yosys/manual/PRESENTATION_Intro.tex

815 lines
28 KiB
TeX
Raw Normal View History

2014-01-27 10:08:19 -06:00
2014-02-05 08:06:13 -06:00
\section{Introduction to Yosys}
2014-01-27 10:08:19 -06:00
\begin{frame}
\sectionpage
\end{frame}
2014-01-27 23:51:50 -06:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2014-01-27 10:08:19 -06:00
\subsection{Representations of (digital) Circuits}
2014-01-27 13:42:35 -06:00
\begin{frame}[t]{\subsecname}
2014-01-27 10:08:19 -06:00
\begin{itemize}
\item Graphical
\begin{itemize}
\item \alert<1>{Schematic Diagram}
\item \alert<2>{Physical Layout}
\end{itemize}
\bigskip
\item Non-graphical
\begin{itemize}
\item \alert<3>{Netlists}
2014-01-27 23:51:50 -06:00
\item \alert<4>{Hardware Description Languages (HDLs)}
2014-01-27 10:08:19 -06:00
\end{itemize}
\end{itemize}
\bigskip
2014-01-27 23:51:50 -06:00
\begin{block}{Definition:
\only<1>{Schematic Diagram}%
\only<2>{Physical Layout}%
\only<3>{Netlists}%
\only<4>{Hardware Description Languages (HDLs)}}
2014-01-28 13:28:22 -06:00
\only<1>{
Graphical representation of the circtuit topology. Circuit elements
are represented by symbols and electrical connections by lines. The gometric
layout is for readability only.
}%
\only<2>{
The actual physical geometry of the device (PCB or ASIC manufracturing masks).
This is the final product of the design process.
}%
\only<3>{
A list of circuit elements and a list of connections. This is the raw circuit
topology.
}%
\only<4>{
Computer languages (like programming languages) that can be used to describe
circuits. HDLs are much more powerful in describing huge circuits than
schematic diagrams.
}%
2014-01-27 13:42:35 -06:00
\end{block}
\end{frame}
2014-01-27 23:51:50 -06:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2014-01-27 13:42:35 -06:00
\subsection{Levels of Abstraction for Digital Circuits}
\begin{frame}[t]{\subsecname}
\begin{itemize}
\item \alert<1>{System Level}
\item \alert<2>{High Level}
\item \alert<3>{Behavioral Level}
\item \alert<4>{Register-Transfer Level (RTL)}
\item \alert<5>{Logical Gate Level}
\item \alert<6>{Physical Gate Level}
\item \alert<7>{Switch Level}
\end{itemize}
\bigskip
\begin{block}{Definition:
\only<1>{System Level}%
\only<2>{High Level}%
\only<3>{Behavioral Level}%
\only<4>{Register-Transfer Level (RTL)}%
\only<5>{Logical Gate Level}%
\only<6>{Physical Gate Level}%
\only<7>{Switch Level}}
\only<1>{
Overall view of the circuit: E.g. block-diagrams or instruction-set architecture descriptions
}%
\only<2>{
Functional implementation of circuit in high-level programming language (C, C++, SystemC, Matlab, Python, etc.).
}%
\only<3>{
Cycle-accurate description of circuit in hardware description language (Verilog, VHDL, etc.).
}%
\only<4>{
List of registers (flip-flops) and logic functions that calculate the next state from the previous one. Usually
a netlist utilizing high-level cells such as adders, multiplieres, multiplexer, etc.
}%
\only<5>{
Netlist of single-bit registers and basic logic gates (such as AND, OR,
NOT, etc.). Popular form: And-Inverter-Graphs (AIGs) with pairs of primary
inputs and outputs for each register bit.
}%
\only<6>{
Netlist of cells that actually are available on the target architecture
(such as CMOS gates in an ASCI or LUTs in an FPGA). Optimized for
area and/or and/or speed (static timing or number of logic levels).
}%
\only<7>{
Netlist of individual transistors.
