mirror of https://github.com/YosysHQ/yosys.git
Move (most of) ExOth and ExAdv slides
This commit is contained in:
parent
7ab051778e
commit
8ade2182b0
|
@ -1,6 +1,6 @@
|
|||
all: resources dots tex svg tidy
|
||||
|
||||
RES_LIST:= PRESENTATION_Intro/ PRESENTATION_ExSyn/
|
||||
RES_LIST:= PRESENTATION_Intro/ PRESENTATION_ExSyn/ PRESENTATION_ExAdv/ PRESENTATION_ExOth/
|
||||
RES_DIRS:= $(addprefix ../resources/,$(RES_LIST))
|
||||
.PHONY: resources
|
||||
resources: $(RES_DIRS)
|
||||
|
|
|
@ -1 +1,2 @@
|
|||
*.dot
|
||||
*.pdf
|
|
@ -1,28 +1,29 @@
|
|||
YOSYS = ../../../yosys
|
||||
|
||||
all: select.pdf red_or3x1.pdf sym_mul.pdf mymul.pdf mulshift.pdf addshift.pdf \
|
||||
macc_simple_xmap.pdf macc_xilinx_xmap.pdf
|
||||
|
||||
select.pdf: select.v select.ys
|
||||
../../yosys select.ys
|
||||
$(YOSYS) select.ys
|
||||
|
||||
red_or3x1.pdf: red_or3x1_*
|
||||
../../yosys red_or3x1_test.ys
|
||||
$(YOSYS) red_or3x1_test.ys
|
||||
|
||||
sym_mul.pdf: sym_mul_*
|
||||
../../yosys sym_mul_test.ys
|
||||
$(YOSYS) sym_mul_test.ys
|
||||
|
||||
mymul.pdf: mymul_*
|
||||
../../yosys mymul_test.ys
|
||||
$(YOSYS) mymul_test.ys
|
||||
|
||||
mulshift.pdf: mulshift_*
|
||||
../../yosys mulshift_test.ys
|
||||
$(YOSYS) mulshift_test.ys
|
||||
|
||||
addshift.pdf: addshift_*
|
||||
../../yosys addshift_test.ys
|
||||
$(YOSYS) addshift_test.ys
|
||||
|
||||
macc_simple_xmap.pdf: macc_simple_*.v macc_simple_test.ys
|
||||
../../yosys macc_simple_test.ys
|
||||
$(YOSYS) macc_simple_test.ys
|
||||
|
||||
macc_xilinx_xmap.pdf: macc_xilinx_*.v macc_xilinx_test.ys
|
||||
../../yosys macc_xilinx_test.ys
|
||||
$(YOSYS) macc_xilinx_test.ys
|
||||
|
|
@ -0,0 +1,3 @@
|
|||
*.dot
|
||||
*.pdf
|
||||
*.log
|
|
@ -1,16 +1,17 @@
|
|||
YOSYS = ../../../yosys
|
||||
|
||||
all: scrambler_p01.pdf scrambler_p02.pdf equiv.log axis_test.log
|
||||
|
||||
scrambler_p01.pdf: scrambler.ys scrambler.v
|
||||
../../yosys scrambler.ys
|
||||
$(YOSYS) scrambler.ys
|
||||
|
||||
scrambler_p02.pdf: scrambler_p01.pdf
|
||||
|
||||
equiv.log: equiv.ys
|
||||
../../yosys -l equiv.log_new equiv.ys
|
||||
$(YOSYS) -l equiv.log_new equiv.ys
|
||||
mv equiv.log_new equiv.log
|
||||
|
||||
axis_test.log: axis_test.ys axis_master.v axis_test.v
|
||||
../../yosys -l axis_test.log_new axis_test.ys
|
||||
$(YOSYS) -l axis_test.log_new axis_test.ys
|
||||
mv axis_test.log_new axis_test.log
|
||||
|
|
@ -1,6 +1,251 @@
|
|||
Selections
|
||||
~~~~~~~~~~
|
||||
----------
|
||||
|
||||
.. TODO: copypaste
|
||||
|
||||
|
||||
Most Yosys commands make use of the "selection framework" of Yosys. It can be
|
||||
used to apply commands only to part of the design. For example:
|
||||
|
||||
.. code:: yoscrypt
|
||||
|
||||
delete # will delete the whole design, but
|
||||
|
||||
delete foobar # will only delete the module foobar.
|
||||
|
||||
The ``select`` command can be used to create a selection for subsequent
|
||||
commands. For example:
|
||||
|
||||
.. code:: yoscrypt
|
||||
|
||||
select foobar # select the module foobar
|
||||
delete # delete selected objects
|
||||
select -clear # reset selection (select whole design)
|
||||
|
||||
See :doc:`/cmd/select`
|
||||
|
||||
Also :doc:`/cmd/show` and :doc:`/cmd/dump`
|
||||
How to make a selection
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Selection by object name
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
The easiest way to select objects is by object name. This is usually only done
|
||||
in synthesis scripts that are hand-tailored for a specific design.
|
||||
|
||||
.. code:: yoscrypt
|
||||
|
||||
select foobar # select module foobar
|
||||
select foo* # select all modules whose names start with foo
|
||||
select foo*/bar* # select all objects matching bar* from modules matching foo*
|
||||
select */clk # select objects named clk from all modules
|
||||
|
||||
Module and design context
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Commands can be executed in *module/* or *design/* context. Until now
|
||||
all commands have been executed in design context. The ``cd`` command can be
|
||||
used to switch to module context.
|
||||
|
||||
In module context all commands only effect the active module. Objects in the
|
||||
module are selected without the ``<module_name>/`` prefix. For example:
|
||||
|
||||
.. code:: yoscrypt
|
||||
|
||||
cd foo # switch to module foo
|
||||
delete bar # delete object foo/bar
|
||||
|
||||
cd mycpu # switch to module mycpu
|
||||
dump reg_* # print details on all objects whose names start with reg_
|
||||
|
||||
cd .. # switch back to design
|
||||
|
||||
Note: Most synthesis scripts never switch to module context. But it is a very
|
||||
powerful tool for interactive design investigation.
|
||||
|
||||
Selecting by object property or type
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Special patterns can be used to select by object property or type. For example:
|
||||
|
||||
.. code:: yoscrypt
|
||||
|
||||
select w:reg_* # select all wires whose names start with reg_
|
||||
select a:foobar # select all objects with the attribute foobar set
|
||||
select a:foobar=42 # select all objects with the attribute foobar set to 42
|
||||
select A:blabla # select all modules with the attribute blabla set
|
||||
select foo/t:$add # select all $add cells from the module foo
|
||||
|
||||
A complete list of this pattern expressions can be found in the command
|
||||
reference to the ``select`` command.
|
||||
|
||||
Combining selection
|
||||
^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
When more than one selection expression is used in one statement, then they are
|
||||
pushed on a stack. The final elements on the stack are combined into a union:
|
||||
|
||||
.. code:: yoscrypt
|
||||
|
||||
select t:$dff r:WIDTH>1 # all cells of type $dff and/or with a parameter WIDTH > 1
|
||||
|
||||
Special ``%``-commands can be used to combine the elements on the stack:
|
||||
|
||||
.. code:: yoscrypt
|
||||
|
||||
select t:$dff r:WIDTH>1 %i # all cells of type $dff *AND* with a parameter WIDTH > 1
|
||||
|
||||
Examples for ``%``-codes (see :doc:`/cmd/select` for full list):
|
||||
|
||||
- ``%u``: union of top two elements on stack -- pop 2, push 1
|
||||
- ``%d``: difference of top two elements on stack -- pop 2, push 1
|
||||
- ``%i``: intersection of top two elements on stack -- pop 2, push 1
|
||||
- ``%n``: inverse of top element on stack -- pop 1, push 1
|
||||
|
||||
Expanding selections
|
||||
^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Selections of cells and wires can be expanded along connections using
|
||||
``%``-codes for selecting input cones (``%ci``), output cones (``%co``), or
|
||||
both (``%x``).
|
||||
|
||||
.. code:: yoscrypt
|
||||
|
||||
# select all wires that are inputs to $add cells
|
||||
select t:$add %ci w:* %i
|
||||
|
||||
Additional constraints such as port names can be specified.
|
||||
|
||||
.. code:: yoscrypt
|
||||
|
||||
# select all wires that connect a "Q" output with a "D" input
|
||||
select c:* %co:+[Q] w:* %i c:* %ci:+[D] w:* %i %i
|
||||
|
||||
# select the multiplexer tree that drives the signal 'state'
|
||||
select state %ci*:+$mux,$pmux[A,B,Y]
|
||||
|
||||
See :doc:`/cmd/select` for full documentation of these expressions.
|
||||
|
||||
Incremental selection
|
||||
^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Sometimes a selection can most easily be described by a series of add/delete
|
||||
operations. The commands ``select -add`` and ``select -del`` respectively add or
|
||||
remove objects from the current selection instead of overwriting it.
|
||||
|
||||
.. code:: yoscrypt
|
||||
|
||||
select -none # start with an empty selection
|
||||
select -add reg_* # select a bunch of objects
|
||||
select -del reg_42 # but not this one
|
||||
select -add state %ci # and add more stuff
|
||||
|
||||
Within a select expression the token ``%`` can be used to push the previous selection
|
||||
on the stack.
|
||||
|
||||
.. code:: yoscrypt
|
||||
|
||||
select t:$add t:$sub # select all $add and $sub cells
|
||||
select % %ci % %d # select only the input wires to those cells
|
||||
|
||||
Creating selection variables
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Selections can be stored under a name with the ``select -set <name>``
|
||||
command. The stored selections can be used in later select expressions
|
||||
using the syntax ``@<name>``.
|
||||
|
||||
.. code:: yoscrypt
|
||||
|
||||
select -set cone_a state_a %ci*:-$dff # set @cone_a to the input cone of state_a
|
||||
select -set cone_b state_b %ci*:-$dff # set @cone_b to the input cone of state_b
|
||||
select @cone_a @cone_b %i # select the objects that are in both cones
|
||||
|
||||
Remember that select expressions can also be used directly as arguments to most
|
||||
commands. Some commands also except a single select argument to some options.
|
||||
In those cases selection variables must be used to capture more complex selections.
