yosys/passes/extract/extract.cc

277 lines
8.2 KiB
C++
Raw Normal View History

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/register.h"
#include "kernel/sigtools.h"
#include "kernel/log.h"
#include "libs/subcircuit/subcircuit.h"
#include <stdlib.h>
#include <assert.h>
#include <stdio.h>
#include <string.h>
namespace
{
struct bit_ref_t {
std::string cell, port;
int bit;
};
bool module2graph(SubCircuit::Graph &graph, RTLIL::Module *mod, RTLIL::Design *sel = NULL)
{
SigMap sigmap(mod);
std::map<RTLIL::SigChunk, bit_ref_t> sig_bit_ref;
if (sel && !sel->selected(mod)) {
log(" Skipping module %s as it is not selected.\n", mod->name.c_str());
return false;
}
if (mod->memories.size() > 0 || mod->processes.size() > 0) {
log(" Skipping module %s as it contains unprocessed memories or processes.\n", mod->name.c_str());
return false;
}
// create graph nodes from cells
for (auto &cell_it : mod->cells)
{
RTLIL::Cell *cell = cell_it.second;
if (sel && !sel->selected(mod, cell))
continue;
std::string type = cell->type;
if (sel == NULL && type.substr(0, 2) == "\\$")
type = type.substr(1);
graph.createNode(cell->name, type, (void*)cell);
for (auto &conn : cell->connections)
{
RTLIL::SigSpec conn_sig = conn.second;
sigmap.apply(conn_sig);
conn_sig.expand();
graph.createPort(cell->name, conn.first, conn.second.width);
for (size_t i = 0; i < conn_sig.chunks.size(); i++)
{
auto &chunk = conn_sig.chunks[i];
assert(chunk.width == 1);
if (chunk.wire == NULL) {
graph.createConstant(cell->name, conn.first, i, int(chunk.data.bits[0]));
continue;
}
if (sig_bit_ref.count(chunk) == 0) {
bit_ref_t &bit_ref = sig_bit_ref[chunk];
bit_ref.cell = cell->name;
bit_ref.port = conn.first;
bit_ref.bit = i;
}
bit_ref_t &bit_ref = sig_bit_ref[chunk];
graph.createConnection(bit_ref.cell, bit_ref.port, bit_ref.bit, cell->name, conn.first, i);
}
}
}
// mark external signals (used in non-selected cells)
for (auto &cell_it : mod->cells)
{
RTLIL::Cell *cell = cell_it.second;
if (sel && !sel->selected(mod, cell))
for (auto &conn : cell->connections)
{
RTLIL::SigSpec conn_sig = conn.second;
sigmap.apply(conn_sig);
conn_sig.expand();
for (auto &chunk : conn_sig.chunks)
if (sig_bit_ref.count(chunk) != 0) {
bit_ref_t &bit_ref = sig_bit_ref[chunk];
graph.markExtern(bit_ref.cell, bit_ref.port, bit_ref.bit);
}
}
}
// mark external signals (used in module ports)
for (auto &wire_it : mod->wires)
{
RTLIL::Wire *wire = wire_it.second;
if (wire->port_id > 0)
{
RTLIL::SigSpec conn_sig(wire);
sigmap.apply(conn_sig);
conn_sig.expand();
for (auto &chunk : conn_sig.chunks)
if (sig_bit_ref.count(chunk) != 0) {
bit_ref_t &bit_ref = sig_bit_ref[chunk];
graph.markExtern(bit_ref.cell, bit_ref.port, bit_ref.bit);
}
}
}
return true;
}
void replace(RTLIL::Module *needle, RTLIL::Module *haystack, SubCircuit::Solver::Result &match)
{
SigMap sigmap(needle);
SigSet<std::pair<std::string, int>> sig2port;
// create new cell
RTLIL::Cell *cell = new RTLIL::Cell;
cell->name = stringf("$extract$%s$%d", needle->name.c_str(), RTLIL::autoidx++);
cell->type = needle->name;
haystack->add(cell);
// create cell ports
for (auto &it : needle->wires) {
RTLIL::Wire *wire = it.second;
if (wire->port_id > 0) {
for (int i = 0; i < wire->width; i++)
sig2port.insert(sigmap(RTLIL::SigSpec(wire, 1, i)), std::pair<std::string, int>(wire->name, i));
cell->connections[wire->name] = RTLIL::SigSpec(RTLIL::State::Sz, wire->width);
}
}
// delete replaced cells and connect new ports
for (auto &it : match.mappings)
{
