/*********************************************** * This file includes functions to generate * Verilog submodules for multiplexers. * including both fundamental submodules * such as a branch in a multiplexer * and the full multiplexer **********************************************/ #include #include "util.h" #include "vtr_assert.h" /* Device-level header files */ #include "mux_graph.h" #include "module_manager.h" #include "physical_types.h" #include "vpr_types.h" /* FPGA-X2P context header files */ #include "spice_types.h" #include "fpga_x2p_naming.h" #include "fpga_x2p_utils.h" /* FPGA-Verilog context header files */ #include "verilog_global.h" #include "verilog_writer_utils.h" #include "verilog_mux.h" /********************************************************************* * Generate structural Verilog codes (consist of transmission-gates or * pass-transistor) modeling an branch circuit * for a multiplexer with the given size *********************************************************************/ static void generate_verilog_cmos_mux_branch_body_structural(ModuleManager& module_manager, const CircuitLibrary& circuit_lib, std::fstream& fp, const CircuitModelId& tgate_model, const ModuleId& module_id, const BasicPort& input_port, const BasicPort& output_port, const BasicPort& mem_port, const BasicPort& mem_inv_port, const MuxGraph& mux_graph) { /* Make sure we have a valid file handler*/ check_file_handler(fp); /* Get the module id of tgate in Module manager */ ModuleId tgate_module_id = module_manager.find_module(circuit_lib.model_name(tgate_model)); VTR_ASSERT(ModuleId::INVALID() != tgate_module_id); /* TODO: move to check_circuit_library? Get model ports of tgate */ std::vector tgate_input_ports = circuit_lib.model_ports_by_type(tgate_model, SPICE_MODEL_PORT_INPUT, true); std::vector tgate_output_ports = circuit_lib.model_ports_by_type(tgate_model, SPICE_MODEL_PORT_OUTPUT, true); VTR_ASSERT(3 == tgate_input_ports.size()); VTR_ASSERT(1 == tgate_output_ports.size()); /* Verilog Behavior description for a MUX */ print_verilog_comment(fp, std::string("---- Structure-level description -----")); /* Output the netlist following the connections in mux_graph */ /* Iterate over the inputs */ for (const auto& mux_input : mux_graph.inputs()) { BasicPort cur_input_port(input_port.get_name(), size_t(mux_graph.input_id(mux_input)), size_t(mux_graph.input_id(mux_input))); /* Iterate over the outputs */ for (const auto& mux_output : mux_graph.outputs()) { BasicPort cur_output_port(output_port.get_name(), size_t(mux_graph.output_id(mux_output)), size_t(mux_graph.output_id(mux_output))); /* if there is a connection between the input and output, a tgate will be outputted */ std::vector edges = mux_graph.find_edges(mux_input, mux_output); /* There should be only one edge or no edge*/ VTR_ASSERT((1 == edges.size()) || (0 == edges.size())); /* No need to output tgates if there are no edges between two nodes */ if (0 == edges.size()) { continue; } /* TODO: Output a tgate use a module manager */ /* Create a port-to-port name map */ std::map port2port_name_map; /* input port */ port2port_name_map[circuit_lib.port_lib_name(tgate_input_ports[0])] = cur_input_port; /* output port */ port2port_name_map[circuit_lib.port_lib_name(tgate_output_ports[0])] = cur_output_port; /* Find the mem_id controlling the edge */ MuxMemId mux_mem = mux_graph.find_edge_mem(edges[0]); BasicPort cur_mem_port(mem_port.get_name(), size_t(mux_mem), size_t(mux_mem)); BasicPort cur_mem_inv_port(mem_inv_port.get_name(), size_t(mux_mem), size_t(mux_mem)); /* mem port */ if (false == mux_graph.is_edge_use_inv_mem(edges[0])) { /* wire mem to mem of module, and wire mem_inv to mem_inv of module */ port2port_name_map[circuit_lib.port_lib_name(tgate_input_ports[1])] = cur_mem_port; port2port_name_map[circuit_lib.port_lib_name(tgate_input_ports[2])] = cur_mem_inv_port; } else { /* wire mem_inv to mem of module, wire mem to mem_inv of module */ port2port_name_map[circuit_lib.port_lib_name(tgate_input_ports[1])] = cur_mem_inv_port; port2port_name_map[circuit_lib.port_lib_name(tgate_input_ports[2])] = cur_mem_port; } /* Output an instance of the module */ print_verilog_module_instance(fp, module_manager, module_id, tgate_module_id, port2port_name_map, circuit_lib.dump_explicit_port_map(tgate_model)); /* IMPORTANT: this update MUST be called after the instance outputting!!!! * update the module manager with the relationship between the parent and child modules */ module_manager.add_child_module(module_id, tgate_module_id); } } } /********************************************************************* * Generate behavior-level Verilog codes modeling an branch circuit * for a multiplexer with the given size *********************************************************************/ static void generate_verilog_cmos_mux_branch_body_behavioral(std::fstream& fp, const BasicPort& input_port, const BasicPort& output_port, const BasicPort& mem_port, const MuxGraph& mux_graph, const size_t& default_mem_val) { /* Make sure we have a valid file handler*/ check_file_handler(fp); /* Verilog Behavior description for a MUX */ print_verilog_comment(fp, std::string("---- Behavioral-level description -----")); /* Add an internal register for the output */ BasicPort outreg_port("out_reg", mux_graph.num_outputs()); /* Print the port */ fp << "\t" << generate_verilog_port(VERILOG_PORT_REG, outreg_port) << ";" << std::endl; /* Generate the case-switch table */ fp << "\talways @(" << generate_verilog_port(VERILOG_PORT_CONKT, input_port) << ", " << generate_verilog_port(VERILOG_PORT_CONKT, mem_port) << ")" << std::endl; fp << "\tcase (" << generate_verilog_port(VERILOG_PORT_CONKT, mem_port) << ")" << std::endl; /* Output the netlist following the connections in mux_graph */ /* Iterate over the inputs */ for (const auto& mux_input : mux_graph.inputs()) { BasicPort cur_input_port(input_port.get_name(), size_t(mux_graph.input_id(mux_input)), size_t(mux_graph.input_id(mux_input))); /* Iterate over the outputs */ for (const auto& mux_output : mux_graph.outputs()) { BasicPort cur_output_port(output_port.get_name(), size_t(mux_graph.output_id(mux_output)), size_t(mux_graph.output_id(mux_output))); /* if there is a connection between the input and output, a tgate will be outputted */ std::vector edges = mux_graph.find_edges(mux_input, mux_output); /* There should be only one edge or no edge*/ VTR_ASSERT((1 == edges.size()) || (0 == edges.size())); /* No need to output tgates if there are no edges between two nodes */ if (0 == edges.size()) { continue; } /* For each case, generate the logic levels for all the inputs */ /* In each case, only one mem is enabled */ fp << "\t\t" << mem_port.get_width() << "'b"; std::string case_code(mem_port.get_width(), default_mem_val); /* Find the mem_id controlling the edge */ MuxMemId mux_mem = mux_graph.find_edge_mem(edges[0]); /* Flip a bit by the mem_id */ if (false == mux_graph.is_edge_use_inv_mem(edges[0])) { case_code[size_t(mux_mem)] = '1'; } else { case_code[size_t(mux_mem)] = '0'; } fp << case_code << ": " << generate_verilog_port(VERILOG_PORT_CONKT, outreg_port) << " <= "; fp << generate_verilog_port(VERILOG_PORT_CONKT, cur_input_port) << ";" << std::endl; } } /* Default case: outputs are at high-impedance state 'z' */ std::string default_case(mux_graph.num_outputs(), 'z'); fp << "\t\tdefault: " << generate_verilog_port(VERILOG_PORT_CONKT, outreg_port) << " <= "; fp << mux_graph.num_outputs() << "'b" << default_case << ";" << std::endl; /* End the case */ fp << "\tendcase" << std::endl; /* Wire registers to output ports */ fp << "\tassign " << generate_verilog_port(VERILOG_PORT_CONKT, output_port) << " = "; fp << generate_verilog_port(VERILOG_PORT_CONKT, outreg_port) << ";" << std::endl; } /********************************************************************* * Generate Verilog codes modeling an branch circuit * for a multiplexer with the given size * Support structural and behavioral Verilog codes *********************************************************************/ static void generate_verilog_cmos_mux_branch_module(ModuleManager& module_manager, const CircuitLibrary& circuit_lib, std::fstream& fp, const CircuitModelId& circuit_model, const std::string& module_name, const MuxGraph& mux_graph, const bool& use_structural_verilog) { /* Get the tgate model */ CircuitModelId tgate_model = circuit_lib.pass_gate_logic_model(circuit_model); /* Skip output if the tgate model is a MUX2, it is handled by essential-gate generator */ if (SPICE_MODEL_GATE == circuit_lib.model_type(tgate_model)) { VTR_ASSERT(SPICE_MODEL_GATE_MUX2 == circuit_lib.gate_type(tgate_model)); return; } std::vector tgate_global_ports = circuit_lib.model_global_ports_by_type(tgate_model, SPICE_MODEL_PORT_INPUT, true); /* Make sure we have a valid file handler*/ check_file_handler(fp); /* Generate the Verilog netlist according to the mux_graph */ /* Find out the number of inputs */ size_t num_inputs = mux_graph.num_inputs(); /* Find out the number of outputs */ size_t num_outputs = mux_graph.num_outputs(); /* Find out the number of memory bits */ size_t num_mems = mux_graph.num_memory_bits(); /* Check codes to ensure the port of Verilog netlists will match */ /* MUX graph must have only 1 output */ VTR_ASSERT(1 == num_outputs); /* MUX graph must have only 1 level*/ VTR_ASSERT(1 == mux_graph.num_levels()); /* Create a Verilog Module based on the circuit model, and add to module manager */ ModuleId module_id = module_manager.add_module(module_name); VTR_ASSERT(ModuleId::INVALID() != module_id); /* Add module ports */ /* Add each global port */ for (const auto& port : tgate_global_ports) { /* Configure each global port */ BasicPort global_port(circuit_lib.port_lib_name(port), circuit_lib.port_size(port)); module_manager.add_port(module_id, global_port, ModuleManager::MODULE_GLOBAL_PORT); } /* Add each input port */ BasicPort input_port("in", num_inputs); module_manager.add_port(module_id, input_port, ModuleManager::MODULE_INPUT_PORT); /* Add each output port */ BasicPort output_port("out", num_outputs); module_manager.add_port(module_id, output_port, ModuleManager::MODULE_OUTPUT_PORT); /* Add each memory port */ BasicPort mem_port("mem", num_mems); module_manager.add_port(module_id, mem_port, ModuleManager::MODULE_INPUT_PORT); BasicPort mem_inv_port("mem_inv", num_mems); module_manager.add_port(module_id, mem_inv_port, ModuleManager::MODULE_INPUT_PORT); /* dump module definition + ports */ print_verilog_module_declaration(fp, module_manager, module_id); /* Print the internal logic in either structural or behavioral Verilog codes */ if (true == use_structural_verilog) { generate_verilog_cmos_mux_branch_body_structural(module_manager, circuit_lib, fp, tgate_model, module_id, input_port, output_port, mem_port, mem_inv_port, mux_graph); } else { VTR_ASSERT_SAFE(false == use_structural_verilog); /* Get the default value of SRAM ports */ std::vector sram_ports = circuit_lib.model_ports_by_type(circuit_model, SPICE_MODEL_PORT_SRAM, true); std::vector non_mode_select_sram_ports; /* We should have only have 1 sram port except those are mode_bits */ for (const auto& port : sram_ports) { if (true == circuit_lib.port_is_mode_select(port)) { continue; } non_mode_select_sram_ports.push_back(port); } VTR_ASSERT(1 == non_mode_select_sram_ports.size()); std::string mem_default_val = std::to_string(circuit_lib.port_default_value(non_mode_select_sram_ports[0])); /* Mem string must be only 1-bit! */ VTR_ASSERT(1 == mem_default_val.length()); generate_verilog_cmos_mux_branch_body_behavioral(fp, input_port, output_port, mem_port, mux_graph, mem_default_val[0]); } /* Put