|
||||
|
||||
.. code:: yoscrypt
|
||||
|
||||
dump @cone_a @cone_b
|
||||
|
||||
select -set cone_ab @cone_a @cone_b %i
|
||||
show -color red @cone_ab -color magenta @cone_a -color blue @cone_b
|
||||
|
||||
Example:
|
||||
|
||||
.. literalinclude:: ../../../resources/PRESENTATION_ExAdv/select.v
|
||||
:language: verilog
|
||||
:caption: ``docs/resources/PRESENTATION_ExAdv/select.v``
|
||||
|
||||
.. literalinclude:: ../../../resources/PRESENTATION_ExAdv/select.ys
|
||||
:language: yoscrypt
|
||||
:caption: ``docs/resources/PRESENTATION_ExAdv/select.ys``
|
||||
|
||||
.. figure:: ../../../images/res/PRESENTATION_ExAdv/select.*
|
||||
:class: width-helper
|
||||
|
||||
Interactive Design Investigation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Yosys can also be used to investigate designs (or netlists created from other
|
||||
tools).
|
||||
|
||||
- The selection mechanism, especially patterns such as ``%ci`` and ``%co``,
|
||||
can be used to figure out how parts of the design are connected.
|
||||
- Commands such as ``submod``, ``expose``, and ``splice`` can be used to
|
||||
transform the design into an equivalent design that is easier to analyse.
|
||||
- Commands such as ``eval`` and ``sat`` can be used to investigate the behavior
|
||||
of the circuit.
|
||||
- :doc:`/cmd/show`.
|
||||
- :doc:`/cmd/dump`.
|
||||
|
||||
Reorganizing a module
|
||||
^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
.. literalinclude:: ../../../resources/PRESENTATION_ExOth/scrambler.v
|
||||
:language: verilog
|
||||
:caption: ``docs/resources/PRESENTATION_ExOth/scrambler.v``
|
||||
|
||||
|
||||
.. code:: yoscrypt
|
||||
|
||||
read_verilog scrambler.v
|
||||
|
||||
hierarchy; proc;;
|
||||
|
||||
cd scrambler
|
||||
submod -name xorshift32 \
|
||||
xs %c %ci %D %c %ci:+[D] %D \
|
||||
%ci*:-$dff xs %co %ci %d
|
||||
|
||||
.. figure:: ../../../images/res/PRESENTATION_ExOth/scrambler_p01.*
|
||||
:class: width-helper
|
||||
|
||||
.. figure:: ../../../images/res/PRESENTATION_ExOth/scrambler_p02.*
|
||||
:class: width-helper
|
||||
|
||||
Analysis of circuit behavior
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
.. code:: text
|
||||
|
||||
> read_verilog scrambler.v
|
||||
> hierarchy; proc;; cd scrambler
|
||||
> submod -name xorshift32 xs %c %ci %D %c %ci:+[D] %D %ci*:-$dff xs %co %ci %d
|
||||
|
||||
> cd xorshift32
|
||||
> rename n2 in
|
||||
> rename n1 out
|
||||
|
||||
> eval -set in 1 -show out
|
||||
Eval result: \out = 270369.
|
||||
|
||||
> eval -set in 270369 -show out
|
||||
Eval result: \out = 67634689.
|
||||
|
||||
> sat -set out 632435482
|
||||
Signal Name Dec Hex Bin
|
||||
-------------------- ---------- ---------- -------------------------------------
|
||||
\in 745495504 2c6f5bd0 00101100011011110101101111010000
|
||||
\out 632435482 25b2331a 00100101101100100011001100011010
|
||||
|
|
|
@ -0,0 +1,271 @@
|
|||
Command ordering
|
||||
----------------
|
||||
|
||||
.. TODO: copypaste
|
||||
|
||||
Intro to coarse-grain synthesis
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
In coarse-grain synthesis the target architecture has cells of the same
|
||||
complexity or larger complexity than the internal RTL representation.
|
||||
|
||||
For example:
|
||||
|
||||
.. code:: verilog
|
||||
|
||||
wire [15:0] a, b;
|
||||
wire [31:0] c, y;
|
||||
assign y = a * b + c;
|
||||
|
||||
This circuit contains two cells in the RTL representation: one multiplier and
|
||||
one adder. In some architectures this circuit can be implemented using
|
||||
a single circuit element, for example an FPGA DSP core. Coarse grain synthesis
|
||||
is this mapping of groups of circuit elements to larger components.
|
||||
|
||||
Fine-grain synthesis would be matching the circuit elements to smaller
|
||||
components, such as LUTs, gates, or half- and full-adders.
|
||||
|
||||
The extract pass
|
||||
~~~~~~~~~~~~~~~~
|
||||
|
||||
- Like the ``techmap`` pass, the ``extract`` pass is called with a map file. It
|
||||
compares the circuits inside the modules of the map file with the design and
|
||||
looks for sub-circuits in the design that match any of the modules in the map
|
||||
file.
|
||||
- If a match is found, the ``extract`` pass will replace the matching subcircuit
|
||||
with an instance of the module from the map file.
|
||||
- In a way the ``extract`` pass is the inverse of the techmap pass.
|
||||
|
||||
.. TODO: copypaste
|
||||
|
||||
.. figure:: ../../../images/res/PRESENTATION_ExAdv/macc_simple_test_00a.*
|
||||
:class: width-helper
|
||||
|
||||
before `extract`
|
||||
|
||||
.. figure:: ../../../images/res/PRESENTATION_ExAdv/macc_simple_test_00b.*
|
||||
:class: width-helper
|
||||
|
||||
after `extract`
|
||||
|
||||
.. literalinclude:: ../../../resources/PRESENTATION_ExAdv/macc_simple_test.v
|
||||
:language: verilog
|
||||
:caption: ``docs/resources/PRESENTATION_ExAdv/macc_simple_test.v``
|
||||
|
||||
.. literalinclude:: ../../../resources/PRESENTATION_ExAdv/macc_simple_xmap.v
|
||||
:language: verilog
|
||||
:caption: ``docs/resources/PRESENTATION_ExAdv/macc_simple_xmap.v``
|
||||
|
||||
.. code:: yoscrypt
|
||||
|
||||
read_verilog macc_simple_test.v
|
||||
hierarchy -check -top test
|
||||
|
||||
extract -map macc_simple_xmap.v;;
|
||||
|
||||
.. literalinclude:: ../../../resources/PRESENTATION_ExAdv/macc_simple_test_01.v
|
||||
:language: verilog
|
||||
:caption: ``docs/resources/PRESENTATION_ExAdv/macc_simple_test_01.v``
|
||||
|
||||
.. figure:: ../../../images/res/PRESENTATION_ExAdv/macc_simple_test_01a.*
|
||||
:class: width-helper
|
||||
|
||||
.. figure:: ../../../images/res/PRESENTATION_ExAdv/macc_simple_test_01b.*
|
||||
:class: width-helper
|
||||
|
||||
.. literalinclude:: ../../../resources/PRESENTATION_ExAdv/macc_simple_test_02.v
|
||||
:language: verilog
|
||||
:caption: ``docs/resources/PRESENTATION_ExAdv/macc_simple_test_02.v``
|
||||
|
||||
.. figure:: ../../../images/res/PRESENTATION_ExAdv/macc_simple_test_02a.*
|
||||
:class: width-helper
|
||||
|
||||
.. figure:: ../../../images/res/PRESENTATION_ExAdv/macc_simple_test_02b.*
|
||||
:class: width-helper
|
||||
|
||||
The wrap-extract-unwrap method
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Often a coarse-grain element has a constant bit-width, but can be used to
|
||||
implement operations with a smaller bit-width. For example, a 18x25-bit multiplier
|
||||
can also be used to implement 16x20-bit multiplication.
|
||||
|
||||
A way of mapping such elements in coarse grain synthesis is the wrap-extract-unwrap method:
|
||||
|
||||
wrap
|
||||
Identify candidate-cells in the circuit and wrap them in a cell with a constant
|
||||
wider bit-width using ``techmap``. The wrappers use the same parameters as the original cell, so
|
||||
the information about the original width of the ports is preserved.
|
||||
Then use the ``connwrappers`` command to connect up the bit-extended in- and
|
||||
outputs of the wrapper cells.
|
||||
|
||||
extract
|
||||
Now all operations are encoded using the same bit-width as the coarse grain
|
||||
element. The ``extract`` command can be used to replace circuits with cells
|
||||
of the target architecture.
|
||||
|
||||
unwrap
|
||||
The remaining wrapper cell can be unwrapped using ``techmap``.
|
||||
|
||||
Example: DSP48_MACC
|
||||
~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
This section details an example that shows how to map MACC operations of
|
||||
arbitrary size to MACC cells with a 18x25-bit multiplier and a 48-bit adder
|
||||
(such as the Xilinx DSP48 cells).
|
||||
|
||||
Preconditioning: ``macc_xilinx_swap_map.v``
|
||||
|
||||
Make sure ``A`` is the smaller port on all multipliers
|
||||
|
||||
.. TODO: copypaste
|
||||
|
||||
.. literalinclude:: ../../../resources/PRESENTATION_ExAdv/macc_xilinx_swap_map.v
|
||||
:language: verilog
|
||||
:caption: ``docs/resources/PRESENTATION_ExAdv/macc_xilinx_swap_map.v``
|
||||
|
||||
Wrapping multipliers: ``macc_xilinx_wrap_map.v``
|
||||
|
||||
.. literalinclude:: ../../../resources/PRESENTATION_ExAdv/macc_xilinx_wrap_map.v
|
||||
:language: verilog
|
||||
:lines: 1-46
|
||||
:caption: ``docs/resources/PRESENTATION_ExAdv/macc_xilinx_wrap_map.v``
|
||||
|
||||
Wrapping adders: ``macc_xilinx_wrap_map.v``
|
||||
|
||||
.. literalinclude:: ../../../resources/PRESENTATION_ExAdv/macc_xilinx_wrap_map.v
|
||||
:language: verilog
|
||||
:lines: 48-89
|
||||
:caption: ``docs/resources/PRESENTATION_ExAdv/macc_xilinx_wrap_map.v``
|
||||
|
||||
Extract: ``macc_xilinx_xmap.v``
|
||||
|
||||
.. literalinclude:: ../../../resources/PRESENTATION_ExAdv/macc_xilinx_xmap.v
|
||||
:language: verilog
|
||||
:caption: ``docs/resources/PRESENTATION_ExAdv/macc_xilinx_xmap.v``
|
||||
|
||||
... simply use the same wrapping commands on this module as on the design to create a template for the ``extract`` command.
