OpenFPGA/vpr7_x2p/vpr/SRC/fpga_x2p/verilog/verilog_mux.cpp

288 lines
13 KiB
C++

/***********************************************
* This file includes functions to generate
* Verilog submodules for multiplexers.
* including both fundamental submodules
* such as a branch in a multiplexer
* and the full multiplexer
**********************************************/
#include <string>
#include "util.h"
#include "vtr_assert.h"
/* Device-level header files */
#include "mux_graph.h"
#include "module_manager.h"
#include "physical_types.h"
#include "vpr_types.h"
/* FPGA-X2P context header files */
#include "spice_types.h"
#include "fpga_x2p_naming.h"
#include "fpga_x2p_utils.h"
/* FPGA-Verilog context header files */
#include "verilog_global.h"
#include "verilog_writer_utils.h"
#include "verilog_mux.h"
/***********************************************
* Generate Verilog codes modeling an branch circuit
* for a multiplexer with the given size
**********************************************/
static
void generate_verilog_cmos_mux_branch_module_structural(ModuleManager& module_manager,
const CircuitLibrary& circuit_lib,
std::fstream& fp,
const CircuitModelId& circuit_model,
const std::string& module_name,
const MuxGraph& mux_graph) {
/* Get the tgate model */
CircuitModelId tgate_model = circuit_lib.pass_gate_logic_model(circuit_model);
/* Skip output if the tgate model is a MUX2, it is handled by essential-gate generator */
if (SPICE_MODEL_GATE == circuit_lib.model_type(tgate_model)) {
VTR_ASSERT(SPICE_MODEL_GATE_MUX2 == circuit_lib.gate_type(tgate_model));
return;
}
/* TODO: move to check_circuit_library? Get model ports of tgate */
std::vector<CircuitPortId> tgate_input_ports = circuit_lib.model_ports_by_type(tgate_model, SPICE_MODEL_PORT_INPUT, true);
std::vector<CircuitPortId> tgate_output_ports = circuit_lib.model_ports_by_type(tgate_model, SPICE_MODEL_PORT_OUTPUT, true);
std::vector<CircuitPortId> tgate_global_ports = circuit_lib.model_global_ports_by_type(tgate_model, SPICE_MODEL_PORT_INPUT, true);
VTR_ASSERT(3 == tgate_input_ports.size());
VTR_ASSERT(1 == tgate_output_ports.size());
/* Make sure we have a valid file handler*/
check_file_handler(fp);
/* Generate the Verilog netlist according to the mux_graph */
/* Find out the number of inputs */
size_t num_inputs = mux_graph.num_inputs();
/* Find out the number of outputs */
size_t num_outputs = mux_graph.num_outputs();
/* Find out the number of memory bits */
size_t num_mems = mux_graph.num_memory_bits();
/* Check codes to ensure the port of Verilog netlists will match */
/* MUX graph must have only 1 output */
VTR_ASSERT(1 == num_outputs);
/* MUX graph must have only 1 level*/
VTR_ASSERT(1 == mux_graph.num_levels());
/* Create a Verilog Module based on the circuit model, and add to module manager */
ModuleId module_id = module_manager.add_module(module_name);
VTR_ASSERT(ModuleId::INVALID() != module_id);
/* Add module ports */
/* Add each global port */
for (const auto& port : tgate_global_ports) {
/* Configure each global port */
BasicPort global_port(circuit_lib.port_lib_name(port), circuit_lib.port_size(port));
module_manager.add_port(module_id, global_port, ModuleManager::MODULE_GLOBAL_PORT);
}
/* Add each input port */
BasicPort input_port("in", num_inputs);
module_manager.add_port(module_id, input_port, ModuleManager::MODULE_INPUT_PORT);
