OpenFPGA/vpr7_x2p/vpr/SRC/fpga_x2p/verilog/verilog_mux.cpp

378 lines
18 KiB
C++
Raw Normal View History

/***********************************************
* This file includes functions to generate
* Verilog submodules for multiplexers.
* including both fundamental submodules
* such as a branch in a multiplexer
* and the full multiplexer
**********************************************/
#include <string>
#include "util.h"
#include "vtr_assert.h"
/* Device-level header files */
#include "mux_graph.h"
#include "module_manager.h"
#include "physical_types.h"
#include "vpr_types.h"
/* FPGA-X2P context header files */
#include "spice_types.h"
#include "fpga_x2p_naming.h"
#include "fpga_x2p_utils.h"
/* FPGA-Verilog context header files */
#include "verilog_global.h"
#include "verilog_writer_utils.h"
2019-08-20 22:01:38 -05:00
#include "verilog_mux.h"
/*********************************************************************
* Generate structural Verilog codes (consist of transmission-gates or
* pass-transistor) modeling an branch circuit
* for a multiplexer with the given size
*********************************************************************/
static
void generate_verilog_cmos_mux_branch_body_structural(ModuleManager& module_manager,
const CircuitLibrary& circuit_lib,
std::fstream& fp,
const CircuitModelId& tgate_model,
const ModuleId& module_id,
const BasicPort& input_port,
const BasicPort& output_port,
const BasicPort& mem_port,
const BasicPort& mem_inv_port,
const MuxGraph& mux_graph) {
/* Make sure we have a valid file handler*/
check_file_handler(fp);
/* Get the module id of tgate in Module manager */
ModuleId tgate_module_id = module_manager.find_module(circuit_lib.model_name(tgate_model));
VTR_ASSERT(ModuleId::INVALID() != tgate_module_id);
/* TODO: move to check_circuit_library? Get model ports of tgate */
std::vector<CircuitPortId> tgate_input_ports = circuit_lib.model_ports_by_type(tgate_model, SPICE_MODEL_PORT_INPUT, true);
std::vector<CircuitPortId> tgate_output_ports = circuit_lib.model_ports_by_type(tgate_model, SPICE_MODEL_PORT_OUTPUT, true);
VTR_ASSERT(3 == tgate_input_ports.size());
VTR_ASSERT(1 == tgate_output_ports.size());
/* Verilog Behavior description for a MUX */
print_verilog_comment(fp, std::string("---- Structure-level description -----"));
/* Output the netlist following the connections in mux_graph */
/* Iterate over the inputs */
for (const auto& mux_input : mux_graph.inputs()) {
BasicPort cur_input_port(input_port.get_name(), size_t(mux_graph.input_id(mux_input)), size_t(mux_graph.input_id(mux_input)));
/* Iterate over the outputs */
for (const auto& mux_output : mux_graph.outputs()) {
BasicPort cur_output_port(output_port.get_name(), size_t(mux_graph.output_id(mux_output)), size_t(mux_graph.output_id(mux_output)));
/* if there is a connection between the input and output, a tgate will be outputted */
std::vector<MuxEdgeId> edges = mux_graph.find_edges(mux_input, mux_output);
/* There should be only one edge or no edge*/
VTR_ASSERT((1 == edges.size()) || (0 == edges.size()));
/* No need to output tgates if there are no edges between two nodes */
if (0 == edges.size()) {
continue;
}
/* TODO: Output a tgate use a module manager */
/* Create a port-to-port name map */
std::map<std::string, BasicPort> port2port_name_map;
/* input port */
port2port_name_map[circuit_lib.port_lib_name(tgate_input_ports[0])] = cur_input_port;
/* output port */
port2port_name_map[circuit_lib.port_lib_name(tgate_output_ports[0])] = cur_output_port;
/* Find the mem_id controlling the edge */
MuxMemId mux_mem = mux_graph.find_edge_mem(edges[0]);
BasicPort cur_mem_port(mem_port.get_name(), size_t(mux_mem), size_t(mux_mem));
BasicPort cur_mem_inv_port(mem_inv_port.get_name(), size_t(mux_mem), size_t(mux_mem));
/* mem port */
if (false == mux_graph.is_edge_use_inv_mem(edges[0])) {
/* wire mem to mem of module, and wire mem_inv to mem_inv of module */
port2port_name_map[circuit_lib.port_lib_name(tgate_input_ports[1])] = cur_mem_port;
port2port_name_map[circuit_lib.port_lib_name(tgate_input_ports[2])] = cur_mem_inv_port;
} else {
/* wire mem_inv to mem of module, wire mem to mem_inv of module */
port2port_name_map[circuit_lib.port_lib_name(tgate_input_ports[1])] = cur_mem_inv_port;
port2port_name_map[circuit_lib.port_lib_name(tgate_input_ports[2])] = cur_mem_port;
}
/* Output an instance of the module */
print_verilog_module_instance(fp, module_manager, module_id, tgate_module_id, port2port_name_map, circuit_lib.dump_explicit_port_map(tgate_model));
/* IMPORTANT: this update MUST be called after the instance outputting!!!!