}%
2014-01-27 10:08:19 -06:00
\end{block}
\end{frame}
2014-01-27 23:51:50 -06:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2014-01-27 10:08:19 -06:00
\subsection{Digital Circuit Synthesis}
\begin{frame}{\subsecname}
2014-01-28 13:28:22 -06:00
Synthesis Tools (such as Yosys) can transform HDL code to circuits:
\bigskip
\begin{center}
\begin{tikzpicture}[scale=0.8, every node/.style={transform shape}]
\tikzstyle{lvl} = [draw, fill=MyBlue, rectangle, minimum height=2em, minimum width=15em]
\node[lvl] (sys) {System Level};
\node[lvl] (hl) [below of=sys] {High Level};
\node[lvl] (beh) [below of=hl] {Behavioral Level};
\node[lvl] (rtl) [below of=beh] {Register-Transfer Level (RTL)};
\node[lvl] (lg) [below of=rtl] {Logical Gate Level};
\node[lvl] (pg) [below of=lg] {Physical Gate Level};
\node[lvl] (sw) [below of=pg] {Switch Level};
\draw[dotted] (sys.east) -- ++(1,0) coordinate (sysx);
\draw[dotted] (hl.east) -- ++(1,0) coordinate (hlx);
\draw[dotted] (beh.east) -- ++(1,0) coordinate (behx);
\draw[dotted] (rtl.east) -- ++(1,0) coordinate (rtlx);
\draw[dotted] (lg.east) -- ++(1,0) coordinate (lgx);
\draw[dotted] (pg.east) -- ++(1,0) coordinate (pgx);
\draw[dotted] (sw.east) -- ++(1,0) coordinate (swx);
\draw[gray,|->] (sysx) -- node[right] {System Design} (hlx);
\draw[|->|] (hlx) -- node[right] {High Level Synthesis (HLS)} (behx);
\draw[->|] (behx) -- node[right] {Behavioral Synthesis} (rtlx);
\draw[->|] (rtlx) -- node[right] {RTL Synthesis} (lgx);
\draw[->|] (lgx) -- node[right] {Logic Synthesis} (pgx);
\draw[gray,->|] (pgx) -- node[right] {Cell Library} (swx);
\draw[dotted] (behx) -- ++(4,0) coordinate (a);
\draw[dotted] (pgx) -- ++(4,0) coordinate (b);
\draw[|->|] (a) -- node[right] {Yosys} (b);
\end{tikzpicture}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{What Yosys can and can't do}
\begin{frame}{\subsecname}
Things Yosys can do:
\begin{itemize}
\item Read and process (most of) modern Verilog-2005 code.
\item Perform all kinds of operations on netlist (RTL, Logic, Gate).
2014-01-29 05:15:38 -06:00
\item Perform logic optimiziations and gate mapping with ABC\footnote[frame]{\url{http://www.eecs.berkeley.edu/~alanmi/abc/}}.
2014-01-28 13:28:22 -06:00
\end{itemize}
\bigskip
Things Yosys can't do:
\begin{itemize}
\item Process high-level languages such as C/C++/SystemC.
\item Create physical layouts (place\&route).
\end{itemize}
\bigskip
A typical flow combines Yosys with with a low-level implementation tool, such
2014-01-29 05:15:38 -06:00
as Qflow\footnote[frame]{\url{http://opencircuitdesign.com/qflow/}} for ASIC designs.
2014-01-28 13:28:22 -06:00
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Yosys Data- and Control-Flow}
\begin{frame}{\subsecname}
A (usually short) synthesis script controlls Yosys.
This scripts contain three types of commands:
\begin{itemize}
\item {\bf Frontends}, that read input files (usually Verilog).
\item {\bf Passes}, that perform transformation on the design in memory.
\item {\bf Backends}, that write the design in memory to a file (various formats are available, e.g. Verilog, BLIF, EDIF, SPICE, BTOR, etc.).