|
||||
|
||||
Unwrapping multipliers: ``macc_xilinx_unwrap_map.v``
|
||||
|
||||
.. literalinclude:: ../../../resources/PRESENTATION_ExAdv/macc_xilinx_unwrap_map.v
|
||||
:language: verilog
|
||||
:lines: 1-30
|
||||
:caption: ``docs/resources/PRESENTATION_ExAdv/macc_xilinx_unwrap_map.v``
|
||||
|
||||
Unwrapping adders: ``macc_xilinx_unwrap_map.v``
|
||||
|
||||
.. literalinclude:: ../../../resources/PRESENTATION_ExAdv/macc_xilinx_unwrap_map.v
|
||||
:language: verilog
|
||||
:lines: 32-61
|
||||
:caption: ``docs/resources/PRESENTATION_ExAdv/macc_xilinx_unwrap_map.v``
|
||||
|
||||
.. literalinclude:: ../../../resources/PRESENTATION_ExAdv/macc_xilinx_test.v
|
||||
:language: verilog
|
||||
:lines: 1-6
|
||||
:caption: ``test1`` of ``docs/resources/PRESENTATION_ExAdv/macc_xilinx_test.v``
|
||||
|
||||
.. figure:: ../../../images/res/PRESENTATION_ExAdv/macc_xilinx_test1a.*
|
||||
:class: width-helper
|
||||
|
||||
.. figure:: ../../../images/res/PRESENTATION_ExAdv/macc_xilinx_test1b.*
|
||||
:class: width-helper
|
||||
|
||||
.. literalinclude:: ../../../resources/PRESENTATION_ExAdv/macc_xilinx_test.v
|
||||
:language: verilog
|
||||
:lines: 8-13
|
||||
:caption: ``test2`` of ``docs/resources/PRESENTATION_ExAdv/macc_xilinx_test.v``
|
||||
|
||||
.. figure:: ../../../images/res/PRESENTATION_ExAdv/macc_xilinx_test2a.*
|
||||
:class: width-helper
|
||||
|
||||
.. figure:: ../../../images/res/PRESENTATION_ExAdv/macc_xilinx_test2b.*
|
||||
:class: width-helper
|
||||
|
||||
Wrapping in ``test1``:
|
||||
|
||||
.. figure:: ../../../images/res/PRESENTATION_ExAdv/macc_xilinx_test1b.*
|
||||
:class: width-helper
|
||||
|
||||
.. code:: yoscrypt
|
||||
|
||||
techmap -map macc_xilinx_wrap_map.v
|
||||
|
||||
connwrappers -unsigned $__mul_wrapper \
|
||||
Y Y_WIDTH \
|
||||
-unsigned $__add_wrapper \
|
||||
Y Y_WIDTH ;;
|
||||
|
||||
.. figure:: ../../../images/res/PRESENTATION_ExAdv/macc_xilinx_test1c.*
|
||||
:class: width-helper
|
||||
|
||||
Wrapping in ``test2``:
|
||||
|
||||
.. figure:: ../../../images/res/PRESENTATION_ExAdv/macc_xilinx_test2b.*
|
||||
:class: width-helper
|
||||
|
||||
.. code:: yoscrypt
|
||||
|
||||
techmap -map macc_xilinx_wrap_map.v
|
||||
|
||||
connwrappers -unsigned $__mul_wrapper \
|
||||
Y Y_WIDTH \
|
||||
-unsigned $__add_wrapper \
|
||||
Y Y_WIDTH ;;
|
||||
|
||||
.. figure:: ../../../images/res/PRESENTATION_ExAdv/macc_xilinx_test2c.*
|
||||
:class: width-helper
|
||||
|
||||
Extract in ``test1``:
|
||||
|
||||
.. code:: yoscrypt
|
||||
|
||||
design -push
|
||||
read_verilog macc_xilinx_xmap.v
|
||||
techmap -map macc_xilinx_swap_map.v
|
||||
techmap -map macc_xilinx_wrap_map.v;;
|
||||
design -save __macc_xilinx_xmap
|
||||
design -pop
|
||||
|
||||
extract -constports -ignore_parameters \
|
||||
-map %__macc_xilinx_xmap \
|
||||
-swap $__add_wrapper A,B ;;
|
||||
|
||||
.. figure:: ../../../images/res/PRESENTATION_ExAdv/macc_xilinx_test1c.*
|
||||
:class: width-helper
|
||||
|
||||
.. figure:: ../../../images/res/PRESENTATION_ExAdv/macc_xilinx_test1d.*
|
||||
:class: width-helper
|
||||
|
||||
Extract in ``test2``:
|
||||
|
||||
.. code:: yoscrypt
|
||||
|
||||
design -push
|
||||
read_verilog macc_xilinx_xmap.v
|
||||
techmap -map macc_xilinx_swap_map.v
|
||||
techmap -map macc_xilinx_wrap_map.v;;
|
||||
design -save __macc_xilinx_xmap
|
||||
design -pop
|
||||
|
||||
extract -constports -ignore_parameters \
|
||||
-map %__macc_xilinx_xmap \
|
||||
-swap $__add_wrapper A,B ;;
|
||||
|
||||
.. figure:: ../../../images/res/PRESENTATION_ExAdv/macc_xilinx_test2c.*
|
||||
:class: width-helper
|
||||
|
||||
.. figure:: ../../../images/res/PRESENTATION_ExAdv/macc_xilinx_test2d.*
|
||||
:class: width-helper
|
||||
|
||||
Unwrap in ``test2``:
|
||||
|
||||
.. figure:: ../../../images/res/PRESENTATION_ExAdv/macc_xilinx_test2d.*
|
||||
:class: width-helper
|
||||
|
||||
.. figure:: ../../../images/res/PRESENTATION_ExAdv/macc_xilinx_test2e.*
|
||||
:class: width-helper
|
||||
|
||||
.. code:: yoscrypt
|
||||
|
||||
techmap -map macc_xilinx_unwrap_map.v ;;
|
|
@ -17,4 +17,6 @@ This scripts contain three types of commands:
|
|||
overview
|
||||
control_and_data
|
||||
verilog_frontend
|
||||
command_ordering
|
||||
model_checking
|
||||
|
||||
|
|
|
@ -0,0 +1,106 @@
|
|||
Symbolic model checking
|
||||
-----------------------
|
||||
|
||||
.. TODO: copypaste
|
||||
|
||||
.. note::
|
||||
|
||||
While it is possible to perform model checking directly in Yosys, it
|
||||
is highly recommended to use SBY or EQY for formal hardware verification.
|
||||
|
||||
Symbolic Model Checking (SMC) is used to formally prove that a circuit has (or
|
||||
has not) a given property.
|
||||
|
||||
One application is Formal Equivalence Checking: Proving that two circuits are
|
||||
identical. For example this is a very useful feature when debugging custom
|
||||
passes in Yosys.
|
||||
|
||||
Other applications include checking if a module conforms to interface standards.
|
||||
|
||||
The ``sat`` command in Yosys can be used to perform Symbolic Model Checking.
|
||||
|
||||
Checking techmap
|
||||
~~~~~~~~~~~~~~~~
|
||||
|
||||
Remember the following example from :doc:`/getting_started/typical_phases`?
|
||||
|
||||
.. literalinclude:: ../../../resources/PRESENTATION_ExSyn/techmap_01_map.v
|
||||
:language: verilog
|
||||
:caption: ``docs/resources/PRESENTATION_ExSyn/techmap_01_map.v``
|
||||
|
||||
.. literalinclude:: ../../../resources/PRESENTATION_ExSyn/techmap_01.v
|
||||
:language: verilog
|
||||
:caption: ``docs/resources/PRESENTATION_ExSyn/techmap_01.v``
|
||||
|
||||
.. literalinclude:: ../../../resources/PRESENTATION_ExSyn/techmap_01.ys
|
||||
:language: yoscrypt
|
||||
:caption: ``docs/resources/PRESENTATION_ExSyn/techmap_01.ys``
|
||||
|
||||
Lets see if it is correct..
|
||||
|
||||
.. code:: yoscrypt
|
||||
|
||||
# read test design
|
||||
read_verilog techmap_01.v
|
||||
hierarchy -top test
|
||||
|
||||
# create two version of the design: test_orig and test_mapped
|
||||
copy test test_orig
|
||||
rename test test_mapped
|
||||
|
||||
# apply the techmap only to test_mapped
|
||||
techmap -map techmap_01_map.v test_mapped
|
||||
|
||||
# create a miter circuit to test equivalence
|
||||
miter -equiv -make_assert -make_outputs test_orig test_mapped miter
|
||||
flatten miter
|
||||
|
||||
# run equivalence check
|
||||
sat -verify -prove-asserts -show-inputs -show-outputs miter
|
||||
|
||||
Result:
|
||||
|
||||
.. code::
|
||||
|
||||
Solving problem with 945 variables and 2505 clauses..
|
||||
SAT proof finished - no model found: SUCCESS!
|
||||
|
||||
AXI4 Stream Master
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
The following AXI4 Stream Master has a bug. But the bug is not exposed if the
|
||||
slave keeps ``tready`` asserted all the time. (Something a test bench might do.)
|
||||
|
||||
Symbolic Model Checking can be used to expose the bug and find a sequence of
|
||||
values for ``tready`` that yield the incorrect behavior.
|
||||
|
||||
.. literalinclude:: ../../../resources/PRESENTATION_ExOth/axis_master.v
|
||||
:language: verilog
|
||||
:caption: ``docs/resources/PRESENTATION_ExOth/axis_master.v``
|
||||
|
||||
.. literalinclude:: ../../../resources/PRESENTATION_ExOth/axis_test.v
|
||||
:language: verilog
|
||||
:caption: ``docs/resources/PRESENTATION_ExOth/axis_test.v``
|
||||
|
||||
|
||||
.. code:: yoscrypt
|
||||
|
||||
read_verilog -sv axis_master.v axis_test.v
|
||||
hierarchy -top axis_test
|
||||
|
||||
proc; flatten;;
|
||||
sat -seq 50 -prove-asserts
|
||||
|
||||
Result with unmodified ``axis_master.v``:
|
||||
|
||||
.. code::
|
||||
|
||||
Solving problem with 159344 variables and 442126 clauses..
