develop and plug mux_lib_builder, refactoring the mux submodule generation

This commit is contained in:
tangxifan 2019-08-24 19:23:33 -06:00
parent 27b619554d
commit 63f40f48fa
13 changed files with 343 additions and 81 deletions

View File

@ -43,6 +43,16 @@ CircuitModelId MuxLibrary::mux_circuit_model(const MuxId& mux_id) const {
return mux_circuit_models_[mux_id];
}
/* Find the maximum mux size among the mux graphs */
size_t MuxLibrary::max_mux_size() const {
/* Iterate over all the mux graphs and find their sizes */
size_t max_mux_size = 0;
for (const auto& mux : mux_ids_) {
max_mux_size = std::max(max_mux_size, mux_graphs_[mux].num_inputs());
}
return max_mux_size;
}
/**************************************************
* Private mutators:
*************************************************/

View File

@ -27,6 +27,8 @@ class MuxLibrary {
const MuxGraph& mux_graph(const MuxId& mux_id) const;
/* Get a mux circuit model id */
CircuitModelId mux_circuit_model(const MuxId& mux_id) const;
/* Find the maximum mux size */
size_t max_mux_size() const;
public: /* Public mutators */
/* Add a mux to the library */
void add_mux(const CircuitLibrary& circuit_lib, const CircuitModelId& circuit_model, const size_t& mux_size);