\end{itemize}
\bigskip
\begin{center}
\begin{tikzpicture}[scale=0.6, every node/.style={transform shape}]
\path (-1.5,3) coordinate (cursor);
\draw[-latex] ($ (cursor) + (0,-1.5) $) -- ++(1,0);
\draw[fill=orange!10] ($ (cursor) + (1,-3) $) rectangle node[rotate=90] {Frontend} ++(1,3) coordinate (cursor);
\draw[-latex] ($ (cursor) + (0,-1.5) $) -- ++(1,0);
\draw[fill=green!10] ($ (cursor) + (1,-3) $) rectangle node[rotate=90] {Pass} ++(1,3) coordinate (cursor);
\draw[-latex] ($ (cursor) + (0,-1.5) $) -- ++(1,0);
\draw[fill=green!10] ($ (cursor) + (1,-3) $) rectangle node[rotate=90] {Pass} ++(1,3) coordinate (cursor);
\draw[-latex] ($ (cursor) + (0,-1.5) $) -- ++(1,0);
\draw[fill=green!10] ($ (cursor) + (1,-3) $) rectangle node[rotate=90] {Pass} ++(1,3) coordinate (cursor);
\draw[-latex] ($ (cursor) + (0,-1.5) $) -- ++(1,0);
\draw[fill=orange!10] ($ (cursor) + (1,-3) $) rectangle node[rotate=90] {Backend} ++(1,3) coordinate (cursor);
\draw[-latex] ($ (cursor) + (0,-1.5) $) -- ++(1,0);
\path (-3,-0.5) coordinate (cursor);
\draw (cursor) -- node[below] {HDL} ++(3,0) coordinate (cursor);
\draw[|-|] (cursor) -- node[below] {Internal Format (RTLIL)} ++(8,0) coordinate (cursor);
\draw (cursor) -- node[below] {Netlist} ++(3,0);
\path (-3,3.5) coordinate (cursor);
\draw[-] (cursor) -- node[above] {High-Level} ++(3,0) coordinate (cursor);
\draw[-] (cursor) -- ++(8,0) coordinate (cursor);
\draw[->] (cursor) -- node[above] {Low-Level} ++(3,0);
\end{tikzpicture}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2014-02-03 09:26:27 -06:00
\subsection{Program Components and Data Formats}
\begin{frame}{\subsecname}
\begin{center}
\begin{tikzpicture}[scale=0.6, every node/.style={transform shape}]
\tikzstyle{process} = [draw, fill=green!10, rectangle, minimum height=3em, minimum width=10em, node distance=15em]
\tikzstyle{data} = [draw, fill=blue!10, ellipse, minimum height=3em, minimum width=7em, node distance=15em]
\node[process] (vlog) {Verilog Frontend};
\node[process, dashed, fill=green!5] (vhdl) [right of=vlog] {VHDL Frontend};
\node[process] (ilang) [right of=vhdl] {Other Frontends};
\node[data] (ast) [below of=vlog, node distance=5em, xshift=7.5em] {AST};
\node[process] (astfe) [below of=ast, node distance=5em] {AST Frontend};
\node[data] (rtlil) [below of=astfe, node distance=5em, xshift=7.5em] {RTLIL};
\node[process] (pass) [right of=rtlil, node distance=5em, xshift=7.5em] {Passes};
\node[process] (vlbe) [below of=rtlil, node distance=7em, xshift=-13em] {Verilog Backend};
\node[process] (ilangbe) [below of=rtlil, node distance=7em, xshift=0em] {ILANG Backend};
\node[process, fill=green!5] (otherbe) [below of=rtlil, node distance=7em, xshift=+13em] {Other Backends};
\draw[-latex] (vlog) -- (ast);
\draw[-latex] (vhdl) -- (ast);
\draw[-latex] (ast) -- (astfe);
\draw[-latex] (astfe) -- (rtlil);
\draw[-latex] (ilang) -- (rtlil);
\draw[latex-latex] (rtlil) -- (pass);
\draw[-latex] (rtlil) -- (vlbe);
\draw[-latex] (rtlil) -- (ilangbe);
\draw[-latex] (rtlil) -- (otherbe);
\end{tikzpicture}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2014-02-04 16:00:48 -06:00
\subsection{Example Problem}
\begin{frame}[fragile]{\subsecname{} -- Verilog Source: \tt counter.v}
\lstinputlisting[xleftmargin=1cm, language=Verilog]{PRESENTATION_Intro/counter.v}
\end{frame}
\begin{frame}[fragile]{\subsecname{} -- Cell Library: \tt mycells.lib}
\begin{columns}
\column[t]{5cm}
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=liberty, lastline=20]{PRESENTATION_Intro/mycells.lib}