/* Add each output port */
BasicPort output_port("out", num_outputs);
module_manager.add_port(module_id, output_port, ModuleManager::MODULE_OUTPUT_PORT);
/* Add each memory port */
BasicPort mem_port("mem", num_mems);
module_manager.add_port(module_id, mem_port, ModuleManager::MODULE_INPUT_PORT);
BasicPort mem_inv_port("mem_inv", num_mems);
module_manager.add_port(module_id, mem_inv_port, ModuleManager::MODULE_INPUT_PORT);
/* dump module definition + ports */
print_verilog_module_declaration(fp, module_manager, module_id);
/* Verilog Behavior description for a MUX */
print_verilog_comment(fp, std::string("---- Structure-level description -----"));
/* Special case: only one memory, switch case is simpler
* When mem = 1, propagate input 0;
* when mem = 0, propagate input 1;
*/
/* TODO: we should output the netlist following the connections in mux_graph */
if (1 == num_mems) {
/* Transmission gates are connected to each input and also the output*/
fp << "\t" << circuit_lib.model_name(tgate_model) << " " << circuit_lib.model_prefix(tgate_model) << "_0 ";
/* Dump explicit port map if required */
/* TODO: add global port support for tgate model */
if (true == circuit_lib.dump_explicit_port_map(tgate_model)) {
fp << " (";
fp << " ." << circuit_lib.port_lib_name(tgate_input_ports[0]) << "(" << "in[0]" << "),";
fp << " ." << circuit_lib.port_lib_name(tgate_input_ports[1]) << "(" << generate_verilog_port(VERILOG_PORT_CONKT, mem_port) << "),";
fp << " ." << circuit_lib.port_lib_name(tgate_input_ports[2]) << "(" << generate_verilog_port(VERILOG_PORT_CONKT, mem_inv_port) << "),";
fp << " ." << circuit_lib.port_lib_name(tgate_output_ports[0]) << "(" << generate_verilog_port(VERILOG_PORT_CONKT, output_port) << ")";
fp << ");" << std::endl;
} else {
fp << " (";
fp << generate_verilog_port(VERILOG_PORT_CONKT, input_port);
fp << ", " << generate_verilog_port(VERILOG_PORT_CONKT, mem_port);
fp << ", " << generate_verilog_port(VERILOG_PORT_CONKT, mem_inv_port);
fp << ", " << generate_verilog_port(VERILOG_PORT_CONKT, output_port);
fp << ");" << std::endl;
}
/* Transmission gates are connected to each input and also the output*/
fp << "\t" << circuit_lib.model_name(tgate_model) << " " << circuit_lib.model_prefix(tgate_model) << "_1 ";
/* Dump explicit port map if required */
if (true == circuit_lib.dump_explicit_port_map(tgate_model)) {
fp << " (";
fp << " ." << circuit_lib.port_lib_name(tgate_input_ports[0]) << "(" << "in[1]" << "),";
fp << " ." << circuit_lib.port_lib_name(tgate_input_ports[1]) << "(" << generate_verilog_port(VERILOG_PORT_CONKT, mem_inv_port) << "),";
fp << " ." << circuit_lib.port_lib_name(tgate_input_ports[2]) << "(" << generate_verilog_port(VERILOG_PORT_CONKT, mem_port) << "),";
fp << " ." << circuit_lib.port_lib_name(tgate_output_ports[0]) << "(" << generate_verilog_port(VERILOG_PORT_CONKT, output_port) << ")";
fp << ");" << std::endl;
} else {
fp << " (";
fp << generate_verilog_port(VERILOG_PORT_CONKT, input_port);
fp << ", " << generate_verilog_port(VERILOG_PORT_CONKT, mem_inv_port);
fp << ", " << generate_verilog_port(VERILOG_PORT_CONKT, mem_port);
fp << ", " << generate_verilog_port(VERILOG_PORT_CONKT, output_port);
fp << ");" << std::endl;
}
} else {
/* Other cases, we need to follow the rules:
* When mem[k] is enabled, switch on input[k]
* Only one memory bit is enabled!