View File

@ -0,0 +1,186 @@
/********************************************************************
* This file includes the functions of builders for MuxLibrary.
*******************************************************************/
#include <cmath>
#include <stdio.h>
#include "vtr_assert.h"
/* Device-level header files */
#include "util.h"
#include "vpr_types.h"
#include "globals.h"
/* FPGA-X2P context header files */
#include "fpga_x2p_utils.h"
#include "spice_types.h"
#include "circuit_library.h"
#include "mux_library.h"
#include "mux_library_builder.h"
/********************************************************************
* Update MuxLibrary with the unique multiplexer structures
* found in the global routing architecture
*******************************************************************/
static
void build_routing_arch_mux_library(MuxLibrary& mux_lib,
int LL_num_rr_nodes, t_rr_node* LL_rr_node,
t_switch_inf* switches,
const CircuitLibrary& circuit_lib,
t_det_routing_arch* routing_arch) {
/* Current Version: Support Uni-directional routing architecture only*/
if (UNI_DIRECTIONAL != routing_arch->directionality) {
vpr_printf(TIO_MESSAGE_ERROR,
"(FILE:%s, LINE[%d]) FPGA X2P Only supports uni-directional routing architecture.\n",
__FILE__, __LINE__);
exit(1);
}
/* The routing path is.
* OPIN ----> CHAN ----> ... ----> CHAN ----> IPIN
* Each edge is a switch, for IPIN, the switch is a connection block,
* for the rest is a switch box
*/
/* Count the sizes of muliplexers in routing architecture */
for (int inode = 0; inode < LL_num_rr_nodes; inode++) {
t_rr_node& node = LL_rr_node[inode];
switch (node.type) {
case IPIN: {
/* Have to consider the fan_in only, it is a connection block (multiplexer)*/
VTR_ASSERT((node.fan_in > 0) || (0 == node.fan_in));
if ( (0 == node.fan_in) || (1 == node.fan_in)) {
break;
}
/* Find the circuit_model for multiplexers in connection blocks */
const CircuitModelId& cb_switch_circuit_model = switches[node.driver_switch].circuit_model;
/* we should select a circuit model for the connection box*/
VTR_ASSERT(CircuitModelId::INVALID() != cb_switch_circuit_model);
/* Add the mux to mux_library */
mux_lib.add_mux(circuit_lib, cb_switch_circuit_model, node.fan_in);
break;
}
case CHANX:
case CHANY: {
/* Channels are the same, have to consider the fan_in as well,
* it could be a switch box if previous rr_node is a channel
* or it could be a connection box if previous rr_node is a IPIN or OPIN
*/
VTR_ASSERT((node.fan_in > 0) || (0 == node.fan_in));
if ((0 == node.fan_in) || (1 == node.fan_in)) {
break;
}
/* Find the spice_model for multiplexers in switch blocks*/
const CircuitModelId& sb_switch_circuit_model = switches[node.driver_switch].circuit_model;
/* we should select a circuit model for the Switch box*/
VTR_ASSERT(CircuitModelId::INVALID() != sb_switch_circuit_model);
/* Add the mux to mux_library */
mux_lib.add_mux(circuit_lib, sb_switch_circuit_model, node.fan_in);
break;
}
default:
/* We do not care other types of rr_node */
break;
}
}
}
/********************************************************************
* Update MuxLibrary with the unique multiplexer structures
* found in programmable logic blocks
********************************************************************/
static
void build_pb_type_mux_library_rec(MuxLibrary& mux_lib,
const CircuitLibrary& circuit_lib,
t_pb_type* cur_pb_type) {
VTR_ASSERT(nullptr != cur_pb_type);
/* If there is spice_model_name, this is a leaf node!*/
if (TRUE == is_primitive_pb_type(cur_pb_type)) {
/* What annoys me is VPR create a sub pb_type for each lut which suppose to be a leaf node
* This may bring software convience but ruins circuit modeling
*/
VTR_ASSERT(CircuitModelId::INVALID() != cur_pb_type->phy_pb_type->circuit_model);
return;
}
/* Traversal the hierarchy, find all the multiplexer from the interconnection part */
for (int imode = 0; imode < cur_pb_type->num_modes; imode++) {
/* Then we have to statisitic the interconnections*/
for (int jinterc = 0; jinterc < cur_pb_type->modes[imode].num_interconnect; jinterc++) {
/* Check the num_mux and fan_in of an interconnection */
VTR_ASSERT ((0 == cur_pb_type->modes[imode].interconnect[jinterc].num_mux)
|| (0 < cur_pb_type->modes[imode].interconnect[jinterc].num_mux));
if (0 == cur_pb_type->modes[imode].interconnect[jinterc].num_mux) {
continue;
}
CircuitModelId& interc_circuit_model = cur_pb_type->modes[imode].interconnect[jinterc].circuit_model;
VTR_ASSERT(CircuitModelId::INVALID() != interc_circuit_model);
/* Add the mux model to library */
mux_lib.add_mux(circuit_lib, interc_circuit_model, cur_pb_type->modes[imode].interconnect[jinterc].fan_in);
}
}
/* Go recursively to the lower level */
for (int imode = 0; imode < cur_pb_type->num_modes; imode++) {
for (int ichild = 0; ichild < cur_pb_type->modes[imode].num_pb_type_children; ichild++) {
build_pb_type_mux_library_rec(mux_lib, circuit_lib,
&cur_pb_type->modes[imode].pb_type_children[ichild]);
}
}
}
/********************************************************************
* Update MuxLibrary with the unique multiplexers required by
* LUTs in the circuit library
********************************************************************/
static
void build_lut_mux_library(MuxLibrary& mux_lib,
const CircuitLibrary& circuit_lib) {
/* Find all the circuit models which are LUTs in the circuit library */
for (const auto& circuit_model : circuit_lib.models()) {
/* Bypass non-LUT circuit models */
if (SPICE_MODEL_LUT != circuit_lib.model_type(circuit_model)) {
continue;
}
/* Find the MUX size required by the LUT */
/* Get input ports which are not global ports! */
std::vector<CircuitPortId> input_ports = circuit_lib.model_ports_by_type(circuit_model, SPICE_MODEL_PORT_INPUT, true);
VTR_ASSERT(1 == input_ports.size());
/* MUX size = 2^lut_size */
size_t lut_mux_size = (size_t)pow(2., (double)(circuit_lib.port_size(input_ports[0])));
/* Add mux to the mux library */
mux_lib.add_mux(circuit_lib, circuit_model, lut_mux_size);
}
}
/* Statistic for all the multiplexers in FPGA
* We determine the sizes and its structure (according to spice_model) for each type of multiplexers
* We search multiplexers in Switch Blocks, Connection blocks and Configurable Logic Blocks
* In additional to multiplexers, this function also consider crossbars.
* All the statistics are stored in a linked list, as a return value
*/
MuxLibrary build_device_mux_library(int LL_num_rr_nodes, t_rr_node* LL_rr_node,
t_switch_inf* switches,
const CircuitLibrary& circuit_lib,
t_det_routing_arch* routing_arch) {
/* MuxLibrary to store the information of Multiplexers*/
MuxLibrary mux_lib;
/* Step 1: We should check the multiplexer spice models defined in routing architecture.*/
build_routing_arch_mux_library(mux_lib, LL_num_rr_nodes, LL_rr_node, switches, circuit_lib, routing_arch);
/* Step 2: Count the sizes of multiplexers in complex logic blocks */
for (int itype = 0; itype < num_types; itype++) {
if (NULL != type_descriptors[itype].pb_type) {
build_pb_type_mux_library_rec(mux_lib, circuit_lib, type_descriptors[itype].pb_type);
}
}
/* Step 3: count the size of multiplexer that will be used in LUTs*/
build_lut_mux_library(mux_lib, circuit_lib);
return mux_lib;
}

