - - - - - - - - - - +
* Enable - > / \ < - data_in
* / Decoder \
* + - - - - - - - - - - - - - - - - - +
* | | | . . . | | |
* v v v v v v
* Data output
*
* The outputs are assumes to be one - hot codes ( at most only one ' 1 ' exist )
* Only the data output at the address bit will show data_in
*
* The decoder has an enable signal which is active at logic ' 1 ' .
* When activated , the decoder will output decoding results to the data output port
* Otherwise , the data output port will be always all - zero
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
static
void print_verilog_arch_decoder_with_data_in_module ( std : : fstream & fp ,
const ModuleManager & module_manager ,
const DecoderLibrary & decoder_lib ,
const DecoderId & decoder ) {
/* Get the number of inputs */
size_t addr_size = decoder_lib . addr_size ( decoder ) ;
size_t data_size = decoder_lib . data_size ( decoder ) ;
VTR_ASSERT ( true = = decoder_lib . use_data_in ( decoder ) ) ;
/* Validate the FILE handler */
VTR_ASSERT ( true = = valid_file_stream ( fp ) ) ;
/* Create a name for the decoder */
std : : string module_name = generate_memory_decoder_with_data_in_subckt_name ( addr_size , data_size ) ;
/* Create a Verilog Module based on the circuit model, and add to module manager */
ModuleId module_id = module_manager . find_module ( module_name ) ;
VTR_ASSERT ( true = = module_manager . valid_module_id ( module_id ) ) ;
/* Find module ports */
/* Enable port */
ModulePortId enable_port_id = module_manager . find_module_port ( module_id , std : : string ( DECODER_ENABLE_PORT_NAME ) ) ;
BasicPort enable_port = module_manager . module_port ( module_id , enable_port_id ) ;
/* Address port */
ModulePortId addr_port_id = module_manager . find_module_port ( module_id , std : : string ( DECODER_ADDRESS_PORT_NAME ) ) ;
BasicPort addr_port = module_manager . module_port ( module_id , addr_port_id ) ;
/* Find data-in port*/
ModulePortId din_port_id = module_manager . find_module_port ( module_id , std : : string ( DECODER_DATA_IN_PORT_NAME ) ) ;
BasicPort din_port = module_manager . module_port ( module_id , din_port_id ) ;
/* Find each output port */
ModulePortId data_port_id = module_manager . find_module_port ( module_id , std : : string ( DECODER_DATA_OUT_PORT_NAME ) ) ;
BasicPort data_port = module_manager . module_port ( module_id , data_port_id ) ;
/* Data port is registered. It should be outputted as
* output reg [ lsb : msb ] data
*/
BasicPort data_inv_port ( std : : string ( DECODER_DATA_OUT_INV_PORT_NAME ) , data_size ) ;
if ( true = = decoder_lib . use_data_inv_port ( decoder ) ) {
ModulePortId data_inv_port_id = module_manager . find_module_port ( module_id , std : : string ( DECODER_DATA_OUT_INV_PORT_NAME ) ) ;
data_inv_port = module_manager . module_port ( module_id , data_inv_port_id ) ;
}
/* dump module definition + ports */
print_verilog_module_declaration ( fp , module_manager , module_id ) ;
/* Finish dumping ports */
print_verilog_comment ( fp , std : : string ( " ----- BEGIN Verilog codes for Decoder convert " + std : : to_string ( addr_size ) + " -bit addr to " + std : : to_string ( data_size ) + " -bit data ----- " ) ) ;
/* Print the truth table of this decoder */
/* Internal logics */
/* Early exit: Corner case for data size = 1 the logic is very simple:
* data = addr ;
* data_inv = ~ data_inv
*/
if ( 1 = = data_size ) {
fp < < " always@( " < < generate_verilog_port ( VERILOG_PORT_CONKT , addr_port ) ;
fp < < " or " < < generate_verilog_port ( VERILOG_PORT_CONKT , enable_port ) ;
fp < < " ) begin " < < std : : endl ;
fp < < " \t if ( " < < generate_verilog_port ( VERILOG_PORT_CONKT , enable_port ) < < " == 1'b1) begin " < < std : : endl ;
fp < < " \t \t " < < generate_verilog_port ( VERILOG_PORT_CONKT , din_port ) < < " ; " < < std : : endl ;
fp < < " \t " < < " end else begin " < < std : : endl ;
fp < < " \t \t " < < generate_verilog_port_constant_values ( data_port , std : : vector < size_t > ( 1 , 0 ) ) < < " ; " < < std : : endl ;
fp < < " \t " < < " end " < < std : : endl ;
fp < < " end " < < std : : endl ;
/* Depend on if the inverted data output port is needed or not */
if ( true = = decoder_lib . use_data_inv_port ( decoder ) ) {
print_verilog_wire_connection ( fp , data_inv_port , addr_port , true ) ;
}
print_verilog_comment ( fp , std : : string ( " ----- END Verilog codes for Decoder convert " + std : : to_string ( addr_size ) + " -bit addr to " + std : : to_string ( data_size ) + " -bit data ----- " ) ) ;
/* Put an end to the Verilog module */
print_verilog_module_end ( fp , module_name ) ;
return ;
}
/* Only the selected data output bit will be set to the value of data_in,
* other data output bits will be ' 0 '
*/
fp < < " always@( " < < generate_verilog_port ( VERILOG_PORT_CONKT , addr_port ) ;