an end to the Verilog module */ print_verilog_module_end(fp, module_name); } /*********************************************** * Generate Verilog codes modeling an branch circuit * for a multiplexer with the given size **********************************************/ static void generate_verilog_mux_branch_module(ModuleManager& module_manager, const CircuitLibrary& circuit_lib, std::fstream& fp, const CircuitModelId& circuit_model, const size_t& mux_size, const MuxGraph& mux_graph) { std::string module_name = generate_verilog_mux_branch_subckt_name(circuit_lib, circuit_model, mux_size, mux_graph.num_inputs(), verilog_mux_basis_posfix); /* Multiplexers built with different technology is in different organization */ switch (circuit_lib.design_tech_type(circuit_model)) { case SPICE_MODEL_DESIGN_CMOS: generate_verilog_cmos_mux_branch_module(module_manager, circuit_lib, fp, circuit_model, module_name, mux_graph, circuit_lib.dump_structural_verilog(circuit_model)); break; case SPICE_MODEL_DESIGN_RRAM: /* If requested, we can dump structural verilog for basis module */ /* if (true == circuit_lib.dump_structural_verilog(circuit_model)) { dump_verilog_rram_mux_one_basis_module_structural(fp, mux_basis_subckt_name, num_input_basis_subckt, cur_spice_model); } else { dump_verilog_rram_mux_one_basis_module(fp, mux_basis_subckt_name, num_input_basis_subckt, cur_spice_model); } */ break; default: vpr_printf(TIO_MESSAGE_ERROR, "(FILE:%s,LINE[%d]) Invalid design technology of multiplexer (name: %s)\n", __FILE__, __LINE__, circuit_lib.model_name(circuit_model).c_str()); exit(1); } return; } /*********************************************** * Generate Verilog modules for all the unique * multiplexers in the FPGA device **********************************************/ void print_verilog_submodule_muxes(ModuleManager& module_manager, const MuxLibrary& mux_lib, const CircuitLibrary& circuit_lib, t_sram_orgz_info* cur_sram_orgz_info, char* verilog_dir, char* submodule_dir) { /* TODO: Generate modules into a .bak file now. Rename after it is verified */ std::string verilog_fname(my_strcat(submodule_dir, muxes_verilog_file_name)); verilog_fname += ".bak"; /* Create the file stream */ std::fstream fp; fp.open(verilog_fname, std::fstream::out | std::fstream::trunc); check_file_handler(fp); /* Print out debugging information for if the file is not opened/created properly */ vpr_printf(TIO_MESSAGE_INFO, "Creating Verilog netlist for Multiplexers (%s) ...\n", verilog_fname.c_str()); print_verilog_file_header(fp, "Multiplexers"); print_verilog_include_defines_preproc_file(fp, verilog_dir); /* Generate basis sub-circuit for unique branches shared by the multiplexers */ for (auto mux : mux_lib.muxes()) { const MuxGraph& mux_graph = mux_lib.mux_graph(mux); CircuitModelId mux_circuit_model = mux_lib.mux_circuit_model(mux); /* Create a mux graph for the branch circuit */ std::vector branch_mux_graphs = mux_graph.build_mux_branch_graphs(); /* Create branch circuits, which are N:1 one-level or 2:1 tree-like MUXes */ for (auto branch_mux_graph : branch_mux_graphs) { generate_verilog_mux_branch_module(module_manager, circuit_lib, fp, mux_circuit_model, mux_graph.num_inputs(), branch_mux_graph); } } /* Dump MUX graph one by one */ /* Close the file steam */ fp.close(); /* TODO: * Scan-chain configuration circuit does not need any BLs/WLs! * SRAM MUX does not need any reserved BL/WLs! */ /* Determine reserved Bit/Word Lines if a memory bank is specified, * At least 1 BL/WL should be reserved! */ try_update_sram_orgz_info_reserved_blwl(cur_sram_orgz_info, mux_lib.max_mux_size(), mux_lib.max_mux_size()); /* TODO: Add fname to the linked list when debugging is finished */ /* submodule_verilog_subckt_file_path_head = add_one_subckt_file_name_to_llist(submodule_verilog_subckt_file_path_head, verilog_name); */ }