|
||||
SAT proof finished - model found: FAIL!
|
||||
|
||||
Result with fixed ``axis_master.v``:
|
||||
|
||||
.. code::
|
||||
|
||||
Solving problem with 159144 variables and 441626 clauses..
|
||||
SAT proof finished - no model found: SUCCESS!
|
|
@ -31,7 +31,7 @@ provided implementation.
|
|||
|
||||
When no map file is provided, techmap uses a built-in map file that maps the
|
||||
Yosys RTL cell types to the internal gate library used by Yosys. The curious
|
||||
reader may find this map file as techlibs/common/techmap.v in the Yosys source
|
||||
reader may find this map file as `techlibs/common/techmap.v` in the Yosys source
|
||||
tree.
|
||||
|
||||
Additional features have been added to techmap to allow for conditional mapping
|
||||
|
@ -105,3 +105,186 @@ reporting bugs in the tools involved. When the information in the Liberty file
|
|||
used by Yosys and ABC are not part of the sensitive information, the additional
|
||||
tool yosys-filterlib (see :ref:`sec:filterlib`) can be used to strip the
|
||||
sensitive information from the Liberty file.
|
||||
|
||||
Techmap by example
|
||||
------------------
|
||||
|
||||
.. TODO: copypaste
|
||||
|
||||
As a quick recap, the ``techmap`` command replaces cells in the design with
|
||||
implementations given as Verilog code (called "map files"). It can replace
|
||||
Yosys' internal cell types (such as ``$or``) as well as user-defined cell
|
||||
types.
|
||||
|
||||
- Verilog parameters are used extensively to customize the internal cell types.
|
||||
- Additional special parameters are used by techmap to communicate meta-data to
|
||||
the map files.
|
||||
- Special wires are used to instruct techmap how to handle a module in the map
|
||||
file.
|
||||
- Generate blocks and recursion are powerful tools for writing map files.
|
||||
|
||||
Mapping OR3X1
|
||||
~~~~~~~~~~~~~
|
||||
|
||||
.. note::
|
||||
|
||||
This is a simple example for demonstration only. Techmap shouldn't be used
|
||||
to implement basic logic optimization.
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExAdv/red_or3x1_map.v
|
||||
:language: verilog
|
||||
:caption: ``docs/resources/PRESENTATION_ExAdv/red_or3x1_map.v``
|
||||
|
||||
.. figure:: ../../images/res/PRESENTATION_ExAdv/red_or3x1.*
|
||||
:class: width-helper
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExAdv/red_or3x1_test.ys
|
||||
:language: yoscrypt
|
||||
:caption: ``docs/resources/PRESENTATION_ExAdv/red_or3x1_test.ys``
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExAdv/red_or3x1_test.v
|
||||
:language: verilog
|
||||
:caption: ``docs/resources/PRESENTATION_ExAdv/red_or3x1_test.v``
|
||||
|
||||
Conditional techmap
|
||||
~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
- In some cases only cells with certain properties should be substituted.
|
||||
- The special wire ``_TECHMAP_FAIL_`` can be used to disable a module
|
||||
in the map file for a certain set of parameters.
|
||||
- The wire ``_TECHMAP_FAIL_`` must be set to a constant value. If it
|
||||
is non-zero then the module is disabled for this set of parameters.
|
||||
- Example use-cases:
|
||||
|
||||
- coarse-grain cell types that only operate on certain bit widths
|
||||
- memory resources for different memory geometries (width, depth, ports, etc.)
|
||||
|
||||
Example:
|
||||
|
||||
.. figure:: ../../images/res/PRESENTATION_ExAdv/sym_mul.*
|
||||
:class: width-helper
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExAdv/sym_mul_map.v
|
||||
:language: verilog
|
||||
:caption: ``docs/resources/PRESENTATION_ExAdv/sym_mul_map.v``
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExAdv/sym_mul_test.v
|
||||
:language: verilog
|
||||
:caption: ``docs/resources/PRESENTATION_ExAdv/sym_mul_test.v``
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExAdv/sym_mul_test.ys
|
||||
:language: yoscrypt
|
||||
:caption: ``docs/resources/PRESENTATION_ExAdv/sym_mul_test.ys``
|
||||
|
||||
|
||||
Scripting in map modules
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
- The special wires ``_TECHMAP_DO_*`` can be used to run Yosys scripts
|
||||
in the context of the replacement module.
|
||||
- The wire that comes first in alphabetical oder is interpreted as string (must
|
||||
be connected to constants) that is executed as script. Then the wire is
|
||||
removed. Repeat.
|
||||
- You can even call techmap recursively!
|
||||
- Example use-cases:
|
||||
|
||||
- Using always blocks in map module: call ``proc``
|
||||
- Perform expensive optimizations (such as ``freduce``) on cells where
|
||||
this is known to work well.
|
||||
- Interacting with custom commands.
|
||||
|
||||
.. note:: PROTIP:
|
||||
Commands such as ``shell``, ``show -pause``, and ``dump`` can be use
|
||||
in the ``_TECHMAP_DO_*`` scripts for debugging map modules.
|
||||
|
||||
Example:
|
||||
|
||||
.. figure:: ../../images/res/PRESENTATION_ExAdv/mymul.*
|
||||
:class: width-helper
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExAdv/mymul_map.v
|
||||
:language: verilog
|
||||
:caption: ``docs/resources/PRESENTATION_ExAdv/mymul_map.v``
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExAdv/mymul_test.v
|
||||
:language: verilog
|
||||
:caption: ``docs/resources/PRESENTATION_ExAdv/mymul_test.v``
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExAdv/mymul_test.ys
|
||||
:language: yoscrypt
|
||||
:caption: ``docs/resources/PRESENTATION_ExAdv/mymul_test.ys``
|
||||
|
||||
Handling constant inputs
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
- The special parameters ``_TECHMAP_CONSTMSK_<port-name>_`` and
|
||||
``_TECHMAP_CONSTVAL_<port-name>_`` can be used to handle constant input values
|
||||
to cells.
|
||||
- The former contains 1-bits for all constant input bits on the port.
|
||||
- The latter contains the constant bits or undef (x) for non-constant bits.
|
||||
- Example use-cases:
|
||||
|
||||
- Converting arithmetic (for example multiply to shift).
|
||||
- Identify constant addresses or enable bits in memory interfaces.
|
||||
|
||||
Example:
|
||||
|
||||
.. figure:: ../../images/res/PRESENTATION_ExAdv/mulshift.*
|
||||
:class: width-helper
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExAdv/mulshift_map.v
|
||||
:language: verilog
|
||||
:caption: ``docs/resources/PRESENTATION_ExAdv/mulshift_map.v``
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExAdv/mulshift_test.v
|
||||
:language: verilog
|
||||
:caption: ``docs/resources/PRESENTATION_ExAdv/mulshift_test.v``
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExAdv/mulshift_test.ys
|
||||
:language: yoscrypt
|
||||
:caption: ``docs/resources/PRESENTATION_ExAdv/mulshift_test.ys``
|
||||
|
||||
Handling shorted inputs
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
- The special parameters ``_TECHMAP_BITS_CONNMAP_`` and
|
||||
``_TECHMAP_CONNMAP_<port-name>_`` can be used to handle shorted inputs.
|
||||
- Each bit of the port correlates to an ``_TECHMAP_BITS_CONNMAP_`` bits wide
|
||||
number in ``_TECHMAP_CONNMAP_<port-name>_``.
|
||||
- Each unique signal bit is assigned its own number. Identical fields in the ``_TECHMAP_CONNMAP_<port-name>_`` parameters mean shorted signal bits.
|
||||
- The numbers 0-3 are reserved for ``0``, ``1``, ``x``, and ``z`` respectively.
|
||||
- Example use-cases:
|
||||
|
||||
- Detecting shared clock or control signals in memory interfaces.
|
||||
- In some cases this can be used for for optimization.
|
||||
|
||||
Example:
|
||||
|
||||
.. figure:: ../../images/res/PRESENTATION_ExAdv/addshift.*
|
||||
:class: width-helper
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExAdv/addshift_map.v
|
||||
:language: verilog
|
||||
:caption: ``docs/resources/PRESENTATION_ExAdv/addshift_map.v``
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExAdv/addshift_test.v
|
||||
:language: verilog
|
||||
:caption: ``docs/resources/PRESENTATION_ExAdv/addshift_test.v``
|
||||
|
||||
.. literalinclude:: ../../resources/PRESENTATION_ExAdv/addshift_test.ys
|
||||
:language: yoscrypt
|
||||
:caption: ``docs/resources/PRESENTATION_ExAdv/addshift_test.ys``
|
||||
|
||||
Notes on using techmap
|
||||
~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
- Don't use positional cell parameters in map modules.
|
||||
- You can use the ``$__``-prefix for internal cell types to avoid
|
||||
collisions with the user-namespace. But always use two underscores or the
|
||||
internal consistency checker will trigger on this cells.
|
||||
- Techmap has two major use cases:
|
||||
|
||||
- Creating good logic-level representation of arithmetic functions. This
|
||||
also means using dedicated hardware resources such as half- and full-adder
|
||||
cells in ASICS or dedicated carry logic in FPGAs.
|
||||
- Mapping of coarse-grain resources such as block memory or DSP cells.
|
||||
|
|
|
@ -15,790 +15,6 @@ This section contains 4 subsections:
|
|||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\subsection{Using selections}
|
||||
|
||||
\begin{frame}
|
||||
\subsectionpage
|
||||
\subsectionpagesuffix
|
||||
\end{frame}
|
||||
|
||||
\subsubsection{Simple selections}
|
||||
|
||||
\begin{frame}[fragile]{\subsubsecname}
|
||||
Most Yosys commands make use of the ``selection framework'' of Yosys. It can be used
|
||||
to apply commands only to part of the design. For example:
|
||||
|
||||
\medskip
|
||||
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
|
||||
delete # will delete the whole design, but
|
||||
|
||||
delete foobar # will only delete the module foobar.