auto &mapping = it.second;
RTLIL::Cell *needle_cell = (RTLIL::Cell*)mapping.needleUserData;
RTLIL::Cell *haystack_cell = (RTLIL::Cell*)mapping.haystackUserData;
for (auto &conn : needle_cell->connections) {
RTLIL::SigSpec sig = sigmap(conn.second);
if (mapping.portMapping.count(conn.first) > 0 && sig2port.has(sigmap(sig))) {
sig.expand();
for (int i = 0; i < sig.width; i++)
for (auto &port : sig2port.find(sig.chunks[i])) {
RTLIL::SigSpec bitsig = haystack_cell->connections.at(mapping.portMapping[conn.first]).extract(i, 1);
cell->connections.at(port.first).replace(port.second, bitsig);
}
}
}
haystack->cells.erase(haystack_cell->name);
delete haystack_cell;
}
}
}
struct ExtractPass : public Pass {
ExtractPass() : Pass("extract") { }
virtual void execute(std::vector<std::string> args, RTLIL::Design *design)
{
log_header("Executing EXTRACT pass (map subcircuits to cells).\n");
log_push();
std::string filename;
bool verbose;
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
if (args[argidx] == "-map" && argidx+1 < args.size()) {
filename = args[++argidx];
continue;
}
if (args[argidx] == "-verbose") {
verbose = true;
continue;
}
break;
}
extra_args(args, argidx, design);
if (filename.empty())
log_cmd_error("Missing option -map <verilog_or_ilang_file>.\n");
RTLIL::Design *map = new RTLIL::Design;
FILE *f = fopen(filename.c_str(), "rt");
if (f == NULL)
log_error("Can't open map file `%s'\n", filename.c_str());
if (filename.size() > 3 && filename.substr(filename.size()-3) == ".il")
Frontend::frontend_call(map, f, filename, "ilang");
else
Frontend::frontend_call(map, f, filename, "verilog");
fclose(f);
SubCircuit::Solver solver;
std::vector<SubCircuit::Solver::Result> results;
if (verbose)
solver.setVerbose();
std::map<std::string, RTLIL::Module*> needle_map, haystack_map;
log_header("Creating graphs for SubCircuit library.\n");
for (auto &mod_it : map->modules) {
SubCircuit::Graph mod_graph;
std::string graph_name = "needle_" + mod_it.first.substr(mod_it.first[0] == '\\' ? 1 : 0);
log("Creating needle graph %s.\n", graph_name.c_str());
if (module2graph(mod_graph, mod_it.second)) {
solver.addGraph(graph_name, mod_graph);
needle_map[graph_name] = mod_it.second;
}
}
for (auto &mod_it : design->modules) {
SubCircuit::Graph mod_graph;
std::string graph_name = "haystack_" + mod_it.first.substr(mod_it.first[0] == '\\' ? 1 : 0);
log("Creating haystack graph %s.\n", graph_name.c_str());
if (module2graph(mod_graph, mod_it.second, design)) {
solver.addGraph(graph_name, mod_graph);
haystack_map[graph_name] = mod_it.second;
}
}
log_header("Running solver from SubCircuit library.\n");
for (auto &needle_it : needle_map)
for (auto &haystack_it : haystack_map) {
log("Solving for %s in %s.\n", needle_it.first.c_str(), haystack_it.first.c_str());
solver.solve(results, needle_it.first, haystack_it.first, false);
}
log("Found %zd matches.\n", results.size());
if (results.size() > 0)
{
log_header("Substitute SubCircuits with cells.\n");
for (int i = 0; i < int(results.size()); i++) {
auto &result = results[i];
log("\nMatch #%d: (%s in %s)\n", i, result.needleGraphId.c_str(), result.haystackGraphId.c_str());
for (const auto &it : result.mappings) {
log(" %s -> %s", it.first.c_str(), it.second.haystackNodeId.c_str());
for (const auto & it2 : it.second.portMapping)
log(" %s:%s", it2.first.c_str(), it2.second.c_str());
log("\n");
}
replace(needle_map.at(result.needleGraphId), haystack_map.at(result.haystackGraphId), result);
}
}
delete map;
log_pop();
}
} ExtractPass;