Upgrading to WASI SDK 11.0 caused the WASM build to fail because WASM
does not have signals. (Arguably Yosys was broken even before, it was
just broken silently.)
This can result in massive reduction in runtime, up to 50% depending
on workload. Currently people are using `-mllvm -inline-threshold=`
as a workaround (with clang++), but this solution is more portable.
This was a correctness issue, but one of the consequences is that it
resulted in jumps in generated machine code where there should have
been none. As a side effect of fixing the bug, Minerva SoC became 10%
faster.
Without unbuffering output wires of, at least, toplevel modules, it
is not possible to have most designs that rely on IO via toplevel
ports (as opposed to using exclusively blackboxes) converge within
one delta cycle. That seriously impairs the performance of CXXRTL.
This commit avoids unbuffering outputs of all modules solely so that
in future, CXXRTL could gain fully separate compilation, and not for
any present technical reason.
With this change, it is easier to see which signals carry state (only
wire<>s appear as `reg` in VCD files) and to construct a minimal
checkpoint (CXXRTL_WIRE debug items represent the canonical smallest
set of state required to fully reconstruct the simulation).
Although logically two separate steps, these were treated as one for
historic reasons. Splitting the two makes it possible to have designs
that are only 2× slower than fastest possible (and are without extra
delta cycles) that allow probing all public wires.
Historically, elision was implemented before localization, so levels
with elision are lower than corresponding levels with localization.
This is unfortunate for two reasons:
1. Elision is a logical subset of localization, since it equals to
not giving a name to a temporary.
2. "Localize" currently actually means "unbuffer and localize",
and it would be useful to split those steps (at least for
public wires) for improved design visibility.
Although these options can be thought of as optimizations, they are
essentially orthogonal to the core of -O, which is managing signal
buffering and scope. Going from -O4 to -O2 means going from limited
to complete design visibility, yet in both cases proc and flatten
are desirable.
Before this commit, Verilog expressions like `x && 1` would result in
references to `logic_and_us` in generated CXXRTL code, which would
not compile. After this commit, since cells like that actually behave
the same regardless of signedness attributes, the signedness is
ignored, which also reduces the template instantiation pressure.
Before this commit, `flatten` matched the template objects with
the newly created objects solely by their name. Because of this,
it could be confused by code such as:
module bar();
$dff a();
endmodule
module foo();
bar b();
$dff \b.a ();
endmodule
After this commit, `flatten` avoids every possible case of name
collision.
Fixes#2106.