fp < < " , " < < generate_verilog_port ( VERILOG_PORT_CONKT , enable_port ) ;
fp < < " , " < < generate_verilog_port ( VERILOG_PORT_CONKT , din_port ) ;
fp < < " ) begin " < < std : : endl ;
fp < < " \t if ( " < < generate_verilog_port ( VERILOG_PORT_CONKT , enable_port ) < < " == 1'b1) begin " < < std : : endl ;
2020-05-31 14:12:00 -05:00
fp < < " \t \t " < < generate_verilog_port ( VERILOG_PORT_CONKT , data_port ) ;
fp < < " = " ;
std : : string high_res_str = " { " + std : : to_string ( data_port . get_width ( ) ) + " {1'bz}} " ;
fp < < high_res_str ;
2020-05-31 00:41:33 -05:00
fp < < " ; " < < std : : endl ;
fp < < " \t \t " < < " case ( " < < generate_verilog_port ( VERILOG_PORT_CONKT , addr_port ) < < " ) " < < std : : endl ;
/* Create a string for addr and data */
for ( size_t i = 0 ; i < data_size ; + + i ) {
BasicPort cur_data_port ( data_port . get_name ( ) , i , i ) ;
fp < < " \t \t \t " < < generate_verilog_constant_values ( itobin_vec ( i , addr_size ) ) ;
fp < < " : " ;
fp < < generate_verilog_port ( VERILOG_PORT_CONKT , cur_data_port ) ;
fp < < " = " ;
fp < < generate_verilog_port ( VERILOG_PORT_CONKT , din_port ) ;
fp < < " ; " < < std : : endl ;
}
/* Different from MUX decoder, we assign default values which is all zero */
fp < < " \t \t \t " < < " default " ;
fp < < " : " ;
fp < < generate_verilog_port_constant_values ( data_port , ito1hot_vec ( data_size , data_size ) ) ;
fp < < " ; " < < std : : endl ;
2020-05-30 21:53:19 -05:00
2020-05-31 00:41:33 -05:00
fp < < " \t \t " < < " endcase " < < std : : endl ;
2020-05-30 21:53:19 -05:00
fp < < " \t " < < " end " < < std : : endl ;
2020-05-31 00:41:33 -05:00
/* If enable is not active, we should give all zero */
fp < < " \t " < < " else begin " < < std : : endl ;
fp < < " \t \t " < < generate_verilog_port_constant_values ( data_port , ito1hot_vec ( data_size , data_size ) ) ;
fp < < " ; " < < std : : endl ;
fp < < " \t " < < " end " < < std : : endl ;
2020-05-30 21:53:19 -05:00
fp < < " end " < < std : : endl ;
2020-05-31 00:41:33 -05:00
2020-05-30 21:53:19 -05:00
if ( true = = decoder_lib . use_data_inv_port ( decoder ) ) {
print_verilog_wire_connection ( fp , data_inv_port , data_port , true ) ;
}
print_verilog_comment ( fp , std : : string ( " ----- END Verilog codes for Decoder convert " + std : : to_string ( addr_size ) + " -bit addr to " + std : : to_string ( data_size ) + " -bit data ----- " ) ) ;
/* Put an end to the Verilog module */
print_verilog_module_end ( fp , module_name ) ;
}
2020-05-27 15:25:06 -05:00
/***************************************************************************************
* This function will generate all the unique Verilog modules of decoders for
* configuration protocols in a FPGA fabric
* It will generate these decoder Verilog modules using behavioral description .
* Note that the implementation of local decoders can be dependent on the technology
* and standard cell libraries .
* Therefore , behavioral Verilog is used and the local decoders should be synthesized
* before running the back - end flow for FPGA fabric
* See more details in the function print_verilog_arch_decoder ( ) for more details
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
void print_verilog_submodule_arch_decoders ( const ModuleManager & module_manager ,
NetlistManager & netlist_manager ,
const DecoderLibrary & decoder_lib ,
const std : : string & submodule_dir ) {
std : : string verilog_fname ( submodule_dir + std : : string ( ARCH_ENCODER_VERILOG_FILE_NAME ) ) ;
/* Create the file stream */
std : : fstream fp ;
fp . open ( verilog_fname , std : : fstream : : out | std : : fstream : : trunc ) ;
check_file_stream ( verilog_fname . c_str ( ) , fp ) ;
/* Print out debugging information for if the file is not opened/created properly */
VTR_LOG ( " Writing Verilog netlist for configuration decoders '%s'... " ,
verilog_fname . c_str ( ) ) ;
print_verilog_file_header ( fp , " Decoders for fabric configuration protocol " ) ;
/* Generate Verilog modules for the found unique local encoders */
for ( const auto & decoder : decoder_lib . decoders ( ) ) {
2020-05-30 21:53:19 -05:00
if ( true = = decoder_lib . use_data_in ( decoder ) ) {
print_verilog_arch_decoder_with_data_in_module ( fp , module_manager , decoder_lib , decoder ) ;
} else {
print_verilog_arch_decoder_module ( fp , module_manager , decoder_lib , decoder ) ;
}
2020-05-27 15:25:06 -05:00
}
/* Close the file stream */
fp . close ( ) ;
/* Add fname to the netlist name list */
NetlistId nlist_id = netlist_manager . add_netlist ( verilog_fname ) ;
VTR_ASSERT ( NetlistId : : INVALID ( ) ! = nlist_id ) ;
netlist_manager . set_netlist_type ( nlist_id , NetlistManager : : SUBMODULE_NETLIST ) ;
VTR_LOG ( " Done \n " ) ;
}
2020-02-16 13:21:59 -06:00
} /* end namespace openfpga */