View File

@ -0,0 +1,14 @@
/********************************************************************
* This file includes the function declaration of builders
* for MuxLibrary.
* See details in mux_library_builder.cpp
*******************************************************************/
#ifndef MUX_LIBRARY_BUILDER_H
#define MUX_LIBRARY_BUILDER_H
MuxLibrary build_device_mux_library(int LL_num_rr_nodes, t_rr_node* LL_rr_node,
t_switch_inf* switches,
const CircuitLibrary& circuit_lib,
t_det_routing_arch* routing_arch);
#endif

View File

@ -29,6 +29,7 @@ std::string generate_verilog_mux_subckt_name(const CircuitLibrary& circuit_lib,
std::string generate_verilog_mux_branch_subckt_name(const CircuitLibrary& circuit_lib,
const CircuitModelId& circuit_model,
const size_t& mux_size,
const size_t& branch_mux_size,
const std::string& postfix) {
/* If the tgate spice model of this MUX is a MUX2 standard cell,
* the mux_subckt name will be the name of the standard cell
@ -38,6 +39,7 @@ std::string generate_verilog_mux_branch_subckt_name(const CircuitLibrary& circui
VTR_ASSERT (SPICE_MODEL_GATE_MUX2 == circuit_lib.gate_type(subckt_model));
return circuit_lib.model_name(subckt_model);
}
std::string branch_postfix = postfix + "_size" + std::to_string(branch_mux_size);
return generate_verilog_mux_subckt_name(circuit_lib, circuit_model, mux_size, postfix);
return generate_verilog_mux_subckt_name(circuit_lib, circuit_model, mux_size, branch_postfix);
}

View File

@ -19,6 +19,7 @@ std::string generate_verilog_mux_subckt_name(const CircuitLibrary& circuit_lib,
std::string generate_verilog_mux_branch_subckt_name(const CircuitLibrary& circuit_lib,
const CircuitModelId& circuit_model,
const size_t& mux_size,
const size_t& branch_mux_size,
const std::string& posfix);
#endif

View File

@ -33,6 +33,8 @@
#include "fpga_bitstream.h"
#include "module_manager.h"
#include "mux_library.h"
#include "mux_library_builder.h"
/* Include SynVerilog headers */
#include "verilog_global.h"
@ -153,6 +155,11 @@ void vpr_fpga_verilog(t_vpr_setup vpr_setup,
/* Module manager for the Verilog modules created */
ModuleManager module_manager;
/* Build Multiplexer library */
MuxLibrary mux_lib = build_device_mux_library(num_rr_nodes, rr_node, switch_inf, Arch.spice->circuit_lib, &vpr_setup.RoutingArch);
/* 0. basic units: inverter, buffers and pass-gate logics, */
/* Check if the routing architecture we support*/
if (UNI_DIRECTIONAL != vpr_setup.RoutingArch.directionality) {
vpr_printf(TIO_MESSAGE_ERROR, "FPGA synthesizable Verilog dumping only support uni-directional routing architecture!\n");
@ -274,7 +281,7 @@ void vpr_fpga_verilog(t_vpr_setup vpr_setup,
vpr_setup.FPGA_SPICE_Opts.SynVerilogOpts.dump_explicit_verilog);
/* Dump internal structures of submodules */
dump_verilog_submodules(module_manager, sram_verilog_orgz_info, src_dir_path, submodule_dir_path,
dump_verilog_submodules(module_manager, mux_lib, sram_verilog_orgz_info, src_dir_path, submodule_dir_path,
Arch, &vpr_setup.RoutingArch,
vpr_setup.FPGA_SPICE_Opts.SynVerilogOpts);

