This works around some side effects of the -rtos hack, namely that we
were unable to set hardware breakpoints on harts whose misa differed
from the first one. There may be other bugs like this one lurking
elsewhere. The only proper solution is for gdb to have a better user
interface when talking to a server that exposes multiple targets, but
that's a very big project.
This fixes#194.
Change-Id: I81aedddeaa922d220e936730e9c731545953ae21
This allows a user to tell OpenOCD to prefer system bus access for
memory access, which can be useful for testing, or when there really is
a difference in behavior.
Change-Id: I8c2f15b89a2ccdae568c68ee743b75a74f9ad6bd
Mostly addresses #207.
Also changed dmi_read() to return an error, and fixed all the call sites
to propagate that error if possible.
Change-Id: Ie6fd1f9e7eb46ff92cdb5021a7311ea7334904f1
They can be used to authenticate to a Debug Module.
There's a bit of a chicken and egg problem here, because the RISCV
commands aren't available until the target is initialized, but
initialization involves examine(), which can't interact with the target
until authentication has happened. So to use this you run `init`, which
will print out an error, and then run the `riscv authdata_read` and
`riscv authdata_write` commands. When authdata_write() notices that the
authenticated bit went high, it will call examine() again.
Example usage (very simple challenge-response protocol):
```
init
set challenge [ocd_riscv authdata_read]
riscv authdata_write [expr $challenge + 1]
reset halt
```
Change-Id: Id9ead00a7eca111e5ec879c4af4586c30af51f4d
... by disabling all triggers, single stepping, enabling them, and then
resuming as usual. Without this change, you'd just be stuck on an
address trigger and would have to manually disable it.
Change-Id: I5834984671baa6b64f72e533c4aa94555c64617e
Because there is no instruction that moves just half of a 64-bit FPR
to/from a GPR, we need to use scratch memory for this operation. This
code can theoretically use:
1. DMI_DATA, if it is memory mapped in the target.
2. DMI_PROGBUF, if it is writable in the target.
3. A user-configured address.
I have only tested this code very lightly. One reason is that gdb thinks
that on RV32 harts every register is 32 bits wide. Another is that this
is mostly proof-of-concept to satisfy the small program buffer code
review, which I don't want to drag out forever.
Existing tests don't realize that floating support was broken with
RV32D, and don't realize that it still doesn't work because of the gdb
problem mentioned above.
This change improves Issue #110 but there's more work to be done.
Change-Id: I99b8a36e5fea26f1d9e16e36cf99adc7be26b944
The actual implementation of triggers didn't change between those two
versions, so there's no need to duplicate the code.
In the process, I also fixed a minor multicore bug where tselect didn't
always get written on all harts.
When first connecting to a target, have the debugger disable any
hardware triggers that are set by a previously connected debugger.
The 0.11 code already did this, but 0.13 did not.
To achieve this I decided to share the code to enumerate triggers
between 0.11 and 0.13, which required me to implement get_register() and
set_register() for 0.11, which made the whole change a lot larger than
you might have guessed.
Hopefully this sets us up to in the future share the code to set/remove
triggers as well.
Rather than having a bunch of "if rtos" stuff, I now just check "if
hart_enabled". This makes some code paths cleaner, all of which were
buggy in the non-RTOS multi-hart mode.
Main change is to make riscv_addr_t be unsigned. The rest is mechanical
fixing of types, print statements, and a few signed/unsigned compares.
Smoketest indicates everything is working more or less as before.
I thought OpenOCD did this, but it looks like that doesn't happen when
runningi in RTOS mode. With this I can get to the end of most of the
RTOS tests, but they SIGINT instead of exiting.
This is a major rewrite of the RISC-V v0.13 OpenOCD port. This
shouldn't have any meaningful effect on the v0.11 support, but it does
add generic versions of many functions that will allow me to later
refactor the v0.11 support so it's easier to maintain both ports. This
started as an emergency feature branch and went on for a long time, so
it's all been squashed down into one commit so there isn't a big set of
broken commits lying around. The changes are:
* You can pass "-rtos riscv" to the target in OpenOCD's configuration
file, which enables multi-hart mode. This uses OpenOCD's RTOS
support to control all the harts from the debug module using commands
like "info threads" in GDB. This support is still expermental.
* There is support for RV64I, but due to OpenOCD limitations we only
support 32-bit physical addresses. I hope to remedy this by rebasing
onto the latest OpenOCD release, which I've heard should fix this.
* This matches the latest draft version of the RISC-V debug spec, as of
April 26th. This version fixes a number of spec bugs and should be
close to the final debug spec.