OpenFPGA/openfpga/src/fpga_verilog/verilog_decoders.cpp

418 lines
19 KiB
C++
Raw Normal View History

/***************************************************************************************
* This file includes functions to generate Verilog modules of decoders
***************************************************************************************/
#include <string>
/* Headers from vtrutil library */
#include "vtr_assert.h"
#include "vtr_log.h"
/* Headers from openfpgautil library */
#include "openfpga_digest.h"
#include "openfpga_decode.h"
#include "decoder_library_utils.h"
#include "module_manager.h"
#include "openfpga_reserved_words.h"
#include "openfpga_naming.h"
#include "verilog_constants.h"
#include "verilog_writer_utils.h"
#include "verilog_decoders.h"
/* begin namespace openfpga */
namespace openfpga {
/***************************************************************************************
* Create a Verilog module for a decoder with a given output size
*
* Inputs
* | | ... |
* v v v
* +-----------+
* / \
* / Decoder \
* +-----------------+
* | | | ... | | |
* v v v v v v
* Outputs
*
* The outputs are assumes to be one-hot codes (at most only one '1' exist)
* Considering this fact, there are only num_of_outputs conditions to be encoded.
* Therefore, the number of inputs is ceil(log(num_of_outputs)/log(2))
***************************************************************************************/
static
void print_verilog_mux_local_decoder_module(std::fstream& fp,
const ModuleManager& module_manager,
const DecoderLibrary& decoder_lib,
const DecoderId& decoder) {
/* Get the number of inputs */
size_t addr_size = decoder_lib.addr_size(decoder);
size_t data_size = decoder_lib.data_size(decoder);
/* Validate the FILE handler */
VTR_ASSERT(true == valid_file_stream(fp));
/* TODO: create a name for the local encoder */
std::string module_name = generate_mux_local_decoder_subckt_name(addr_size, data_size);
/* Create a Verilog Module based on the circuit model, and add to module manager */
ModuleId module_id = module_manager.find_module(module_name);
VTR_ASSERT(true == module_manager.valid_module_id(module_id));
/* Add module ports */
/* Add each input port */
BasicPort addr_port(generate_mux_local_decoder_addr_port_name(), addr_size);
/* Add each output port */
BasicPort data_port(generate_mux_local_decoder_data_port_name(), data_size);
/* Data port is registered. It should be outputted as
* output reg [lsb:msb] data
*/
/* Add data_in port */
BasicPort data_inv_port(generate_mux_local_decoder_data_inv_port_name(), data_size);
VTR_ASSERT(true == decoder_lib.use_data_inv_port(decoder));
/* dump module definition + ports */
print_verilog_module_declaration(fp, module_manager, module_id);
/* Finish dumping ports */
print_verilog_comment(fp, std::string("----- BEGIN Verilog codes for Decoder convert " + std::to_string(addr_size) + "-bit addr to " + std::to_string(data_size) + "-bit data -----"));
/* Print the truth table of this decoder */
/* Internal logics */
/* Early exit: Corner case for data size = 1 the logic is very simple:
* data = addr;
* data_inv = ~data_inv
*/
if (1 == data_size) {
print_verilog_wire_connection(fp, data_port, addr_port, false);
print_verilog_wire_connection(fp, data_inv_port, addr_port, true);
print_verilog_comment(fp, std::string("----- END Verilog codes for Decoder convert " + std::to_string(addr_size) + "-bit addr to " + std::to_string(data_size) + "-bit data -----"));
/* Put an end to the Verilog module */
print_verilog_module_end(fp, module_name);
return;
}
/* We use a magic number -1 as the addr=1 should be mapped to ...1
* Otherwise addr will map addr=1 to ..10
* Note that there should be a range for the shift operators
* We should narrow the encoding to be applied to a given set of data
* This will lead to that any addr which falls out of the op code of data
* will give a all-zero code
* For example:
* data is 5-bit while addr is 3-bit
* data=8'b0_0000 will be encoded to addr=3'b001;
* data=8'b0_0001 will be encoded to addr=3'b010;
* data=8'b0_0010 will be encoded to addr=3'b011;
* data=8'b0_0100 will be encoded to addr=3'b100;