\column[t]{5cm}
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=liberty, firstline=21]{PRESENTATION_Intro/mycells.lib}
\end{columns}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2014-01-28 13:28:22 -06:00
\subsection{Example Synthesis Script}
\begin{frame}[t]{\subsecname}
\setbeamercolor{alerted text}{fg=white,bg=red}
\begin{minipage}[t]{6cm}
\tt\scriptsize
2014-02-05 13:06:34 -06:00
{\color{YosysGreen}\# read design}\\
2014-02-04 16:00:48 -06:00
\boxalert<1>{read\_verilog counter.v}\\
\boxalert<2>{hierarchy -check -top counter}
2014-01-28 13:28:22 -06:00
\medskip
2014-02-05 13:06:34 -06:00
{\color{YosysGreen}\# the high-level stuff}\\
2014-01-28 13:28:22 -06:00
\boxalert<3>{proc}; \boxalert<4>{opt}; \boxalert<5>{memory}; \boxalert<6>{opt}; \boxalert<7>{fsm}; \boxalert<8>{opt}
\medskip
2014-02-05 13:06:34 -06:00
{\color{YosysGreen}\# mapping to internal cell library}\\
2014-01-28 13:28:22 -06:00
\boxalert<9>{techmap}; \boxalert<10>{opt}
\bigskip
\it continued\dots
\end{minipage}
\begin{minipage}[t]{5cm}
\tt\scriptsize
2014-02-05 13:06:34 -06:00
{\color{YosysGreen}\# mapping flip-flops to mycells.lib}\\
2014-01-28 13:28:22 -06:00
\boxalert<11>{dfflibmap -liberty mycells.lib}
\medskip
2014-02-05 13:06:34 -06:00
{\color{YosysGreen}\# mapping logic to mycells.lib}\\
2014-01-28 13:28:22 -06:00
\boxalert<12>{abc -liberty mycells.lib}
\medskip
2014-02-05 13:06:34 -06:00
{\color{YosysGreen}\# cleanup}\\
2014-01-28 13:28:22 -06:00
\boxalert<13>{clean}
\medskip
2014-02-05 13:06:34 -06:00
{\color{YosysGreen}\# write synthesized design}\\
2014-01-28 13:28:22 -06:00
\boxalert<14>{write\_verilog synth.v}
\end{minipage}
\vskip1cm
\begin{block}{Command: \tt
2014-02-04 16:00:48 -06:00
\only<1>{read\_verilog counter.v}%
\only<2>{hierarchy -check -top counter}%
2014-01-28 13:28:22 -06:00
\only<3>{proc}%
\only<4>{opt}%
\only<5>{memory}%
\only<6>{opt}%
\only<7>{fsm}%
\only<8>{opt}%
\only<9>{techmap}%
\only<10>{opt}%
\only<11>{dfflibmap -liberty mycells.lib}%
\only<12>{abc -liberty mycells.lib}%
\only<13>{clean}%
\only<14>{write\_verilog synth.v}}
\only<1>{
2014-02-04 16:00:48 -06:00
Read Verilog source file and convert to internal representation.
2014-01-28 13:28:22 -06:00
}%
\only<2>{
2014-02-17 02:45:04 -06:00
Elaborate the design hierarchy. Should always be the first
2014-02-04 16:00:48 -06:00
command after reading the design.
2014-01-28 13:28:22 -06:00
}%
\only<3>{
2014-02-04 16:00:48 -06:00
Convert ``processes'' (the internal representation of behavioral
Verilog code) into multiplexers and registers.
2014-01-28 13:28:22 -06:00
}%
\only<4>{
2014-02-04 16:00:48 -06:00
Perform some basic optimizations and cleanups.
2014-01-28 13:28:22 -06:00
}%
\only<5>{
2014-02-04 16:00:48 -06:00
Analyze memories and create circuits to implement them.
2014-01-28 13:28:22 -06:00
}%
\only<6>{
2014-02-04 16:00:48 -06:00
Perform some basic optimizations and cleanups.
2014-01-28 13:28:22 -06:00
}%
\only<7>{
2014-02-04 16:00:48 -06:00
Analyze and optimize finite state machines.
2014-01-28 13:28:22 -06:00
}%
\only<8>{
2014-02-04 16:00:48 -06:00
Perform some basic optimizations and cleanups.
2014-01-28 13:28:22 -06:00
}%
\only<9>{
2014-02-04 16:00:48 -06:00
Map coarse-grain RTL cells (adders, etc.) to fine-grain
logic gates (AND, OR, NOT, etc.).
2014-01-28 13:28:22 -06:00
}%
\only<10>{
2014-02-04 16:00:48 -06:00
Perform some basic optimizations and cleanups.
2014-01-28 13:28:22 -06:00
}%
\only<11>{
2014-02-04 16:00:48 -06:00
Map registers to available hardware flip-flops.