View File

@ -507,7 +507,7 @@ void print_verilog_submodule_essentials(ModuleManager& module_manager,
/* Create file */
vpr_printf(TIO_MESSAGE_INFO,
"Generating Verilog netlist (%s) for essential gates...\n",
__FILE__, __LINE__, essentials_verilog_file_name);
__FILE__, __LINE__, verilog_fname.c_str());
print_verilog_file_header(fp, "Essential gates");

View File

@ -12,6 +12,7 @@
/* Device-level header files */
#include "mux_graph.h"
#include "module_manager.h"
#include "physical_types.h"
#include "vpr_types.h"
@ -30,8 +31,9 @@
* for a multiplexer with the given size
**********************************************/
static
void generate_verilog_cmos_mux_branch_module_structural(std::fstream& fp,
void generate_verilog_cmos_mux_branch_module_structural(ModuleManager& module_manager,
const CircuitLibrary& circuit_lib,
std::fstream& fp,
const CircuitModelId& circuit_model,
const std::string& module_name,
const MuxGraph& mux_graph) {
@ -44,7 +46,7 @@ void generate_verilog_cmos_mux_branch_module_structural(std::fstream& fp,
return;
}
/* Get model ports of tgate */
/* TODO: move to check_circuit_library? Get model ports of tgate */
std::vector<CircuitPortId> tgate_input_ports = circuit_lib.model_ports_by_type(tgate_model, SPICE_MODEL_PORT_INPUT, true);
std::vector<CircuitPortId> tgate_output_ports = circuit_lib.model_ports_by_type(tgate_model, SPICE_MODEL_PORT_OUTPUT, true);
std::vector<CircuitPortId> tgate_global_ports = circuit_lib.model_global_ports_by_type(tgate_model, SPICE_MODEL_PORT_INPUT, true);
@ -68,36 +70,30 @@ void generate_verilog_cmos_mux_branch_module_structural(std::fstream& fp,
/* MUX graph must have only 1 level*/
VTR_ASSERT(1 == mux_graph.num_levels());
/* Print Verilog module */
print_verilog_module_definition(fp, module_name);
/* Create port information */
/* Configure each input port */
BasicPort input_port("in", num_inputs);
/* Configure each output port */
BasicPort output_port("out", num_outputs);
/* Configure each memory port */
BasicPort mem_port("mem", num_mems);
BasicPort mem_inv_port("mem_inv", num_mems);
/* TODO: Generate global ports */
/* Create a Verilog Module based on the circuit model, and add to module manager */
ModuleId module_id = module_manager.add_module(module_name);
VTR_ASSERT(ModuleId::INVALID() != module_id);
/* Add module ports */
/* Add each global port */
for (const auto& port : tgate_global_ports) {
/* Configure each global port */
BasicPort basic_port(circuit_lib.port_lib_name(port), circuit_lib.port_size(port));
/* Print port */
fp << "\t" << generate_verilog_port(VERILOG_PORT_INPUT, basic_port) << "," << std::endl;
BasicPort global_port(circuit_lib.port_lib_name(port), circuit_lib.port_size(port));
module_manager.add_port(module_id, global_port, ModuleManager::MODULE_GLOBAL_PORT);
}
/* Add each input port */
BasicPort input_port("in", num_inputs);
module_manager.add_port(module_id, input_port, ModuleManager::MODULE_INPUT_PORT);
/* Add each output port */
BasicPort output_port("out", num_outputs);
module_manager.add_port(module_id, output_port, ModuleManager::MODULE_OUTPUT_PORT);
/* Add each memory port */
BasicPort mem_port("mem", num_mems);
module_manager.add_port(module_id, mem_port, ModuleManager::MODULE_INPUT_PORT);
BasicPort mem_inv_port("mem_inv", num_mems);
module_manager.add_port(module_id, mem_inv_port, ModuleManager::MODULE_INPUT_PORT);
/* TODO: add a module to the Module Manager */
/* Port list */
fp << "\t" << generate_verilog_port(VERILOG_PORT_INPUT, input_port) << "," << std::endl;
fp << "\t" << generate_verilog_port(VERILOG_PORT_OUTPUT, output_port) << "," << std::endl;
fp << "\t" << generate_verilog_port(VERILOG_PORT_INPUT, mem_port) << "," << std::endl;
fp << "\t" << generate_verilog_port(VERILOG_PORT_INPUT, mem_inv_port) << std::endl;
fp << ");" << std::endl;
/* dump module definition + ports */