* data=8'b0_1000 will be encoded to addr=3'b101;
* data=8'b1_0000 will be encoded to addr=3'b110;
* The rest of addr codes 3'b110, 3'b111 will be decoded to data=8'b0_0000;
*/
fp << "\t" << "always@(" << generate_verilog_port(VERILOG_PORT_CONKT, addr_port) << ")" << std::endl;
fp << "\t" << "case (" << generate_verilog_port(VERILOG_PORT_CONKT, addr_port) << ")" << std::endl;
/* Create a string for addr and data */
for (size_t i = 0; i < data_size; ++i) {
fp << "\t\t" << generate_verilog_constant_values(itobin_vec(i, addr_size));
fp << " : ";
fp << generate_verilog_port_constant_values(data_port, ito1hot_vec(i, data_size));
fp << ";" << std::endl;
}
fp << "\t\t" << "default : ";
fp << generate_verilog_port_constant_values(data_port, ito1hot_vec(data_size - 1, data_size));
fp << ";" << std::endl;
fp << "\t" << "endcase" << std::endl;
print_verilog_wire_connection(fp, data_inv_port, data_port, true);
print_verilog_comment(fp, std::string("----- END Verilog codes for Decoder convert " + std::to_string(addr_size) + "-bit addr to " + std::to_string(data_size) + "-bit data -----"));
/* Put an end to the Verilog module */
print_verilog_module_end(fp, module_name);
}
/***************************************************************************************
* This function will generate all the unique Verilog modules of local decoders for
* the multiplexers used in a FPGA fabric
* It will reach the goal in two steps:
* 1. Find the unique local decoders w.r.t. the number of inputs/outputs
* We will generate the subgraphs from the multiplexing graph of each multiplexers
* The number of memory bits is the number of outputs.
* From that we can infer the number of inputs of each local decoders.
* Here is an illustrative example of how local decoders are interfaced with multi-level MUXes
*
* +---------+ +---------+
* | Local | | Local |
* | Decoder | | Decoder |
* | A | | B |
* +---------+ +---------+
* | ... | | ... |
* v v v v
* +--------------+ +--------------+
* | MUX Level 0 |--->| MUX Level 1 |
* +--------------+ +--------------+
* 2. Generate local decoder Verilog modules using behavioral description.
* Note that the implementation of local decoders can be dependent on the technology
* and standard cell libraries.
* Therefore, behavioral Verilog is used and the local decoders should be synthesized
* before running the back-end flow for FPGA fabric
* See more details in the function print_verilog_mux_local_decoder() for more details
***************************************************************************************/
void print_verilog_submodule_mux_local_decoders(const ModuleManager& module_manager,
NetlistManager& netlist_manager,
const MuxLibrary& mux_lib,
const CircuitLibrary& circuit_lib,
const std::string& submodule_dir) {
std::string verilog_fname(submodule_dir + std::string(LOCAL_ENCODER_VERILOG_FILE_NAME));
/* Create the file stream */
std::fstream fp;
fp.open(verilog_fname, std::fstream::out | std::fstream::trunc);
check_file_stream(verilog_fname.c_str(), fp);
/* Print out debugging information for if the file is not opened/created properly */
VTR_LOG("Writing Verilog netlist for local decoders for multiplexers '%s'...",
verilog_fname.c_str());
print_verilog_file_header(fp, "Local Decoders for Multiplexers");
/* Create a library for local encoders with different sizes */
DecoderLibrary decoder_lib;
/* Find unique local decoders for unique branches shared by the multiplexers */
for (auto mux : mux_lib.muxes()) {
/* Local decoders are need only when users specify them */
CircuitModelId mux_circuit_model = mux_lib.mux_circuit_model(mux);
/* If this MUX does not need local decoder, we skip it */
if (false == circuit_lib.mux_use_local_encoder(mux_circuit_model)) {
continue;
}
const MuxGraph& mux_graph = mux_lib.mux_graph(mux);
/* Create a mux graph for the branch circuit */
std::vector<MuxGraph> branch_mux_graphs = mux_graph.build_mux_branch_graphs();
/* Add the decoder to the decoder library */
for (auto branch_mux_graph : branch_mux_graphs) {
/* The decoder size depends on the number of memories of a branch MUX.