2014-01-28 13:28:22 -06:00
}%
\only<12>{
2014-02-18 12:37:39 -06:00
Map logic to available hardware gates.
2014-01-28 13:28:22 -06:00
}%
\only<13>{
2014-02-04 16:00:48 -06:00
Clean up the design (just the last step of {\tt opt}).
2014-01-28 13:28:22 -06:00
}%
\only<14>{
2014-02-04 16:00:48 -06:00
Write final synthesis result to output file.
2014-01-28 13:28:22 -06:00
}%
\end{block}
2014-01-27 10:08:19 -06:00
\end{frame}
2014-01-29 05:15:38 -06:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Running the Synthesis Script}
\begin{frame}[t, fragile]{\subsecname{} -- Step 1/4}
\begin{verbatim}
read_verilog counter.v
hierarchy -check -top counter
\end{verbatim}
\vfill
\includegraphics[width=\linewidth,trim=0 0cm 0 0cm]{PRESENTATION_Intro/counter_00.pdf}
\end{frame}
\begin{frame}[t, fragile]{\subsecname{} -- Step 2/4}
\begin{verbatim}
proc; opt; memory; opt; fsm; opt
\end{verbatim}
\vfill
\includegraphics[width=\linewidth,trim=0 0cm 0 0cm]{PRESENTATION_Intro/counter_01.pdf}
\end{frame}
\begin{frame}[t, fragile]{\subsecname{} -- Step 3/4}
\begin{verbatim}
techmap; opt
\end{verbatim}
\vfill
\includegraphics[width=\linewidth,trim=0 0cm 0 0cm]{PRESENTATION_Intro/counter_02.pdf}
\end{frame}
\begin{frame}[t, fragile]{\subsecname{} -- Step 4/4}
\begin{verbatim}
dfflibmap -liberty mycells.lib
abc -liberty mycells.lib
clean
\end{verbatim}
\vfill
\includegraphics[width=\linewidth,trim=0 0cm 0 0cm]{PRESENTATION_Intro/counter_03.pdf}
\end{frame}
2014-01-29 08:56:58 -06:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2014-02-04 16:00:48 -06:00
\subsection{Yosys Commands}
2014-01-29 08:56:58 -06:00
2014-02-05 06:12:50 -06:00
\begin{frame}[fragile]{\subsecname{} 1/3 \hspace{0pt plus 1 filll} (excerpt)}
2014-01-30 08:25:09 -06:00
Command reference:
\begin{itemize}
\item Use ``{\tt help}'' for a command list and ``{\tt help \it command}'' for details.
\item Or run ``{\tt yosys -H}'' and ``{\tt yosys -h \it command}''.
\item Or go to \url{http://www.clifford.at/yosys/documentation.html}.
\end{itemize}
\bigskip
Commands for design navigation and investigation:
2014-02-05 13:06:34 -06:00
\begin{lstlisting}[xleftmargin=1cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
cd # a shortcut for 'select -module <name>'
ls # list modules or objects in modules
dump # print parts of the design in ilang format
show # generate schematics using graphviz
select # modify and view the list of selected objects
2014-01-30 08:25:09 -06:00
\end{lstlisting}
\bigskip
Commands for executing scripts or entering interactive mode:
2014-02-05 13:06:34 -06:00
\begin{lstlisting}[xleftmargin=1cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
shell # enter interactive command mode
history # show last interactive commands
script # execute commands from script file
tcl # execute a TCL script file
2014-01-30 08:25:09 -06:00
\end{lstlisting}
\end{frame}
2014-02-05 06:12:50 -06:00
\begin{frame}[fragile]{\subsecname{} 2/3 \hspace{0pt plus 1 filll} (excerpt)}
2014-01-30 08:25:09 -06:00
Commands for reading and elaborating the design:
2014-02-05 13:06:34 -06:00
\begin{lstlisting}[xleftmargin=1cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
read_ilang # read modules from ilang file
read_verilog # read modules from verilog file
hierarchy # check, expand and clean up design hierarchy
2014-01-30 08:25:09 -06:00
\end{lstlisting}
\bigskip
Commands for high-level synthesis:
2014-02-05 13:06:34 -06:00
\begin{lstlisting}[xleftmargin=1cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
proc # translate processes to netlists
fsm # extract and optimize finite state machines
memory # translate memories to basic cells
opt # perform simple optimizations
2014-01-30 08:25:09 -06:00
\end{lstlisting}
\bigskip
Commands for technology mapping:
2014-02-05 13:06:34 -06:00