print_verilog_module_declaration(fp, module_manager, module_id);
/* Verilog Behavior description for a MUX */
print_verilog_comment(fp, std::string("---- Structure-level description -----"));
@ -177,18 +173,20 @@ void generate_verilog_cmos_mux_branch_module_structural(std::fstream& fp,
* Generate Verilog codes modeling an branch circuit
* for a multiplexer with the given size
**********************************************/
void generate_verilog_mux_branch_module(std::fstream& fp,
static
void generate_verilog_mux_branch_module(ModuleManager& module_manager,
const CircuitLibrary& circuit_lib,
std::fstream& fp,
const CircuitModelId& circuit_model,
const size_t& mux_size,
const MuxGraph& mux_graph) {
std::string module_name = generate_verilog_mux_branch_subckt_name(circuit_lib, circuit_model, mux_size, verilog_mux_basis_posfix);
std::string module_name = generate_verilog_mux_branch_subckt_name(circuit_lib, circuit_model, mux_size, mux_graph.num_inputs(), verilog_mux_basis_posfix);
/* Multiplexers built with different technology is in different organization */
switch (circuit_lib.design_tech_type(circuit_model)) {
case SPICE_MODEL_DESIGN_CMOS:
if (true == circuit_lib.dump_structural_verilog(circuit_model)) {
generate_verilog_cmos_mux_branch_module_structural(fp, circuit_lib, circuit_model, module_name, mux_graph);
generate_verilog_cmos_mux_branch_module_structural(module_manager, circuit_lib, fp, circuit_model, module_name, mux_graph);
} else {
/*
dump_verilog_cmos_mux_one_basis_module(fp, mux_basis_subckt_name,
@ -222,3 +220,68 @@ void generate_verilog_mux_branch_module(std::fstream& fp,
return;
}
/***********************************************
* Generate Verilog modules for all the unique
* multiplexers in the FPGA device
**********************************************/
void print_verilog_submodule_muxes(ModuleManager& module_manager,
const MuxLibrary& mux_lib,
const CircuitLibrary& circuit_lib,
t_sram_orgz_info* cur_sram_orgz_info,
char* verilog_dir,
char* submodule_dir) {
/* TODO: Generate modules into a .bak file now. Rename after it is verified */
std::string verilog_fname(my_strcat(submodule_dir, muxes_verilog_file_name));
verilog_fname += ".bak";
/* Create the file stream */
std::fstream fp;
fp.open(verilog_fname, std::fstream::out | std::fstream::trunc);
check_file_handler(fp);
/* Print out debugging information for if the file is not opened/created properly */
vpr_printf(TIO_MESSAGE_INFO,
"Creating Verilog netlist for Multiplexers (%s) ...\n",
verilog_fname.c_str());
print_verilog_file_header(fp, "Multiplexers");
print_verilog_include_defines_preproc_file(fp, verilog_dir);
/* Generate basis sub-circuit for unique branches shared by the multiplexers */
for (auto mux : mux_lib.muxes()) {
const MuxGraph& mux_graph = mux_lib.mux_graph(mux);
CircuitModelId mux_circuit_model = mux_lib.mux_circuit_model(mux);
/* Create a mux graph for the branch circuit */
std::vector<MuxGraph> branch_mux_graphs = mux_graph.build_mux_branch_graphs();
/* Create branch circuits, which are N:1 one-level or 2:1 tree-like MUXes */
for (auto branch_mux_graph : branch_mux_graphs) {
generate_verilog_mux_branch_module(module_manager, circuit_lib, fp, mux_circuit_model,
mux_graph.num_inputs(), branch_mux_graph);
}
}
/* Dump MUX graph one by one */
/* Close the file steam */
fp.close();
/* TODO:
* Scan-chain configuration circuit does not need any BLs/WLs!
* SRAM MUX does not need any reserved BL/WLs!
*/
/* Determine reserved Bit/Word Lines if a memory bank is specified,
* At least 1 BL/WL should be reserved!
*/
try_update_sram_orgz_info_reserved_blwl(cur_sram_orgz_info,
mux_lib.max_mux_size(), mux_lib.max_mux_size());
/* TODO: Add fname to the linked list when debugging is finished */
/*
submodule_verilog_subckt_file_path_head = add_one_subckt_file_name_to_llist(submodule_verilog_subckt_file_path_head, verilog_name);
*/
}