* Note that only when there are >=2 memories, a decoder is needed
*/
size_t decoder_data_size = branch_mux_graph.num_memory_bits();
if (0 == decoder_data_size) {
continue;
}
/* Try to find if the decoder already exists in the library,
* If there is no such decoder, add it to the library
*/
add_mux_local_decoder_to_library(decoder_lib, decoder_data_size);
}
}
/* Generate Verilog modules for the found unique local encoders */
for (const auto& decoder : decoder_lib.decoders()) {
print_verilog_mux_local_decoder_module(fp, module_manager, decoder_lib, decoder);
}
/* Close the file stream */
fp.close();
/* Add fname to the netlist name list */
NetlistId nlist_id = netlist_manager.add_netlist(verilog_fname);
VTR_ASSERT(NetlistId::INVALID() != nlist_id);
netlist_manager.set_netlist_type(nlist_id, NetlistManager::SUBMODULE_NETLIST);
VTR_LOG("Done\n");
}
/***************************************************************************************
* Create a Verilog module for a decoder used as a configuration protocol
* in FPGA architecture
*
* Address
* | | ... |
* v v v
* +-----------+
* Enable->/ \
* / Decoder \
* +-----------------+
* | | | ... | | |
* v v v v v v
* Data output
*
* The outputs are assumes to be one-hot codes (at most only one '1' exist)
* Considering this fact, there are only num_of_outputs conditions to be encoded.
* Therefore, the number of inputs is ceil(log(num_of_outputs)/log(2))
*
* The decoder has an enable signal which is active at logic '1'.
* When activated, the decoder will output decoding results to the data output port
* Otherwise, the data output port will be always all-zero
***************************************************************************************/
static
void print_verilog_arch_decoder_module(std::fstream& fp,
const ModuleManager& module_manager,
const DecoderLibrary& decoder_lib,
const DecoderId& decoder) {
/* Get the number of inputs */
size_t addr_size = decoder_lib.addr_size(decoder);
size_t data_size = decoder_lib.data_size(decoder);
/* Validate the FILE handler */
VTR_ASSERT(true == valid_file_stream(fp));
/* Create a name for the decoder */
std::string module_name = generate_frame_memory_decoder_subckt_name(addr_size, data_size);
/* Create a Verilog Module based on the circuit model, and add to module manager */
ModuleId module_id = module_manager.find_module(module_name);
VTR_ASSERT(true == module_manager.valid_module_id(module_id));
/* Find module ports */
/* Enable port */
ModulePortId enable_port_id = module_manager.find_module_port(module_id, std::string(DECODER_ENABLE_PORT_NAME));
BasicPort enable_port = module_manager.module_port(module_id, enable_port_id);
/* Address port */
ModulePortId addr_port_id = module_manager.find_module_port(module_id, std::string(DECODER_ADDRESS_PORT_NAME));
BasicPort addr_port = module_manager.module_port(module_id, addr_port_id);
/* Find each output port */
ModulePortId data_port_id = module_manager.find_module_port(module_id, std::string(DECODER_DATA_OUT_PORT_NAME));
BasicPort data_port = module_manager.module_port(module_id, data_port_id);
/* Data port is registered. It should be outputted as
* output reg [lsb:msb] data
*/
BasicPort data_inv_port(std::string(DECODER_DATA_OUT_INV_PORT_NAME), data_size);
if (true == decoder_lib.use_data_inv_port(decoder)) {
ModulePortId data_inv_port_id = module_manager.find_module_port(module_id, std::string(DECODER_DATA_OUT_INV_PORT_NAME));
data_inv_port = module_manager.module_port(module_id, data_inv_port_id);
}
/* dump module definition + ports */
print_verilog_module_declaration(fp, module_manager, module_id);
/* Finish dumping ports */
print_verilog_comment(fp, std::string("----- BEGIN Verilog codes for Decoder convert " + std::to_string(addr_size) + "-bit addr to " + std::to_string(data_size) + "-bit data -----"));
/* Print the truth table of this decoder */
/* Internal logics */
/* Early exit: Corner case for data size = 1 the logic is very simple:
* data = addr;
* data_inv = ~data_inv
*/
if (1 == data_size) {
fp << "always@(" << generate_verilog_port(VERILOG_PORT_CONKT, addr_port) << ") begin" << std::endl;
fp << "\tif (" << generate_verilog_port(VERILOG_PORT_CONKT, enable_port) << " == 1'b1) begin" << std::endl;
fp << "\t";
print_verilog_wire_connection(fp, data_port, addr_port, false);
fp << "\t" << "end" << std::endl;
fp << "end" << std::endl;
/* Depend on if the inverted data output port is needed or not */
if (true == decoder_lib.use_data_inv_port(decoder)) {
print_verilog_wire_connection(fp, data_inv_port, addr_port, true);