* update the module manager with the relationship between the parent and child modules
*/
module_manager.add_child_module(module_id, tgate_module_id);
}
}
}
/*********************************************************************
* Generate behavior-level Verilog codes modeling an branch circuit
* for a multiplexer with the given size
*********************************************************************/
static
void generate_verilog_cmos_mux_branch_body_behavioral(std::fstream& fp,
const BasicPort& input_port,
const BasicPort& output_port,
const BasicPort& mem_port,
const MuxGraph& mux_graph,
const size_t& default_mem_val) {
/* Make sure we have a valid file handler*/
check_file_handler(fp);
/* Verilog Behavior description for a MUX */
print_verilog_comment(fp, std::string("---- Behavioral-level description -----"));
/* Add an internal register for the output */
BasicPort outreg_port("out_reg", mux_graph.num_outputs());
/* Print the port */
fp << "\t" << generate_verilog_port(VERILOG_PORT_REG, outreg_port) << ";" << std::endl;
/* Generate the case-switch table */
fp << "\talways @(" << generate_verilog_port(VERILOG_PORT_CONKT, input_port) << ", " << generate_verilog_port(VERILOG_PORT_CONKT, mem_port) << ")" << std::endl;
fp << "\tcase (" << generate_verilog_port(VERILOG_PORT_CONKT, mem_port) << ")" << std::endl;
/* Output the netlist following the connections in mux_graph */
/* Iterate over the inputs */
for (const auto& mux_input : mux_graph.inputs()) {
BasicPort cur_input_port(input_port.get_name(), size_t(mux_graph.input_id(mux_input)), size_t(mux_graph.input_id(mux_input)));
/* Iterate over the outputs */
for (const auto& mux_output : mux_graph.outputs()) {
BasicPort cur_output_port(output_port.get_name(), size_t(mux_graph.output_id(mux_output)), size_t(mux_graph.output_id(mux_output)));
/* if there is a connection between the input and output, a tgate will be outputted */
std::vector<MuxEdgeId> edges = mux_graph.find_edges(mux_input, mux_output);
/* There should be only one edge or no edge*/
VTR_ASSERT((1 == edges.size()) || (0 == edges.size()));
/* No need to output tgates if there are no edges between two nodes */
if (0 == edges.size()) {
continue;
}
/* For each case, generate the logic levels for all the inputs */
/* In each case, only one mem is enabled */
fp << "\t\t" << mem_port.get_width() << "'b";
std::string case_code(mem_port.get_width(), default_mem_val);
/* Find the mem_id controlling the edge */
MuxMemId mux_mem = mux_graph.find_edge_mem(edges[0]);
/* Flip a bit by the mem_id */
if (false == mux_graph.is_edge_use_inv_mem(edges[0])) {
case_code[size_t(mux_mem)] = '1';
} else {
case_code[size_t(mux_mem)] = '0';
}
fp << case_code << ": " << generate_verilog_port(VERILOG_PORT_CONKT, outreg_port) << " <= ";
fp << generate_verilog_port(VERILOG_PORT_CONKT, cur_input_port) << ";" << std::endl;
}
}
/* Default case: outputs are at high-impedance state 'z' */
std::string default_case(mux_graph.num_outputs(), 'z');
fp << "\t\tdefault: " << generate_verilog_port(VERILOG_PORT_CONKT, outreg_port) << " <= ";
fp << mux_graph.num_outputs() << "'b" << default_case << ";" << std::endl;
/* End the case */
fp << "\tendcase" << std::endl;
/* Wire registers to output ports */
fp << "\tassign " << generate_verilog_port(VERILOG_PORT_CONKT, output_port) << " = ";
fp << generate_verilog_port(VERILOG_PORT_CONKT, outreg_port) << ";" << std::endl;
}
/*********************************************************************
* Generate Verilog codes modeling an branch circuit
* for a multiplexer with the given size
* Support structural and behavioral Verilog codes
*********************************************************************/
static
void generate_verilog_cmos_mux_branch_module(ModuleManager& module_manager,