View File

@ -11,11 +11,13 @@
#include "circuit_library.h"
#include "mux_graph.h"
#include "mux_library.h"
#include "module_manager.h"
void generate_verilog_mux_branch_module(std::fstream& fp,
const CircuitLibrary& circuit_lib,
const CircuitModelId& circuit_model,
const size_t& mux_size,
const MuxGraph& mux_graph);
void print_verilog_submodule_muxes(ModuleManager& module_manager,
const MuxLibrary& mux_lib,
const CircuitLibrary& circuit_lib,
t_sram_orgz_info* cur_sram_orgz_info,
char* verilog_dir,
char* submodule_dir);
#endif

View File

@ -29,6 +29,7 @@
#include "fpga_x2p_globals.h"
#include "fpga_x2p_mux_utils.h"
#include "fpga_x2p_bitstream_utils.h"
#include "mux_library.h"
/* Include verilog utils */
#include "verilog_global.h"
@ -2228,11 +2229,13 @@ void dump_verilog_submodule_muxes(t_sram_orgz_info* cur_sram_orgz_info,
/* Alloc the muxes*/
muxes_head = stats_spice_muxes(num_switch, switches, spice, routing_arch);
/* Print the muxes netlist*/
fp = fopen(verilog_name, "w");
if (NULL == fp) {
vpr_printf(TIO_MESSAGE_ERROR,"(FILE:%s,LINE[%d])Failure in create subckt SPICE netlist %s",__FILE__, __LINE__, verilog_name);
vpr_printf(TIO_MESSAGE_ERROR,
"(FILE:%s,LINE[%d])Failure in create subckt SPICE netlist %s",
__FILE__, __LINE__, verilog_name);
exit(1);
}
/* Generate the descriptions*/
@ -2292,41 +2295,6 @@ void dump_verilog_submodule_muxes(t_sram_orgz_info* cur_sram_orgz_info,
temp = temp->next;
}
/* Generate modules into a .bak file now. Rename after it is verified */
std::string verilog_fname(my_strcat(submodule_dir, muxes_verilog_file_name));
verilog_fname += ".bak";
/* Create the file stream */
std::fstream sfp;
sfp.open(verilog_fname, std::fstream::out | std::fstream::trunc);
/* Print out debugging information for if the file is not opened/created properly */
vpr_printf(TIO_MESSAGE_INFO,
"Creating Verilog netlist for Multiplexers (%s) ...\n",
verilog_fname.c_str());
check_file_handler(sfp);
/* TODO: this conversion is temporary. Will be removed after code reconstruction */
MuxLibrary mux_lib = convert_mux_arch_to_library(spice->circuit_lib, muxes_head);
/* Generate basis sub-circuit for unique branches shared by the multiplexers */
for (auto mux : mux_lib.muxes()) {
const MuxGraph& mux_graph = mux_lib.mux_graph(mux);
CircuitModelId mux_circuit_model = mux_lib.mux_circuit_model(mux);
/* Create a mux graph for the branch circuit */
std::vector<MuxGraph> branch_mux_graphs = mux_graph.build_mux_branch_graphs();
/* Create branch circuits, which are N:1 one-level or 2:1 tree-like MUXes */
for (auto branch_mux_graph : branch_mux_graphs) {
generate_verilog_mux_branch_module(sfp, spice->circuit_lib, mux_circuit_model,
mux_graph.num_inputs(), branch_mux_graph);
}
}
/* Dump MUX graph one by one */
/* Close the file steam */
sfp.close();
/* TODO:
* Scan-chain configuration circuit does not need any BLs/WLs!
* SRAM MUX does not need any reserved BL/WLs!
@ -3507,6 +3475,7 @@ void dump_verilog_submodule_templates(t_sram_orgz_info* cur_sram_orgz_info,
* 1. MUXes
*/
void dump_verilog_submodules(ModuleManager& module_manager,
const MuxLibrary& mux_lib,
t_sram_orgz_info* cur_sram_orgz_info,
char* verilog_dir,
char* submodule_dir,
@ -3514,7 +3483,6 @@ void dump_verilog_submodules(ModuleManager& module_manager,
t_det_routing_arch* routing_arch,
t_syn_verilog_opts fpga_verilog_opts) {
/* 0. basic units: inverter, buffers and pass-gate logics, */
vpr_printf(TIO_MESSAGE_INFO, "Generating essential modules...\n");
print_verilog_submodule_essentials(module_manager,
std::string(verilog_dir),
@ -3525,6 +3493,10 @@ void dump_verilog_submodules(ModuleManager& module_manager,
vpr_printf(TIO_MESSAGE_INFO, "Generating modules of multiplexers...\n");
dump_verilog_submodule_muxes(cur_sram_orgz_info, verilog_dir, submodule_dir, routing_arch->num_switch,
switch_inf, Arch.spice, routing_arch, fpga_verilog_opts.dump_explicit_verilog);
print_verilog_submodule_muxes(module_manager, mux_lib, Arch.spice->circuit_lib, cur_sram_orgz_info,
verilog_dir, submodule_dir);
vpr_printf(TIO_MESSAGE_INFO, "Generating local encoders for multiplexers...\n");
dump_verilog_submodule_local_encoders(cur_sram_orgz_info, verilog_dir, submodule_dir, routing_arch->num_switch,
switch_inf, Arch.spice, routing_arch, fpga_verilog_opts.dump_explicit_verilog);

