/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #include "kernel/register.h" #include "kernel/sigtools.h" #include "kernel/log.h" #include "libs/subcircuit/subcircuit.h" #include #include #include #include namespace { struct bit_ref_t { std::string cell, port; int bit; }; bool module2graph(SubCircuit::Graph &graph, RTLIL::Module *mod, RTLIL::Design *sel = NULL) { SigMap sigmap(mod); std::map sig_bit_ref; if (sel && !sel->selected(mod)) { log(" Skipping module %s as it is not selected.\n", mod->name.c_str()); return false; } if (mod->memories.size() > 0 || mod->processes.size() > 0) { log(" Skipping module %s as it contains unprocessed memories or processes.\n", mod->name.c_str()); return false; } // create graph nodes from cells for (auto &cell_it : mod->cells) { RTLIL::Cell *cell = cell_it.second; if (sel && !sel->selected(mod, cell)) continue; std::string type = cell->type; if (sel == NULL && type.substr(0, 2) == "\\$") type = type.substr(1); graph.createNode(cell->name, type, (void*)cell); for (auto &conn : cell->connections) { RTLIL::SigSpec conn_sig = conn.second; sigmap.apply(conn_sig); conn_sig.expand(); graph.createPort(cell->name, conn.first, conn.second.width); for (size_t i = 0; i < conn_sig.chunks.size(); i++) { auto &chunk = conn_sig.chunks[i]; assert(chunk.width == 1); if (chunk.wire == NULL) { graph.createConstant(cell->name, conn.first, i, int(chunk.data.bits[0])); continue; } if (sig_bit_ref.count(chunk) == 0) { bit_ref_t &bit_ref = sig_bit_ref[chunk]; bit_ref.cell = cell->name; bit_ref.port = conn.first; bit_ref.bit = i; } bit_ref_t &bit_ref = sig_bit_ref[chunk]; graph.createConnection(bit_ref.cell, bit_ref.port, bit_ref.bit, cell->name, conn.first, i); } } } // mark external signals (used in non-selected cells) for (auto &cell_it : mod->cells) { RTLIL::Cell *cell = cell_it.second; if (sel && !sel->selected(mod, cell)) for (auto &conn : cell->connections) { RTLIL::SigSpec conn_sig = conn.second; sigmap.apply(conn_sig); conn_sig.expand(); for (auto &chunk : conn_sig.chunks) if (sig_bit_ref.count(chunk) != 0) { bit_ref_t &bit_ref = sig_bit_ref[chunk]; graph.markExtern(bit_ref.cell, bit_ref.port, bit_ref.bit); } } } // mark external signals (used in module ports) for (auto &wire_it : mod->wires) { RTLIL::Wire *wire = wire_it.second; if (wire->port_id > 0) { RTLIL::SigSpec conn_sig(wire); sigmap.apply(conn_sig); conn_sig.expand(); for (auto &chunk : conn_sig.chunks) if (sig_bit_ref.count(chunk) != 0) { bit_ref_t &bit_ref = sig_bit_ref[chunk]; graph.markExtern(bit_ref.cell, bit_ref.port, bit_ref.bit); } } } return true; } void replace(RTLIL::Module *needle, RTLIL::Module *haystack, SubCircuit::Solver::Result &match) { SigMap sigmap(needle); SigSet> sig2port; // create new cell RTLIL::Cell *cell = new RTLIL::Cell; cell->name = stringf("$extract$%s$%d", needle->name.c_str(), RTLIL::autoidx++); cell->type = needle->name; haystack->add(cell); // create cell ports for (auto &it : needle->wires) { RTLIL::Wire *wire = it.second; if (wire->port_id > 0) { for (int i = 0; i < wire->width; i++) sig2port.insert(sigmap(RTLIL::SigSpec(wire, 1, i)), std::pair(wire->name, i)); cell->connections[wire->name] = RTLIL::SigSpec(RTLIL::State::Sz, wire->width); } } // delete replaced cells and connect new ports for (auto &it : match.mappings) { auto &mapping = it.second; RTLIL::Cell *needle_cell = (RTLIL::Cell*)mapping.needleUserData; RTLIL::Cell *haystack_cell = (RTLIL::Cell*)mapping.haystackUserData; for (auto &conn : needle_cell->connections) { RTLIL::SigSpec sig = sigmap(conn.second); if (mapping.portMapping.count(conn.first) > 0 && sig2port.has(sigmap(sig))) { sig.expand(); for (int i = 0; i < sig.width; i++) for (auto &port : sig2port.find(sig.chunks[i])) { RTLIL::SigSpec bitsig = haystack_cell->connections.at(mapping.portMapping[conn.first]).extract(i, 1); cell->connections.at(port.first).replace(port.second, bitsig); } } } haystack->cells.erase(haystack_cell->name); delete haystack_cell; } } } struct ExtractPass : public Pass { ExtractPass() : Pass("extract") { } virtual void execute(std::vector args, RTLIL::Design *design) { log_header("Executing EXTRACT pass (map subcircuits to cells).\n"); log_push(); std::string filename; bool verbose; size_t argidx; for (argidx = 1; argidx < args.size(); argidx++) { if (args[argidx] == "-map" && argidx+1 < args.size()) { filename = args[++argidx]; continue; } if (args[argidx] == "-verbose") { verbose = true; continue; } break; } extra_args(args, argidx, design); if (filename.empty()) log_cmd_error("Missing option -map .\n"); RTLIL::Design *map = new RTLIL::Design; FILE *f = fopen(filename.c_str(), "rt"); if (f == NULL) log_error("Can't open map file `%s'\n", filename.c_str()); if (filename.size() > 3 && filename.substr(filename.size()-3) == ".il") Frontend::frontend_call(map, f, filename, "ilang"); else Frontend::frontend_call(map, f, filename, "verilog"); fclose(f); SubCircuit::Solver solver; std::vector results; if (verbose) solver.setVerbose(); std::map needle_map, haystack_map; log_header("Creating graphs for SubCircuit library.\n"); for (auto &mod_it : map->modules) { SubCircuit::Graph mod_graph; std::string graph_name = "needle_" + mod_it.first.substr(mod_it.first[0] == '\\' ? 1 : 0); log("Creating needle graph %s.\n", graph_name.c_str()); if (module2graph(mod_graph, mod_it.second)) { solver.addGraph(graph_name, mod_graph); needle_map[graph_name] = mod_it.second; } } for (auto &mod_it : design->modules) { SubCircuit::Graph mod_graph; std::string graph_name = "haystack_" + mod_it.first.substr(mod_it.first[0] == '\\' ? 1 : 0); log("Creating haystack graph %s.\n", graph_name.c_str()); if (module2graph(mod_graph, mod_it.second, design)) { solver.addGraph(graph_name, mod_graph); haystack_map[graph_name] = mod_it.second; } } log_header("Running solver from SubCircuit library.\n"); for (auto &needle_it : needle_map) for (auto &haystack_it : haystack_map) { log("Solving for %s in %s.\n", needle_it.first.c_str(), haystack_it.first.c_str()); solver.solve(results, needle_it.first, haystack_it.first, false); } log("Found %zd matches.\n", results.size()); if (results.size() > 0) { log_header("Substitute SubCircuits with cells.\n"); for (int i = 0; i < int(results.size()); i++) { auto &result = results[i]; log("\nMatch #%d: (%s in %s)\n", i, result.needleGraphId.c_str(), result.haystackGraphId.c_str()); for (const auto &it : result.mappings) { log(" %s -> %s", it.first.c_str(), it.second.haystackNodeId.c_str()); for (const auto & it2 : it.second.portMapping) log(" %s:%s", it2.first.c_str(), it2.second.c_str()); log("\n"); } replace(needle_map.at(result.needleGraphId), haystack_map.at(result.haystackGraphId), result); } } delete map; log_pop(); } } ExtractPass;