|
||||
\end{lstlisting}
|
||||
|
||||
\bigskip
|
||||
The {\tt select} command can be used to create a selection for subsequent
|
||||
commands. For example:
|
||||
|
||||
\medskip
|
||||
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
|
||||
select foobar # select the module foobar
|
||||
delete # delete selected objects
|
||||
select -clear # reset selection (select whole design)
|
||||
\end{lstlisting}
|
||||
\end{frame}
|
||||
|
||||
\subsubsection{Selection by object name}
|
||||
|
||||
\begin{frame}[fragile]{\subsubsecname}
|
||||
The easiest way to select objects is by object name. This is usually only done
|
||||
in synthesis scripts that are hand-tailored for a specific design.
|
||||
|
||||
\bigskip
|
||||
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
|
||||
select foobar # select module foobar
|
||||
select foo* # select all modules whose names start with foo
|
||||
select foo*/bar* # select all objects matching bar* from modules matching foo*
|
||||
select */clk # select objects named clk from all modules
|
||||
\end{lstlisting}
|
||||
\end{frame}
|
||||
|
||||
\subsubsection{Module and design context}
|
||||
|
||||
\begin{frame}[fragile]{\subsubsecname}
|
||||
Commands can be executed in {\it module\/} or {\it design\/} context. Until now all
|
||||
commands have been executed in design context. The {\tt cd} command can be used
|
||||
to switch to module context.
|
||||
|
||||
\bigskip
|
||||
In module context all commands only effect the active module. Objects in the module
|
||||
are selected without the {\tt <module\_name>/} prefix. For example:
|
||||
|
||||
\bigskip
|
||||
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
|
||||
cd foo # switch to module foo
|
||||
delete bar # delete object foo/bar
|
||||
|
||||
cd mycpu # switch to module mycpu
|
||||
dump reg_* # print details on all objects whose names start with reg_
|
||||
|
||||
cd .. # switch back to design
|
||||
\end{lstlisting}
|
||||
|
||||
\bigskip
|
||||
Note: Most synthesis scripts never switch to module context. But it is a very powerful
|
||||
tool for interactive design investigation.
|
||||
\end{frame}
|
||||
|
||||
\subsubsection{Selecting by object property or type}
|
||||
|
||||
\begin{frame}[fragile]{\subsubsecname}
|
||||
Special patterns can be used to select by object property or type. For example:
|
||||
|
||||
\bigskip
|
||||
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
|
||||
select w:reg_* # select all wires whose names start with reg_
|
||||
select a:foobar # select all objects with the attribute foobar set
|
||||
select a:foobar=42 # select all objects with the attribute foobar set to 42
|
||||
select A:blabla # select all modules with the attribute blabla set
|
||||
select foo/t:$add # select all $add cells from the module foo
|
||||
\end{lstlisting}
|
||||
|
||||
\bigskip
|
||||
A complete list of this pattern expressions can be found in the command
|
||||
reference to the {\tt select} command.
|
||||
\end{frame}
|
||||
|
||||
\subsubsection{Combining selection}
|
||||
|
||||
\begin{frame}[fragile]{\subsubsecname}
|
||||
When more than one selection expression is used in one statement, then they are
|
||||
pushed on a stack. The final elements on the stack are combined into a union:
|
||||
|
||||
\medskip
|
||||
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
|
||||
select t:$dff r:WIDTH>1 # all cells of type $dff and/or with a parameter WIDTH > 1
|
||||
\end{lstlisting}
|
||||
|
||||
\bigskip
|
||||
Special \%-commands can be used to combine the elements on the stack:
|
||||
|
||||
\medskip
|
||||
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
|
||||
select t:$dff r:WIDTH>1 %i # all cells of type $dff *AND* with a parameter WIDTH > 1
|
||||
\end{lstlisting}
|
||||
|
||||
\medskip
|
||||
\begin{block}{Examples for {\tt \%}-codes (see {\tt help select} for full list)}
|
||||
{\tt \%u} \dotfill union of top two elements on stack -- pop 2, push 1 \\
|
||||
{\tt \%d} \dotfill difference of top two elements on stack -- pop 2, push 1 \\
|
||||
{\tt \%i} \dotfill intersection of top two elements on stack -- pop 2, push 1 \\
|
||||
{\tt \%n} \dotfill inverse of top element on stack -- pop 1, push 1 \\
|
||||
\end{block}
|
||||
\end{frame}
|
||||
|
||||
\subsubsection{Expanding selections}
|
||||
|
||||
\begin{frame}[fragile]{\subsubsecname}
|
||||
Selections of cells and wires can be expanded along connections using {\tt \%}-codes
|
||||
for selecting input cones ({\tt \%ci}), output cones ({\tt \%co}), or both ({\tt \%x}).
|
||||
|
||||
\medskip
|
||||
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
|
||||
# select all wires that are inputs to $add cells
|
||||
select t:$add %ci w:* %i
|
||||
\end{lstlisting}
|
||||
|
||||
\bigskip
|
||||
Additional constraints such as port names can be specified.
|
||||
|
||||
\medskip
|
||||
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
|
||||
# select all wires that connect a "Q" output with a "D" input
|
||||
select c:* %co:+[Q] w:* %i c:* %ci:+[D] w:* %i %i
|
||||
|
||||
# select the multiplexer tree that drives the signal 'state'
|
||||
select state %ci*:+$mux,$pmux[A,B,Y]
|
||||
\end{lstlisting}
|
||||
|
||||
\bigskip
|
||||
See {\tt help select} for full documentation of this expressions.
|
||||
\end{frame}
|
||||
|
||||
\subsubsection{Incremental selection}
|
||||
|
||||
\begin{frame}[fragile]{\subsubsecname}
|
||||
Sometimes a selection can most easily be described by a series of add/delete operations.
|
||||
The commands {\tt select -add} and {\tt select -del} respectively add or remove objects
|
||||
from the current selection instead of overwriting it.
|
||||
|
||||
\medskip
|
||||
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
|
||||
select -none # start with an empty selection
|
||||
select -add reg_* # select a bunch of objects
|
||||
select -del reg_42 # but not this one
|
||||
select -add state %ci # and add mor stuff
|
||||
\end{lstlisting}
|
||||
|
||||
\bigskip
|
||||
Within a select expression the token {\tt \%} can be used to push the previous selection
|
||||
on the stack.
|
||||
|
||||
\medskip
|
||||
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
|
||||
select t:$add t:$sub # select all $add and $sub cells
|
||||
select % %ci % %d # select only the input wires to those cells
|
||||
\end{lstlisting}
|
||||
\end{frame}
|
||||
|
||||
\subsubsection{Creating selection variables}
|
||||
|
||||
\begin{frame}[fragile]{\subsubsecname}
|
||||
Selections can be stored under a name with the {\tt select -set <name>}
|
||||
command. The stored selections can be used in later select expressions
|
||||
using the syntax {\tt @<name>}.
|
||||
|
||||
\medskip
|
||||
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
|
||||
select -set cone_a state_a %ci*:-$dff # set @cone_a to the input cone of state_a
|
||||
select -set cone_b state_b %ci*:-$dff # set @cone_b to the input cone of state_b
|
||||
select @cone_a @cone_b %i # select the objects that are in both cones
|
||||
\end{lstlisting}
|
||||
|
||||
\bigskip
|
||||
Remember that select expressions can also be used directly as arguments to most
|
||||
commands. Some commands also except a single select argument to some options.
|
||||
In those cases selection variables must be used to capture more complex selections.
|
||||
|
||||
\medskip
|
||||
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
|
||||
dump @cone_a @cone_b
|
||||
|
||||
select -set cone_ab @cone_a @cone_b %i
|
||||
show -color red @cone_ab -color magenta @cone_a -color blue @cone_b
|
||||
\end{lstlisting}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{\subsubsecname{} -- Example}
|
||||
\begin{columns}
|
||||
\column[t]{4cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{6pt}{7pt}\selectfont, language=verilog]{PRESENTATION_ExAdv/select.v}
|
||||
\column[t]{7cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExAdv/select.ys}
|
||||
\end{columns}
|
||||
\hfil\includegraphics[width=\linewidth,trim=0 0cm 0 0cm]{PRESENTATION_ExAdv/select.pdf}
|
||||
\end{frame}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\subsection{Advanced uses of techmap}
|
||||
|
||||
\begin{frame}
|
||||
\subsectionpage
|
||||
\subsectionpagesuffix
|
||||
\end{frame}
|
||||
|
||||
\subsubsection{Introduction to techmap}
|
||||
|
||||
\begin{frame}{\subsubsecname}
|
||||
\begin{itemize}
|
||||
\item
|
||||
The {\tt techmap} command replaces cells in the design with implementations given
|
||||
as Verilog code (called ``map files''). It can replace Yosys' internal cell
|
||||
types (such as {\tt \$or}) as well as user-defined cell types.
|
||||
\medskip\item
|
||||
Verilog parameters are used extensively to customize the internal cell types.
|
||||
\medskip\item
|
||||
Additional special parameters are used by techmap to communicate meta-data to the
|
||||
map files.
|
||||
\medskip\item
|
||||
Special wires are used to instruct techmap how to handle a module in the map file.
|
||||
\medskip\item
|
||||
Generate blocks and recursion are powerful tools for writing map files.
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t]{\subsubsecname{} -- Example 1/2}
|
||||
\vskip-0.2cm
|
||||
To map the Verilog OR-reduction operator to 3-input OR gates:
|
||||
\vskip-0.2cm
|
||||
\begin{columns}
|
||||
\column[t]{0.35\linewidth}
|
||||
\lstinputlisting[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, lastline=24]{PRESENTATION_ExAdv/red_or3x1_map.v}
|
||||
\column[t]{0.65\linewidth}
|
||||
\lstinputlisting[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, firstline=25]{PRESENTATION_ExAdv/red_or3x1_map.v}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t]{\subsubsecname{} -- Example 2/2}
|
||||
\vbox to 0cm{
|
||||
\hfil\includegraphics[width=10cm,trim=0 0cm 0 0cm]{PRESENTATION_ExAdv/red_or3x1.pdf}
|
||||
\vss
|
||||
}
|
||||
\begin{columns}
|
||||
\column[t]{6cm}
|
||||
\column[t]{4cm}
|
||||
\vskip-0.6cm\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, firstline=4, lastline=4, frame=single]{PRESENTATION_ExAdv/red_or3x1_test.ys}
|
||||
\vskip-0.2cm\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExAdv/red_or3x1_test.v}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\subsubsection{Conditional techmap}
|
||||
|
||||
\begin{frame}{\subsubsecname}
|
||||
\begin{itemize}
|
||||
\item In some cases only cells with certain properties should be substituted.
|
||||
\medskip
|
||||
\item The special wire {\tt \_TECHMAP\_FAIL\_} can be used to disable a module
|
||||
in the map file for a certain set of parameters.
|
||||
\medskip
|
||||
\item The wire {\tt \_TECHMAP\_FAIL\_} must be set to a constant value. If it
|
||||
is non-zero then the module is disabled for this set of parameters.
|
||||
\medskip
|
||||
\item Example use-cases:
|
||||
\begin{itemize}
|
||||
\item coarse-grain cell types that only operate on certain bit widths
|
||||
\item memory resources for different memory geometries (width, depth, ports, etc.)