const CircuitLibrary& circuit_lib,
std::fstream& fp,
const CircuitModelId& circuit_model,
const std::string& module_name,
const MuxGraph& mux_graph,
const bool& use_structural_verilog) {
/* Get the tgate model */
CircuitModelId tgate_model = circuit_lib.pass_gate_logic_model(circuit_model);
/* Skip output if the tgate model is a MUX2, it is handled by essential-gate generator */
if (SPICE_MODEL_GATE == circuit_lib.model_type(tgate_model)) {
VTR_ASSERT(SPICE_MODEL_GATE_MUX2 == circuit_lib.gate_type(tgate_model));
return;
}
std::vector<CircuitPortId> tgate_global_ports = circuit_lib.model_global_ports_by_type(tgate_model, SPICE_MODEL_PORT_INPUT, true);
/* Make sure we have a valid file handler*/
check_file_handler(fp);
/* Generate the Verilog netlist according to the mux_graph */
/* Find out the number of inputs */
size_t num_inputs = mux_graph.num_inputs();
/* Find out the number of outputs */
size_t num_outputs = mux_graph.num_outputs();
/* Find out the number of memory bits */
size_t num_mems = mux_graph.num_memory_bits();
/* Check codes to ensure the port of Verilog netlists will match */
/* MUX graph must have only 1 output */
VTR_ASSERT(1 == num_outputs);
/* MUX graph must have only 1 level*/
VTR_ASSERT(1 == mux_graph.num_levels());
/* Create a Verilog Module based on the circuit model, and add to module manager */
ModuleId module_id = module_manager.add_module(module_name);
VTR_ASSERT(ModuleId::INVALID() != module_id);
/* Add module ports */
/* Add each global port */
for (const auto& port : tgate_global_ports) {
/* Configure each global port */
BasicPort global_port(circuit_lib.port_lib_name(port), circuit_lib.port_size(port));
module_manager.add_port(module_id, global_port, ModuleManager::MODULE_GLOBAL_PORT);
}
/* Add each input port */
BasicPort input_port("in", num_inputs);
module_manager.add_port(module_id, input_port, ModuleManager::MODULE_INPUT_PORT);
/* Add each output port */
BasicPort output_port("out", num_outputs);
module_manager.add_port(module_id, output_port, ModuleManager::MODULE_OUTPUT_PORT);
/* Add each memory port */
BasicPort mem_port("mem", num_mems);
module_manager.add_port(module_id, mem_port, ModuleManager::MODULE_INPUT_PORT);
BasicPort mem_inv_port("mem_inv", num_mems);
module_manager.add_port(module_id, mem_inv_port, ModuleManager::MODULE_INPUT_PORT);
/* dump module definition + ports */
print_verilog_module_declaration(fp, module_manager, module_id);
/* Print the internal logic in either structural or behavioral Verilog codes */
if (true == use_structural_verilog) {
generate_verilog_cmos_mux_branch_body_structural(module_manager, circuit_lib, fp, tgate_model, module_id, input_port, output_port, mem_port, mem_inv_port, mux_graph);
} else {
VTR_ASSERT_SAFE(false == use_structural_verilog);
/* Get the default value of SRAM ports */
std::vector<CircuitPortId> sram_ports = circuit_lib.model_ports_by_type(circuit_model, SPICE_MODEL_PORT_SRAM, true);
std::vector<CircuitPortId> non_mode_select_sram_ports;
/* We should have only have 1 sram port except those are mode_bits */
for (const auto& port : sram_ports) {
if (true == circuit_lib.port_is_mode_select(port)) {
continue;
}
non_mode_select_sram_ports.push_back(port);
}
VTR_ASSERT(1 == non_mode_select_sram_ports.size());
std::string mem_default_val = std::to_string(circuit_lib.port_default_value(non_mode_select_sram_ports[0]));
/* Mem string must be only 1-bit! */
VTR_ASSERT(1 == mem_default_val.length());
generate_verilog_cmos_mux_branch_body_behavioral(fp, input_port, output_port, mem_port, mux_graph, mem_default_val[0]);
}
/* Put an end to the Verilog module */
print_verilog_module_end(fp, module_name);
}
/***********************************************