\begin{lstlisting}[xleftmargin=1cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
2014-02-06 07:01:43 -06:00
techmap # generic technology mapper
2014-02-05 13:06:34 -06:00
abc # use ABC for technology mapping
dfflibmap # technology mapping of flip-flops
hilomap # technology mapping of constant hi- and/or lo-drivers
iopadmap # technology mapping of i/o pads (or buffers)
flatten # flatten design
2014-01-30 08:25:09 -06:00
\end{lstlisting}
2014-01-29 08:56:58 -06:00
\end{frame}
2014-02-05 06:12:50 -06:00
\begin{frame}[fragile]{\subsecname{} 3/3 \hspace{0pt plus 1 filll} (excerpt)}
2014-01-30 08:25:09 -06:00
Commands for writing the results:
2014-02-05 13:06:34 -06:00
\begin{lstlisting}[xleftmargin=1cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
write_blif # write design to BLIF file
write_btor # write design to BTOR file
write_edif # write design to EDIF netlist file
write_ilang # write design to ilang file
write_spice # write design to SPICE netlist file
write_verilog # write design to verilog file
2014-01-30 08:25:09 -06:00
\end{lstlisting}
\bigskip
Script-Commands for standard synthesis tasks:
2014-02-05 13:06:34 -06:00
\begin{lstlisting}[xleftmargin=1cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
synth_xilinx # synthesis for Xilinx FPGAs
2014-01-30 08:25:09 -06:00
\end{lstlisting}
2014-02-06 07:01:43 -06:00
\bigskip
Commands for model checking:
\begin{lstlisting}[xleftmargin=1cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
sat # solve a SAT problem in the circuit
miter # automatically create a miter circuit
scc # detect strongly connected components (logic loops)
\end{lstlisting}
2014-01-30 08:25:09 -06:00
\bigskip
... and many many more.
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2014-01-29 08:56:58 -06:00
\subsection{More Verilog Examples}
2014-01-30 08:25:09 -06:00
\begin{frame}[fragile]{\subsecname{} 1/3}
\begin{lstlisting}[xleftmargin=1cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=Verilog]
module detectprime(a, y);
input [4:0] a;
output y;
integer i, j;
reg [31:0] lut;
initial begin
for (i = 0; i < 32; i = i+1) begin
lut[i] = i > 1;
for (j = 2; j*j <= i; j = j+1)
if (i % j == 0)
lut[i] = 0;
end
end
assign y = lut[a];
endmodule
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]{\subsecname{} 2/3}
\begin{lstlisting}[xleftmargin=1cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=Verilog]
module carryadd(a, b, y);
parameter WIDTH = 8;
input [WIDTH-1:0] a, b;
output [WIDTH-1:0] y;
genvar i;
generate
for (i = 0; i < WIDTH; i = i+1) begin:STAGE
wire IN1 = a[i], IN2 = b[i];
wire C, Y;
if (i == 0)
assign C = IN1 & IN2, Y = IN1 ^ IN2;
else
assign C = (IN1 & IN2) | ((IN1 | IN2) & STAGE[i-1].C),
Y = IN1 ^ IN2 ^ STAGE[i-1].C;
assign y[i] = Y;
end
endgenerate
endmodule
\end{lstlisting}
\end{frame}
\begin{frame}[fragile]{\subsecname{} 3/3}
\begin{lstlisting}[xleftmargin=1cm, basicstyle=\ttfamily\fontsize{7pt}{8.5pt}\selectfont, language=Verilog]
module cam(clk, wr_enable, wr_addr, wr_data, rd_data, rd_addr, rd_match);
parameter WIDTH = 8;
parameter DEPTH = 16;
localparam ADDR_BITS = $clog2(DEPTH);
input clk, wr_enable;
input [ADDR_BITS-1:0] wr_addr;
input [WIDTH-1:0] wr_data, rd_data;
output reg [ADDR_BITS-1:0] rd_addr;
output reg rd_match;
integer i;
reg [WIDTH-1:0] mem [0:DEPTH-1];
always @(posedge clk) begin
rd_addr <= 'bx;
rd_match <= 0;
for (i = 0; i < DEPTH; i = i+1)
if (mem[i] == rd_data) begin
rd_addr <= i;
rd_match <= 1;
end
if (wr_enable)
mem[wr_addr] <= wr_data;
end
endmodule
\end{lstlisting}
2014-01-29 08:56:58 -06:00
\end{frame}
2014-02-05 08:06:13 -06:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Verification of Yosys}
2014-01-29 08:56:58 -06:00
2014-01-31 05:48:31 -06:00
\begin{frame}{\subsecname}
Contiously checking the correctness of Yosys and making sure that new features
do not break old ones is a high priority in Yosys.