*/
for (size_t i = 0; i < num_mems; i++) {
fp << "\t" << circuit_lib.model_name(tgate_model) << " " << circuit_lib.model_prefix(tgate_model) << "_" << i << " ";
if (true == circuit_lib.dump_explicit_port_map(tgate_model)) {
fp << " (";
fp << " ." << circuit_lib.port_lib_name(tgate_input_ports[0]) << "(" << "in[" << i << "]" << "),";
fp << " ." << circuit_lib.port_lib_name(tgate_input_ports[1]) << "(" << "mem[" << i << "]" << "),";
fp << " ." << circuit_lib.port_lib_name(tgate_input_ports[2]) << "(" << "mem_inv[" << i << "]" << "),";
fp << " ." << circuit_lib.port_lib_name(tgate_output_ports[0]) << "(" << generate_verilog_port(VERILOG_PORT_CONKT, output_port) << ")";
fp << ");" << std::endl;
} else {
fp << " (";
fp << "in[" << i << "]";
fp << ", " << "mem[" << i << "]";
fp << ", " << "mem_inv[" << i << "]";
fp << ", " << generate_verilog_port(VERILOG_PORT_CONKT, output_port);
fp << ");" << std::endl;
}
}
}
/* Put an end to the Verilog module */
print_verilog_module_end(fp, module_name);
}
/***********************************************
* Generate Verilog codes modeling an branch circuit
* for a multiplexer with the given size
**********************************************/
static
void generate_verilog_mux_branch_module(ModuleManager& module_manager,
const CircuitLibrary& circuit_lib,
std::fstream& fp,
const CircuitModelId& circuit_model,
const size_t& mux_size,
const MuxGraph& mux_graph) {
std::string module_name = generate_verilog_mux_branch_subckt_name(circuit_lib, circuit_model, mux_size, mux_graph.num_inputs(), verilog_mux_basis_posfix);
/* Multiplexers built with different technology is in different organization */
switch (circuit_lib.design_tech_type(circuit_model)) {
case SPICE_MODEL_DESIGN_CMOS:
if (true == circuit_lib.dump_structural_verilog(circuit_model)) {
generate_verilog_cmos_mux_branch_module_structural(module_manager, circuit_lib, fp, circuit_model, module_name, mux_graph);
} else {
/*
dump_verilog_cmos_mux_one_basis_module(fp, mux_basis_subckt_name,
mux_size,
num_input_basis_subckt,
cur_spice_model,
special_basis);
*/
}
break;
case SPICE_MODEL_DESIGN_RRAM:
/* If requested, we can dump structural verilog for basis module */
/*
if (true == circuit_lib.dump_structural_verilog(circuit_model)) {
dump_verilog_rram_mux_one_basis_module_structural(fp, mux_basis_subckt_name,
num_input_basis_subckt,
cur_spice_model);
} else {
dump_verilog_rram_mux_one_basis_module(fp, mux_basis_subckt_name,
num_input_basis_subckt,
cur_spice_model);
}
*/
break;
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(FILE:%s,LINE[%d]) Invalid design technology of multiplexer (name: %s)\n",
__FILE__, __LINE__, circuit_lib.model_name(circuit_model).c_str());
exit(1);
}
return;
}
/***********************************************
* Generate Verilog modules for all the unique
* multiplexers in the FPGA device
**********************************************/
void print_verilog_submodule_muxes(ModuleManager& module_manager,
const MuxLibrary& mux_lib,
const CircuitLibrary& circuit_lib,
t_sram_orgz_info* cur_sram_orgz_info,
char* verilog_dir,
char* submodule_dir) {
/* TODO: Generate modules into a .bak file now. Rename after it is verified */
std::string verilog_fname(my_strcat(submodule_dir, muxes_verilog_file_name));
verilog_fname += ".bak";
/* Create the file stream */
std::fstream fp;
fp.open(verilog_fname, std::fstream::out | std::fstream::trunc);
check_file_handler(fp);
/* Print out debugging information for if the file is not opened/created properly */
vpr_printf(TIO_MESSAGE_INFO,
"Creating Verilog netlist for Multiplexers (%s) ...\n",
verilog_fname.c_str());
print_verilog_file_header(fp, "Multiplexers");
print_verilog_include_defines_preproc_file(fp, verilog_dir);
/* Generate basis sub-circuit for unique branches shared by the multiplexers */
for (auto mux : mux_lib.muxes()) {
const MuxGraph& mux_graph = mux_lib.mux_graph(mux);
CircuitModelId mux_circuit_model = mux_lib.mux_circuit_model(mux);
/* Create a mux graph for the branch circuit */
std::vector<MuxGraph> branch_mux_graphs = mux_graph.build_mux_branch_graphs();
/* Create branch circuits, which are N:1 one-level or 2:1 tree-like MUXes */
for (auto branch_mux_graph : branch_mux_graphs) {
generate_verilog_mux_branch_module(module_manager, circuit_lib, fp, mux_circuit_model,
mux_graph.num_inputs(), branch_mux_graph);
}
}
/* Dump MUX graph one by one */
/* Close the file steam */
fp.close();
/* TODO:
* Scan-chain configuration circuit does not need any BLs/WLs!
* SRAM MUX does not need any reserved BL/WLs!
*/
/* Determine reserved Bit/Word Lines if a memory bank is specified,
* At least 1 BL/WL should be reserved!
*/
try_update_sram_orgz_info_reserved_blwl(cur_sram_orgz_info,
mux_lib.max_mux_size(), mux_lib.max_mux_size());
/* TODO: Add fname to the linked list when debugging is finished */
/*
submodule_verilog_subckt_file_path_head = add_one_subckt_file_name_to_llist(submodule_verilog_subckt_file_path_head, verilog_name);
*/
}