}
print_verilog_comment(fp, std::string("----- END Verilog codes for Decoder convert " + std::to_string(addr_size) + "-bit addr to " + std::to_string(data_size) + "-bit data -----"));
/* Put an end to the Verilog module */
print_verilog_module_end(fp, module_name);
return;
}
/* We use a magic number -1 as the addr=1 should be mapped to ...1
* Otherwise addr will map addr=1 to ..10
* Note that there should be a range for the shift operators
* We should narrow the encoding to be applied to a given set of data
* This will lead to that any addr which falls out of the op code of data
* will give a all-zero code
* For example:
* data is 5-bit while addr is 3-bit
* data=8'b0_0000 will be encoded to addr=3'b001;
* data=8'b0_0001 will be encoded to addr=3'b010;
* data=8'b0_0010 will be encoded to addr=3'b011;
* data=8'b0_0100 will be encoded to addr=3'b100;
* data=8'b0_1000 will be encoded to addr=3'b101;
* data=8'b1_0000 will be encoded to addr=3'b110;
* The rest of addr codes 3'b110, 3'b111 will be decoded to data=8'b0_0000;
*/
fp << "always@(" << generate_verilog_port(VERILOG_PORT_CONKT, addr_port) << ") begin" << std::endl;
fp << "\tif (" << generate_verilog_port(VERILOG_PORT_CONKT, enable_port) << " == 1'b1) begin" << std::endl;
fp << "\t\t" << "case (" << generate_verilog_port(VERILOG_PORT_CONKT, addr_port) << ")" << std::endl;
/* Create a string for addr and data */
for (size_t i = 0; i < data_size; ++i) {
fp << "\t\t\t" << generate_verilog_constant_values(itobin_vec(i, addr_size));
fp << " : ";
fp << generate_verilog_port_constant_values(data_port, ito1hot_vec(i, data_size));
fp << ";" << std::endl;
}
/* Different from the MUX encoders, architecture decoders will output all-zero by default!!! */
fp << "\t\t\t" << "default : ";
fp << generate_verilog_port_constant_values(data_port, ito1hot_vec(data_size, data_size));
fp << ";" << std::endl;
fp << "\t\t" << "endcase" << std::endl;
fp << "\t" << "end" << std::endl;
/* If not enabled, we output all-zero */
fp << "\t" << "else begin" << std::endl;
fp << "\t\t" << generate_verilog_port_constant_values(data_port, ito1hot_vec(data_size, data_size)) << ";"<< std::endl;
fp << "\t" << "end" << std::endl;
fp << "end" << std::endl;
if (true == decoder_lib.use_data_inv_port(decoder)) {
print_verilog_wire_connection(fp, data_inv_port, data_port, true);
}
print_verilog_comment(fp, std::string("----- END Verilog codes for Decoder convert " + std::to_string(addr_size) + "-bit addr to " + std::to_string(data_size) + "-bit data -----"));
/* Put an end to the Verilog module */
print_verilog_module_end(fp, module_name);
}
/***************************************************************************************
* This function will generate all the unique Verilog modules of decoders for
* configuration protocols in a FPGA fabric
* It will generate these decoder Verilog modules using behavioral description.
* Note that the implementation of local decoders can be dependent on the technology
* and standard cell libraries.
* Therefore, behavioral Verilog is used and the local decoders should be synthesized
* before running the back-end flow for FPGA fabric
* See more details in the function print_verilog_arch_decoder() for more details
***************************************************************************************/
void print_verilog_submodule_arch_decoders(const ModuleManager& module_manager,
NetlistManager& netlist_manager,
const DecoderLibrary& decoder_lib,
const std::string& submodule_dir) {
std::string verilog_fname(submodule_dir + std::string(ARCH_ENCODER_VERILOG_FILE_NAME));
/* Create the file stream */
std::fstream fp;
fp.open(verilog_fname, std::fstream::out | std::fstream::trunc);
check_file_stream(verilog_fname.c_str(), fp);
/* Print out debugging information for if the file is not opened/created properly */
VTR_LOG("Writing Verilog netlist for configuration decoders '%s'...",
verilog_fname.c_str());
print_verilog_file_header(fp, "Decoders for fabric configuration protocol ");
/* Generate Verilog modules for the found unique local encoders */
for (const auto& decoder : decoder_lib.decoders()) {
print_verilog_arch_decoder_module(fp, module_manager, decoder_lib, decoder);
}
/* Close the file stream */
fp.close();
/* Add fname to the netlist name list */
NetlistId nlist_id = netlist_manager.add_netlist(verilog_fname);
VTR_ASSERT(NetlistId::INVALID() != nlist_id);
netlist_manager.set_netlist_type(nlist_id, NetlistManager::SUBMODULE_NETLIST);
VTR_LOG("Done\n");
}
} /* end namespace openfpga */