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t]{\subsubsecname{} -- Example}
|
||||
\vbox to 0cm{
|
||||
\vskip-0.5cm
|
||||
\hfill\includegraphics[width=6cm,trim=0 0cm 0 0cm]{PRESENTATION_ExAdv/sym_mul.pdf}
|
||||
\vss
|
||||
}
|
||||
\vskip-0.5cm
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExAdv/sym_mul_map.v}
|
||||
\begin{columns}
|
||||
\column[t]{6cm}
|
||||
\vskip-0.5cm\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, frame=single, language=verilog]{PRESENTATION_ExAdv/sym_mul_test.v}
|
||||
\column[t]{4cm}
|
||||
\vskip-0.5cm\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, frame=single, language=ys, lastline=4]{PRESENTATION_ExAdv/sym_mul_test.ys}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\subsubsection{Scripting in map modules}
|
||||
|
||||
\begin{frame}{\subsubsecname}
|
||||
\begin{itemize}
|
||||
\item The special wires {\tt \_TECHMAP\_DO\_*} can be used to run Yosys scripts
|
||||
in the context of the replacement module.
|
||||
\medskip
|
||||
\item The wire that comes first in alphabetical oder is interpreted as string (must
|
||||
be connected to constants) that is executed as script. Then the wire is removed. Repeat.
|
||||
\medskip
|
||||
\item You can even call techmap recursively!
|
||||
\medskip
|
||||
\item Example use-cases:
|
||||
\begin{itemize}
|
||||
\item Using always blocks in map module: call {\tt proc}
|
||||
\item Perform expensive optimizations (such as {\tt freduce}) on cells where
|
||||
this is known to work well.
|
||||
\item Interacting with custom commands.
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
|
||||
\scriptsize
|
||||
PROTIP: Commands such as {\tt shell}, {\tt show -pause}, and {\tt dump} can be use
|
||||
in the {\tt \_TECHMAP\_DO\_*} scripts for debugging map modules.
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t]{\subsubsecname{} -- Example}
|
||||
\vbox to 0cm{
|
||||
\vskip4.2cm
|
||||
\hskip0.5cm\includegraphics[width=10cm,trim=0 0cm 0 0cm]{PRESENTATION_ExAdv/mymul.pdf}
|
||||
\vss
|
||||
}
|
||||
\vskip-0.6cm
|
||||
\begin{columns}
|
||||
\column[t]{6cm}
|
||||
\vskip-0.6cm
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExAdv/mymul_map.v}
|
||||
\column[t]{4.2cm}
|
||||
\vskip-0.6cm
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, frame=single, language=verilog]{PRESENTATION_ExAdv/mymul_test.v}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, frame=single, language=ys, lastline=5]{PRESENTATION_ExAdv/mymul_test.ys}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, frame=single, language=ys, firstline=7, lastline=12]{PRESENTATION_ExAdv/mymul_test.ys}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\subsubsection{Handling constant inputs}
|
||||
|
||||
\begin{frame}{\subsubsecname}
|
||||
\begin{itemize}
|
||||
\item The special parameters {\tt \_TECHMAP\_CONSTMSK\_\it <port-name>\tt \_} and
|
||||
{\tt \_TECHMAP\_CONSTVAL\_\it <port-name>\tt \_} can be used to handle constant
|
||||
input values to cells.
|
||||
\medskip
|
||||
\item The former contains 1-bits for all constant input bits on the port.
|
||||
\medskip
|
||||
\item The latter contains the constant bits or undef (x) for non-constant bits.
|
||||
\medskip
|
||||
\item Example use-cases:
|
||||
\begin{itemize}
|
||||
\item Converting arithmetic (for example multiply to shift)
|
||||
\item Identify constant addresses or enable bits in memory interfaces.
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t]{\subsubsecname{} -- Example}
|
||||
\vbox to 0cm{
|
||||
\vskip5.2cm
|
||||
\hskip6.5cm\includegraphics[width=5cm,trim=0 0cm 0 0cm]{PRESENTATION_ExAdv/mulshift.pdf}
|
||||
\vss
|
||||
}
|
||||
\vskip-0.6cm
|
||||
\begin{columns}
|
||||
\column[t]{6cm}
|
||||
\vskip-0.4cm
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog]{PRESENTATION_ExAdv/mulshift_map.v}
|
||||
\column[t]{4.2cm}
|
||||
\vskip-0.6cm
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, frame=single, language=verilog]{PRESENTATION_ExAdv/mulshift_test.v}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, frame=single, language=ys, lastline=5]{PRESENTATION_ExAdv/mulshift_test.ys}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\subsubsection{Handling shorted inputs}
|
||||
|
||||
\begin{frame}{\subsubsecname}
|
||||
\begin{itemize}
|
||||
\item The special parameters {\tt \_TECHMAP\_BITS\_CONNMAP\_} and
|
||||
{\tt \_TECHMAP\_CONNMAP\_\it <port-name>\tt \_} can be used to handle shorted inputs.
|
||||
\medskip
|
||||
\item Each bit of the port correlates to an {\tt \_TECHMAP\_BITS\_CONNMAP\_} bits wide
|
||||
number in {\tt \_TECHMAP\_CONNMAP\_\it <port-name>\tt \_}.
|
||||
\medskip
|
||||
\item Each unique signal bit is assigned its own number. Identical fields in the {\tt
|
||||
\_TECHMAP\_CONNMAP\_\it <port-name>\tt \_} parameters mean shorted signal bits.
|
||||
\medskip
|
||||
\item The numbers 0-3 are reserved for {\tt 0}, {\tt 1}, {\tt x}, and {\tt z} respectively.
|
||||
\medskip
|
||||
\item Example use-cases:
|
||||
\begin{itemize}
|
||||
\item Detecting shared clock or control signals in memory interfaces.
|
||||
\item In some cases this can be used for for optimization.
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t]{\subsubsecname{} -- Example}
|
||||
\vbox to 0cm{
|
||||
\vskip4.5cm
|
||||
\hskip6.5cm\includegraphics[width=5cm,trim=0 0cm 0 0cm]{PRESENTATION_ExAdv/addshift.pdf}
|
||||
\vss
|
||||
}
|
||||
\vskip-0.6cm
|
||||
\begin{columns}
|
||||
\column[t]{6cm}
|
||||
\vskip-0.4cm
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog]{PRESENTATION_ExAdv/addshift_map.v}
|
||||
\column[t]{4.2cm}
|
||||
\vskip-0.6cm
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, frame=single, language=verilog]{PRESENTATION_ExAdv/addshift_test.v}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, frame=single, language=ys, lastline=5]{PRESENTATION_ExAdv/addshift_test.ys}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\subsubsection{Notes on using techmap}
|
||||
|
||||
\begin{frame}{\subsubsecname}
|
||||
\begin{itemize}
|
||||
\item Don't use positional cell parameters in map modules.
|
||||
\medskip
|
||||
\item Don't try to implement basic logic optimization with techmap. \\
|
||||
{\small (So the OR-reduce using OR3X1 cells map was actually a bad example.)}
|
||||
\medskip
|
||||
\item You can use the {\tt \$\_\,\_}-prefix for internal cell types to avoid
|
||||
collisions with the user-namespace. But always use two underscores or the
|
||||
internal consistency checker will trigger on this cells.
|
||||
\medskip
|
||||
\item Techmap has two major use cases:
|
||||
\begin{itemize}
|
||||
\item Creating good logic-level representation of arithmetic functions. \\
|
||||
This also means using dedicated hardware resources such as half- and full-adder
|
||||
cells in ASICS or dedicated carry logic in FPGAs.
|
||||
\smallskip
|
||||
\item Mapping of coarse-grain resources such as block memory or DSP cells.
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\subsection{Coarse-grain synthesis}
|
||||
|
||||
\begin{frame}
|
||||
\subsectionpage
|
||||
\subsectionpagesuffix
|
||||
\end{frame}
|
||||
|
||||
\subsubsection{Intro to coarse-grain synthesis}
|
||||
|
||||
\begin{frame}[fragile]{\subsubsecname}
|
||||
In coarse-grain synthesis the target architecture has cells of the same
|
||||
complexity or larger complexity than the internal RTL representation.
|
||||
|
||||
For example:
|
||||
\begin{lstlisting}[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]
|
||||
wire [15:0] a, b;
|
||||
wire [31:0] c, y;
|
||||
assign y = a * b + c;
|
||||
\end{lstlisting}
|
||||
|
||||
This circuit contains two cells in the RTL representation: one multiplier and
|
||||
one adder. In some architectures this circuit can be implemented using
|
||||
a single circuit element, for example an FPGA DSP core. Coarse grain synthesis
|
||||
is this mapping of groups of circuit elements to larger components.
|
||||
|
||||
\bigskip
|
||||
Fine-grain synthesis would be matching the circuit elements to smaller
|
||||
components, such as LUTs, gates, or half- and full-adders.
|
||||
\end{frame}
|
||||
|
||||
\subsubsection{The extract pass}
|
||||
|
||||
\begin{frame}{\subsubsecname}
|
||||
\begin{itemize}
|
||||
\item Like the {\tt techmap} pass, the {\tt extract} pass is called with
|
||||
a map file. It compares the circuits inside the modules of the map file
|
||||
with the design and looks for sub-circuits in the design that match any
|
||||
of the modules in the map file.
|
||||
\bigskip
|
||||
\item If a match is found, the {\tt extract} pass will replace the matching
|
||||
subcircuit with an instance of the module from the map file.
|
||||
\bigskip
|
||||
\item In a way the {\tt extract} pass is the inverse of the techmap pass.