* Generate Verilog codes modeling an branch circuit
* for a multiplexer with the given size
**********************************************/
static
void generate_verilog_mux_branch_module(ModuleManager& module_manager,
const CircuitLibrary& circuit_lib,
std::fstream& fp,
const CircuitModelId& circuit_model,
const size_t& mux_size,
const MuxGraph& mux_graph) {
std::string module_name = generate_verilog_mux_branch_subckt_name(circuit_lib, circuit_model, mux_size, mux_graph.num_inputs(), verilog_mux_basis_posfix);
/* Multiplexers built with different technology is in different organization */
switch (circuit_lib.design_tech_type(circuit_model)) {
case SPICE_MODEL_DESIGN_CMOS:
generate_verilog_cmos_mux_branch_module(module_manager, circuit_lib, fp, circuit_model, module_name, mux_graph,
circuit_lib.dump_structural_verilog(circuit_model));
break;
case SPICE_MODEL_DESIGN_RRAM:
/* If requested, we can dump structural verilog for basis module */
/*
if (true == circuit_lib.dump_structural_verilog(circuit_model)) {
dump_verilog_rram_mux_one_basis_module_structural(fp, mux_basis_subckt_name,
num_input_basis_subckt,
cur_spice_model);
} else {
dump_verilog_rram_mux_one_basis_module(fp, mux_basis_subckt_name,
num_input_basis_subckt,
cur_spice_model);
}
*/
break;
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(FILE:%s,LINE[%d]) Invalid design technology of multiplexer (name: %s)\n",
__FILE__, __LINE__, circuit_lib.model_name(circuit_model).c_str());
exit(1);
}
return;
}
/***********************************************
* Generate Verilog modules for all the unique
* multiplexers in the FPGA device
**********************************************/
void print_verilog_submodule_muxes(ModuleManager& module_manager,
const MuxLibrary& mux_lib,
const CircuitLibrary& circuit_lib,
t_sram_orgz_info* cur_sram_orgz_info,
char* verilog_dir,
char* submodule_dir) {
/* TODO: Generate modules into a .bak file now. Rename after it is verified */
std::string verilog_fname(my_strcat(submodule_dir, muxes_verilog_file_name));
verilog_fname += ".bak";
/* Create the file stream */
std::fstream fp;
fp.open(verilog_fname, std::fstream::out | std::fstream::trunc);
check_file_handler(fp);
/* Print out debugging information for if the file is not opened/created properly */
vpr_printf(TIO_MESSAGE_INFO,
"Creating Verilog netlist for Multiplexers (%s) ...\n",
verilog_fname.c_str());
print_verilog_file_header(fp, "Multiplexers");
print_verilog_include_defines_preproc_file(fp, verilog_dir);
/* Generate basis sub-circuit for unique branches shared by the multiplexers */
for (auto mux : mux_lib.muxes()) {
const MuxGraph& mux_graph = mux_lib.mux_graph(mux);
CircuitModelId mux_circuit_model = mux_lib.mux_circuit_model(mux);
/* Create a mux graph for the branch circuit */
std::vector<MuxGraph> branch_mux_graphs = mux_graph.build_mux_branch_graphs();
/* Create branch circuits, which are N:1 one-level or 2:1 tree-like MUXes */
for (auto branch_mux_graph : branch_mux_graphs) {
generate_verilog_mux_branch_module(module_manager, circuit_lib, fp, mux_circuit_model,
mux_graph.num_inputs(), branch_mux_graph);
}
}
/* Dump MUX graph one by one */
/* Close the file steam */
fp.close();
/* TODO:
* Scan-chain configuration circuit does not need any BLs/WLs!
* SRAM MUX does not need any reserved BL/WLs!
*/
/* Determine reserved Bit/Word Lines if a memory bank is specified,
* At least 1 BL/WL should be reserved!
*/
try_update_sram_orgz_info_reserved_blwl(cur_sram_orgz_info,
mux_lib.max_mux_size(), mux_lib.max_mux_size());
/* TODO: Add fname to the linked list when debugging is finished */
/*
submodule_verilog_subckt_file_path_head = add_one_subckt_file_name_to_llist(submodule_verilog_subckt_file_path_head, verilog_name);
*/
}