View File

@ -2,8 +2,10 @@
#define VERILOG_SUBMODULES_H
#include "module_manager.h"
#include "mux_library.h"
void dump_verilog_submodules(ModuleManager& module_manager,
const MuxLibrary& mux_lib,
t_sram_orgz_info* cur_sram_orgz_info,
char* verilog_dir,
char* submodule_dir,

View File

@ -55,7 +55,7 @@ void print_verilog_include_defines_preproc_file(std::fstream& fp,
fp << "//------ Include defines: preproc flags -----" << std::endl;
fp << "`include \"" << include_file_path << "\"" << std::endl;
fp << "//------ End Include defines: preproc flags -----" << std::endl;
fp << "//------ End Include defines: preproc flags -----" << std::endl << std::endl;
return;
}
@ -102,10 +102,11 @@ void print_verilog_module_ports(std::fstream& fp,
for (const auto& port : module_manager.module_ports_by_type(module_id, kv.first)) {
if (0 != port_cnt) {
/* Do not dump a comma for the first port */
fp << ", //----- " << module_manager.module_port_type_str(kv.first) << " -----" << std::endl;
fp << "," << std::endl;
}
/* Print port */
fp << "\t" << generate_verilog_port(kv.second, port) << std::endl;
fp << "\t//----- " << module_manager.module_port_type_str(kv.first) << " -----" << std::endl;
fp << "\t" << generate_verilog_port(kv.second, port);
port_cnt++;
}
}
@ -119,7 +120,7 @@ void print_verilog_module_declaration(std::fstream& fp,
check_file_handler(fp);
print_verilog_module_definition(fp, module_manager.module_name(module_id));
print_verilog_module_ports(fp, module_manager, module_id);
fp << std::endl << ");" << std::endl;