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t, fragile]{\subsubsecname{} -- Example 1/2}
|
||||
\vbox to 0cm{
|
||||
\vskip2cm
|
||||
\begin{tikzpicture}
|
||||
\node at (0,0) {\includegraphics[width=5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_simple_test_00a.pdf}};
|
||||
\node at (3,-3) {\includegraphics[width=8cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_simple_test_00b.pdf}};
|
||||
\draw[yshift=0.2cm,thick,-latex] (1,-1) -- (2,-2);
|
||||
\end{tikzpicture}
|
||||
\vss}
|
||||
\vskip-1.2cm
|
||||
\begin{columns}
|
||||
\column[t]{5cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExAdv/macc_simple_test.v}
|
||||
\column[t]{5cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, frame=single, language=verilog]{PRESENTATION_ExAdv/macc_simple_xmap.v}
|
||||
\begin{lstlisting}[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, frame=single, language=ys]
|
||||
read_verilog macc_simple_test.v
|
||||
hierarchy -check -top test
|
||||
|
||||
extract -map macc_simple_xmap.v;;
|
||||
\end{lstlisting}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{\subsubsecname{} -- Example 2/2}
|
||||
\hfil\begin{tabular}{cc}
|
||||
\fbox{\hbox to 5cm {\lstinputlisting[linewidth=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExAdv/macc_simple_test_01.v}}} &
|
||||
\fbox{\hbox to 5cm {\lstinputlisting[linewidth=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=verilog]{PRESENTATION_ExAdv/macc_simple_test_02.v}}} \\
|
||||
$\downarrow$ & $\downarrow$ \\
|
||||
\fbox{\includegraphics[width=5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_simple_test_01a.pdf}} &
|
||||
\fbox{\includegraphics[width=5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_simple_test_02a.pdf}} \\
|
||||
$\downarrow$ & $\downarrow$ \\
|
||||
\fbox{\includegraphics[width=5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_simple_test_01b.pdf}} &
|
||||
\fbox{\includegraphics[width=5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_simple_test_02b.pdf}} \\
|
||||
\end{tabular}
|
||||
\end{frame}
|
||||
|
||||
\subsubsection{The wrap-extract-unwrap method}
|
||||
|
||||
\begin{frame}{\subsubsecname}
|
||||
\scriptsize
|
||||
Often a coarse-grain element has a constant bit-width, but can be used to
|
||||
implement operations with a smaller bit-width. For example, a 18x25-bit multiplier
|
||||
can also be used to implement 16x20-bit multiplication.
|
||||
|
||||
\bigskip
|
||||
A way of mapping such elements in coarse grain synthesis is the wrap-extract-unwrap method:
|
||||
|
||||
\begin{itemize}
|
||||
\item {\bf wrap} \\
|
||||
Identify candidate-cells in the circuit and wrap them in a cell with a constant
|
||||
wider bit-width using {\tt techmap}. The wrappers use the same parameters as the original cell, so
|
||||
the information about the original width of the ports is preserved. \\
|
||||
Then use the {\tt connwrappers} command to connect up the bit-extended in- and
|
||||
outputs of the wrapper cells.
|
||||
\item {\bf extract} \\
|
||||
Now all operations are encoded using the same bit-width as the coarse grain element. The {\tt
|
||||
extract} command can be used to replace circuits with cells of the target architecture.
|
||||
\item {\bf unwrap} \\
|
||||
The remaining wrapper cell can be unwrapped using {\tt techmap}.
|
||||
\end{itemize}
|
||||
|
||||
\bigskip
|
||||
The following sides detail an example that shows how to map MACC operations of
|
||||
arbitrary size to MACC cells with a 18x25-bit multiplier and a 48-bit adder (such as
|
||||
the Xilinx DSP48 cells).
|
||||
\end{frame}
|
||||
|
||||
\subsubsection{Example: DSP48\_MACC}
|
||||
|
||||
\begin{frame}[t, fragile]{\subsubsecname{} -- 1/13}
|
||||
Preconditioning: {\tt macc\_xilinx\_swap\_map.v} \\
|
||||
Make sure {\tt A} is the smaller port on all multipliers
|
||||
|
||||
\begin{columns}
|
||||
\column{5cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, lastline=15]{PRESENTATION_ExAdv/macc_xilinx_swap_map.v}
|
||||
\column{5cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, firstline=16]{PRESENTATION_ExAdv/macc_xilinx_swap_map.v}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t, fragile]{\subsubsecname{} -- 2/13}
|
||||
Wrapping multipliers: {\tt macc\_xilinx\_wrap\_map.v}
|
||||
|
||||
\begin{columns}
|
||||
\column[t]{5cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, lastline=23]{PRESENTATION_ExAdv/macc_xilinx_wrap_map.v}
|
||||
\column[t]{5cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, firstline=24, lastline=46]{PRESENTATION_ExAdv/macc_xilinx_wrap_map.v}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t, fragile]{\subsubsecname{} -- 3/13}
|
||||
Wrapping adders: {\tt macc\_xilinx\_wrap\_map.v}
|
||||
|
||||
\begin{columns}
|
||||
\column[t]{5cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, firstline=48, lastline=67]{PRESENTATION_ExAdv/macc_xilinx_wrap_map.v}
|
||||
\column[t]{5cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, firstline=68, lastline=89]{PRESENTATION_ExAdv/macc_xilinx_wrap_map.v}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t, fragile]{\subsubsecname{} -- 4/13}
|
||||
Extract: {\tt macc\_xilinx\_xmap.v}
|
||||
|
||||
\lstinputlisting[xleftmargin=0.5cm, basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, firstline=1, lastline=17]{PRESENTATION_ExAdv/macc_xilinx_xmap.v}
|
||||
|
||||
.. simply use the same wrapping commands on this module as on the design to create a template for the {\tt extract} command.
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t, fragile]{\subsubsecname{} -- 5/13}
|
||||
Unwrapping multipliers: {\tt macc\_xilinx\_unwrap\_map.v}
|
||||
|
||||
\begin{columns}
|
||||
\column[t]{5cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, firstline=1, lastline=17]{PRESENTATION_ExAdv/macc_xilinx_unwrap_map.v}
|
||||
\column[t]{5cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, firstline=18, lastline=30]{PRESENTATION_ExAdv/macc_xilinx_unwrap_map.v}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t, fragile]{\subsubsecname{} -- 6/13}
|
||||
Unwrapping adders: {\tt macc\_xilinx\_unwrap\_map.v}
|
||||
|
||||
\begin{columns}
|
||||
\column[t]{5cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, firstline=32, lastline=48]{PRESENTATION_ExAdv/macc_xilinx_unwrap_map.v}
|
||||
\column[t]{5cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{7pt}{8pt}\selectfont, language=verilog, firstline=49, lastline=61]{PRESENTATION_ExAdv/macc_xilinx_unwrap_map.v}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{\subsubsecname{} -- 7/13}
|
||||
\hfil\begin{tabular}{cc}
|
||||
{\tt test1} & {\tt test2} \\
|
||||
\fbox{\hbox to 5cm {\lstinputlisting[linewidth=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, firstline=1, lastline=6, language=verilog]{PRESENTATION_ExAdv/macc_xilinx_test.v}}} &
|
||||
\fbox{\hbox to 5cm {\lstinputlisting[linewidth=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, firstline=8, lastline=13, language=verilog]{PRESENTATION_ExAdv/macc_xilinx_test.v}}} \\
|
||||
$\downarrow$ & $\downarrow$ \\
|
||||
\end{tabular}
|
||||
\vskip-0.5cm
|
||||
\begin{lstlisting}[linewidth=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
|
||||
read_verilog macc_xilinx_test.v
|
||||
hierarchy -check
|
||||
\end{lstlisting}
|
||||
\vskip-0.5cm
|
||||
\hfil\begin{tabular}{cc}
|
||||
$\downarrow$ & $\downarrow$ \\
|
||||
\fbox{\includegraphics[width=5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test1a.pdf}} &
|
||||
\fbox{\includegraphics[width=5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test2a.pdf}} \\
|
||||
\end{tabular}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{\subsubsecname{} -- 8/13}
|
||||
\hfil\begin{tabular}{cc}
|
||||
{\tt test1} & {\tt test2} \\
|
||||
\fbox{\includegraphics[width=5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test1a.pdf}} &
|
||||
\fbox{\includegraphics[width=5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test2a.pdf}} \\
|
||||
$\downarrow$ & $\downarrow$ \\
|
||||
\end{tabular}
|
||||
\vskip-0.2cm
|
||||
\begin{lstlisting}[linewidth=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
|
||||
techmap -map macc_xilinx_swap_map.v ;;
|
||||
\end{lstlisting}
|
||||
\vskip-0.2cm
|
||||
\hfil\begin{tabular}{cc}
|
||||
$\downarrow$ & $\downarrow$ \\
|
||||
\fbox{\includegraphics[width=5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test1b.pdf}} &
|
||||
\fbox{\includegraphics[width=5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test2b.pdf}} \\
|
||||
\end{tabular}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t, fragile]{\subsubsecname{} -- 9/13}
|
||||
Wrapping in {\tt test1}:
|
||||
\begin{columns}
|
||||
\column[t]{5cm}
|
||||
\vbox to 0cm{\fbox{\includegraphics[width=4.5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test1b.pdf}}\vss}
|
||||
\column[t]{6cm}
|
||||
\begin{lstlisting}[linewidth=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
|
||||
techmap -map macc_xilinx_wrap_map.v
|
||||
|
||||
connwrappers -unsigned $__mul_wrapper \
|
||||
Y Y_WIDTH \
|
||||
-unsigned $__add_wrapper \
|
||||
Y Y_WIDTH ;;
|
||||
\end{lstlisting}
|
||||
\end{columns}
|
||||
|
||||
\vskip1cm
|
||||
\hfil\includegraphics[width=\linewidth,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test1c.pdf}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t, fragile]{\subsubsecname{} -- 10/13}
|
||||
Wrapping in {\tt test2}:
|
||||
\begin{columns}
|
||||
\column[t]{5cm}
|
||||
\vbox to 0cm{\fbox{\includegraphics[width=4.5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test2b.pdf}}\vss}
|
||||
\column[t]{6cm}
|
||||