\bigskip
There are two external test suites build for Yosys: VlogHammer and yosys-bigsim
(see next slides)
\bigskip
In addition to that, yosys comes with $\approx\!200$ test cases used in ``{\tt make test}''.
\bigskip
A debug build of Yosys also contains a lot of asserts and checks the integrity of
the internal state after each command.
\end{frame}
\begin{frame}[fragile]{\subsecname{} -- VlogHammer}
VlogHammer is a Verilog regression test suite developed to test the different
subsystems in Yosys by comparing them to each other and the implementations
generated by some proprietary tools (Xilinx Vivado, Xilinx XST, Altera Quartus II, ...).
\bigskip
Yosys Subsystems tested: Verilog frontend, const folding, const eval, technology mapping,
simulation models, SAT models.
\bigskip
Thousands of auto-generated test cases containing code such as:
\begin{lstlisting}[xleftmargin=1cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=Verilog]
assign y9 = $signed(((+$signed((^(6'd2 ** a2))))<$unsigned($unsigned(((+a3))))));
assign y10 = (-((+((+{2{(~^p13)}})))^~(!{{b5,b1,a0},(a1&p12),(a4+a3)})));
assign y11 = (~&(-{(-3'sd3),($unsigned($signed($unsigned({p0,b4,b1}))))}));
\end{lstlisting}
\bigskip
Some bugs in Yosys where found and fixed thanks to VlogHammer. Over 20 bugs in
the proprietary tools used as external reference where found and reported.
2014-01-29 08:56:58 -06:00
\end{frame}
\begin{frame}{\subsecname{} -- yosys-bigsim}
2014-01-31 05:48:31 -06:00
yosys-bigsim is a collection of real-world open-source Verilog designs and test
benches. yosys-bigsim compares the testbench outpus of simulations of the original
Verilog code and synthesis results.
\bigskip
The following designs are part of yosys-bigsim:
\begin{itemize}
\item {\tt openmsp430} -- an MSP430 compatible 16 bit CPU
\item {\tt aes\_5cycle\_2stage} -- an AES encryption core
\item {\tt softusb\_navre} -- an AVR compatible 8 bit CPU
\item {\tt amber23} -- an ARMv2 compatible 32 bit CPU
\item {\tt lm32} -- another 32 bit CPU from Lattice Semiconductor
\item {\tt verilog-pong} -- a hardware pong game with VGA output
\item {\tt elliptic\_curve\_group} -- ECG point-add and point-scalar-mul core
\item {\tt reed\_solomon\_decoder} -- a Reed-Solomon Error Correction Decoder
\end{itemize}
2014-01-29 08:56:58 -06:00
\end{frame}
2014-01-31 05:48:31 -06:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2014-01-29 08:56:58 -06:00
\subsection{Benefits of Open Source HDL Synthesis}
2014-01-31 05:48:31 -06:00
\begin{frame}{\subsecname{} -- 1/3}
\begin{itemize}
\item Cost (also applies to ``free as in free beer'' solutions): \smallskip\par
Today the cost for a mask set in $\unit[180]{nm}$ technology is far less than
the cost for the design tools needed to design the mask layouts. Open Source
ASIC flows are an important enabler for ASIC-level Open Source Hardware.
\bigskip
\item Availablity and Reproducability: \smallskip\par
If you are a researcher who is publishing, you want to use tools that everyone
else can also use. Even if most universities have access to all major
commercial tools, you usually do not have easy access to the version that was
used in a research project a couple of years ago. With Open Source tools you
can even release the source code of the tool you have used alongside your data.
\end{itemize}
\end{frame}
\begin{frame}{\subsecname{} -- 2/3}
\begin{itemize}
\item Framework: \smallskip\par
Yosys is not only a tool. It is a framework that can be used as basis for other
developments, so researchers and hackers alike do not need to re-invent the
basic functionality. Extensibility was one of Yosys' design goals.
\bigskip
\item All-in-one: \smallskip\par
Because of the framework characterisitcs of Yosys, an increasing number of features
become available in one tool. Yosys not only can be used for circuit synthesis but
also for formal equivialence checking, SAT solving, and for circuit analysis, to
name just a few other application domains. With propritaery software one needs to
learn a new tool for each of this applications.
\end{itemize}
\end{frame}
\begin{frame}{\subsecname{} -- 3/3}
\begin{itemize}
\item Educational Tool: \smallskip\par
Propritaery synthesis tools are at times where secretive about their inner
workings. They often are ``black boxes'' where a design goes in and synthesis
results come out. Yosys is very open about its internals and it is easy to
observe the different steps of synthesis.
\end{itemize}
\bigskip
\begin{block}{BTW: Yosys is licensed under the ISC license:}
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
\end{block}
2014-01-29 08:56:58 -06:00
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2014-02-05 08:06:13 -06:00
\subsection{Typical Applications for Yosys}
\begin{frame}{\subsecname}
\begin{itemize}
\item Synthesis of final production designs
\item Pre-production synthesis (trial runs before investing in other tools)
\item Convertion of full-featured Verilog to simple Verilog
\item Convertion of Verilog to other formats (BLIF, BTOR, etc)
\item Demonstrating synthesis algorithms (e.g. for educational purposes)
\item Framework for experimenting with new algorithms
\item Framework for building custom flows\footnote[frame]{Not limited to synthesis
but also formal verification, reverse engineering, ...}
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2014-02-06 07:01:43 -06:00
\subsection{Other Open Source Tools}
\begin{frame}{\subsecname}
\begin{itemize}
\item Icarus Verilog \\
\smallskip\hskip1cm{}Verilog Simulation (and also a good syntax checker) \\
\smallskip\hskip1cm{}\url{http://iverilog.icarus.com/}
\bigskip
\item Qflow (incl. TimberWolf, qrouter and Magic) \\
\smallskip\hskip1cm{}A complete ASIC synthesis flow, using Yosys and ABC \\
\smallskip\hskip1cm{}\url{http://opencircuitdesign.com/qflow/}
\bigskip
\item ABC \\
\smallskip\hskip1cm{}Logic optimization, technology mapping, and more \\
\smallskip\hskip1cm{}\url{http://www.eecs.berkeley.edu/~alanmi/abc/}
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{What the Yosys project needs from you}
\begin{frame}{\subsecname}
We need you as an active user:
\begin{itemize}
\item Use Yosys for on your own designs
\item .. even if you are not using it as final synthesis tool
\item Join the discussion on the Subreddit
\item Report bugs and send in feature requests
\end{itemize}
\bigskip
We need you as a developer:
\begin{itemize}
\item Use Yosys as environment for your research work
\item .. you might also want to look into ABC for logic-level stuff
\item Fork the project on github or create loadable plugins
\item We desperately need a VHDL frontend or a VHDL-to-Verilog converter
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2014-02-05 08:06:13 -06:00
\subsection{Documentation, Downloads, Contatcs}
\begin{frame}{\subsecname}
\begin{itemize}
\item Website: \\
\smallskip\hskip1cm\url{http://www.clifford.at/yosys/}
\bigskip
\item Manual, Command Reference, Appliction Notes: \\
\smallskip\hskip1cm\url{http://www.clifford.at/yosys/documentation.html}
\bigskip
\item Instead of a mailing list we have a SubReddit: \\
\smallskip\hskip1cm\url{http://www.reddit.com/r/yosys/}
\bigskip
\item Direct link to the source code: \\
\smallskip\hskip1cm\url{https://github.com/cliffordwolf/yosys}
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2014-02-06 07:01:43 -06:00
\subsection{Summary}
\begin{frame}{\subsecname}
\begin{itemize}
\item Yosys is a powerful tool and framework for Verilog synthesis.
2014-02-17 02:45:04 -06:00
\item It uses a command-based interface and can be controlled by scripts.
2014-02-06 07:01:43 -06:00
\item By combining existing commands and implementing new commands Yosys can
be used in a wide range of application far beyond simple synthesis.
\end{itemize}
\bigskip
\bigskip
\begin{center}
Questions?
\end{center}
\bigskip
\bigskip
\begin{center}
\url{http://www.clifford.at/yosys/}
\end{center}
\end{frame}