\begin{lstlisting}[linewidth=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
|
||||
techmap -map macc_xilinx_wrap_map.v
|
||||
|
||||
connwrappers -unsigned $__mul_wrapper \
|
||||
Y Y_WIDTH \
|
||||
-unsigned $__add_wrapper \
|
||||
Y Y_WIDTH ;;
|
||||
\end{lstlisting}
|
||||
\end{columns}
|
||||
|
||||
\vskip1cm
|
||||
\hfil\includegraphics[width=\linewidth,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test2c.pdf}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t, fragile]{\subsubsecname{} -- 11/13}
|
||||
Extract in {\tt test1}:
|
||||
\begin{columns}
|
||||
\column[t]{4.5cm}
|
||||
\vbox to 0cm{
|
||||
\begin{lstlisting}[linewidth=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
|
||||
design -push
|
||||
read_verilog macc_xilinx_xmap.v
|
||||
techmap -map macc_xilinx_swap_map.v
|
||||
techmap -map macc_xilinx_wrap_map.v;;
|
||||
design -save __macc_xilinx_xmap
|
||||
design -pop
|
||||
\end{lstlisting}
|
||||
\vss}
|
||||
\column[t]{5.5cm}
|
||||
\vskip-1cm
|
||||
\begin{lstlisting}[linewidth=5.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
|
||||
extract -constports -ignore_parameters \
|
||||
-map %__macc_xilinx_xmap \
|
||||
-swap $__add_wrapper A,B ;;
|
||||
\end{lstlisting}
|
||||
\vbox to 0cm{\fbox{\includegraphics[width=4.5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test1c.pdf}}\vss}
|
||||
\end{columns}
|
||||
|
||||
\vskip2cm
|
||||
\hfil\includegraphics[width=11cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test1d.pdf}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t, fragile]{\subsubsecname{} -- 12/13}
|
||||
Extract in {\tt test2}:
|
||||
\begin{columns}
|
||||
\column[t]{4.5cm}
|
||||
\vbox to 0cm{
|
||||
\begin{lstlisting}[linewidth=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
|
||||
design -push
|
||||
read_verilog macc_xilinx_xmap.v
|
||||
techmap -map macc_xilinx_swap_map.v
|
||||
techmap -map macc_xilinx_wrap_map.v;;
|
||||
design -save __macc_xilinx_xmap
|
||||
design -pop
|
||||
\end{lstlisting}
|
||||
\vss}
|
||||
\column[t]{5.5cm}
|
||||
\vskip-1cm
|
||||
\begin{lstlisting}[linewidth=5.5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
|
||||
extract -constports -ignore_parameters \
|
||||
-map %__macc_xilinx_xmap \
|
||||
-swap $__add_wrapper A,B ;;
|
||||
\end{lstlisting}
|
||||
\vbox to 0cm{\fbox{\includegraphics[width=4.5cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test2c.pdf}}\vss}
|
||||
\end{columns}
|
||||
|
||||
\vskip2cm
|
||||
\hfil\includegraphics[width=11cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test2d.pdf}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t, fragile]{\subsubsecname{} -- 13/13}
|
||||
Unwrap in {\tt test2}:
|
||||
|
||||
\hfil\begin{tikzpicture}
|
||||
\node at (0,0) {\includegraphics[width=11cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test2d.pdf}};
|
||||
\node at (0,-4) {\includegraphics[width=8cm,trim=1.5cm 1.5cm 1.5cm 1.5cm]{PRESENTATION_ExAdv/macc_xilinx_test2e.pdf}};
|
||||
\node at (1,-1.7) {\begin{lstlisting}[linewidth=5.5cm, frame=single, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
|
||||
techmap -map macc_xilinx_unwrap_map.v ;;
|
||||
\end{lstlisting}};
|
||||
\draw[-latex] (4,-0.7) .. controls (5,-1.7) .. (4,-2.7);
|
||||
\end{tikzpicture}
|
||||
\end{frame}
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\subsection{Automatic design changes}
|
||||
|
|
|
@ -1,227 +0,0 @@
|
|||
|
||||
\section{Yosys by example -- Beyond Synthesis}
|
||||
|
||||
\begin{frame}
|
||||
\sectionpage
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Overview}
|
||||
This section contains 2 subsections:
|
||||
\begin{itemize}
|
||||
\item Interactive Design Investigation
|
||||
\item Symbolic Model Checking
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\subsection{Interactive Design Investigation}
|
||||
|
||||
\begin{frame}
|
||||
\subsectionpage
|
||||
\subsectionpagesuffix
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{\subsecname}
|
||||
Yosys can also be used to investigate designs (or netlists created
|
||||
from other tools).
|
||||
|
||||
\begin{itemize}
|
||||
\item
|
||||
The selection mechanism (see slides ``Using Selections''), especially patterns such
|
||||
as {\tt \%ci} and {\tt \%co}, can be used to figure out how parts of the design
|
||||
are connected.
|
||||
|
||||
\item
|
||||
Commands such as {\tt submod}, {\tt expose}, {\tt splice}, \dots can be used
|
||||
to transform the design into an equivalent design that is easier to analyse.
|
||||
|
||||
\item
|
||||
Commands such as {\tt eval} and {\tt sat} can be used to investigate the
|
||||
behavior of the circuit.
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t, fragile]{Example: Reorganizing a module}
|
||||
\begin{columns}
|
||||
\column[t]{4cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{6pt}{7pt}\selectfont, language=verilog]{PRESENTATION_ExOth/scrambler.v}
|
||||
\column[t]{7cm}
|
||||
\begin{lstlisting}[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]
|
||||
read_verilog scrambler.v
|
||||
|
||||
hierarchy; proc;;
|
||||
|
||||
cd scrambler
|
||||
submod -name xorshift32 \
|
||||
xs %c %ci %D %c %ci:+[D] %D \
|
||||
%ci*:-$dff xs %co %ci %d
|
||||
\end{lstlisting}
|
||||
\end{columns}
|
||||
|
||||
\hfil\includegraphics[width=11cm,trim=0 0cm 0 1.5cm]{PRESENTATION_ExOth/scrambler_p01.pdf}
|
||||
|
||||
\hfil\includegraphics[width=11cm,trim=0 0cm 0 2cm]{PRESENTATION_ExOth/scrambler_p02.pdf}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t, fragile]{Example: Analysis of circuit behavior}
|
||||
\begin{lstlisting}[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys]
|
||||
> read_verilog scrambler.v
|
||||
> hierarchy; proc;; cd scrambler
|
||||
> submod -name xorshift32 xs %c %ci %D %c %ci:+[D] %D %ci*:-$dff xs %co %ci %d
|
||||
|
||||
> cd xorshift32
|
||||
> rename n2 in
|
||||
> rename n1 out
|
||||
|
||||
> eval -set in 1 -show out
|
||||
Eval result: \out = 270369.
|
||||
|
||||
> eval -set in 270369 -show out
|
||||
Eval result: \out = 67634689.
|
||||
|
||||
> sat -set out 632435482
|
||||
Signal Name Dec Hex Bin
|
||||
-------------------- ---------- ---------- -------------------------------------
|
||||
\in 745495504 2c6f5bd0 00101100011011110101101111010000
|
||||
\out 632435482 25b2331a 00100101101100100011001100011010
|
||||
\end{lstlisting}
|
||||
\end{frame}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\subsection{Symbolic Model Checking}
|
||||
|
||||
\begin{frame}
|
||||
\subsectionpage
|
||||
\subsectionpagesuffix
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{\subsecname}
|
||||
Symbolic Model Checking (SMC) is used to formally prove that a circuit has
|
||||
(or has not) a given property.
|
||||
|
||||
\bigskip
|
||||
One application is Formal Equivalence Checking: Proving that two circuits
|
||||
are identical. For example this is a very useful feature when debugging custom
|
||||
passes in Yosys.
|
||||
|
||||
\bigskip
|
||||
Other applications include checking if a module conforms to interface
|
||||
standards.
|
||||
|
||||
\bigskip
|
||||
The {\tt sat} command in Yosys can be used to perform Symbolic Model Checking.
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t]{Example: Formal Equivalence Checking (1/2)}
|
||||
Remember the following example?
|
||||
\vskip1em
|
||||
|
||||
\vbox to 0cm{
|
||||
\vskip-0.3cm
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{6pt}{7pt}\selectfont, language=verilog]{PRESENTATION_ExSyn/techmap_01_map.v}
|
||||
}\vbox to 0cm{
|
||||
\vskip-0.5cm
|
||||
\lstinputlisting[xleftmargin=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, frame=single, language=verilog]{PRESENTATION_ExSyn/techmap_01.v}
|
||||
\lstinputlisting[xleftmargin=5cm, basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]{PRESENTATION_ExSyn/techmap_01.ys}}
|
||||
|
||||
\vskip5cm\hskip5cm
|
||||
Lets see if it is correct..
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t, fragile]{Example: Formal Equivalence Checking (2/2)}
|
||||
\begin{lstlisting}[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]
|
||||
# read test design
|
||||
read_verilog techmap_01.v
|
||||
hierarchy -top test
|
||||
|
||||
# create two version of the design: test_orig and test_mapped
|
||||
copy test test_orig
|
||||
rename test test_mapped
|
||||
|
||||
# apply the techmap only to test_mapped
|
||||
techmap -map techmap_01_map.v test_mapped
|
||||
|
||||
# create a miter circuit to test equivalence
|
||||
miter -equiv -make_assert -make_outputs test_orig test_mapped miter
|
||||
flatten miter
|
||||
|
||||
# run equivalence check
|
||||
sat -verify -prove-asserts -show-inputs -show-outputs miter
|
||||
\end{lstlisting}
|
||||
|
||||
\dots
|
||||
\begin{lstlisting}[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont]
|
||||
Solving problem with 945 variables and 2505 clauses..
|
||||
SAT proof finished - no model found: SUCCESS!
|
||||
\end{lstlisting}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t, fragile]{Example: Symbolic Model Checking (1/2)}
|
||||
\small
|
||||
The following AXI4 Stream Master has a bug. But the bug is not exposed if the
|
||||
slave keeps {\tt tready} asserted all the time. (Something a test bench might do.)
|
||||
|
||||
\medskip
|
||||
Symbolic Model Checking can be used to expose the bug and find a sequence
|
||||
of values for {\tt tready} that yield the incorrect behavior.
|
||||
|
||||
\vskip-1em
|
||||
\begin{columns}
|
||||
\column[t]{5cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{5pt}{6pt}\selectfont, language=verilog]{PRESENTATION_ExOth/axis_master.v}
|
||||
\column[t]{5cm}
|
||||
\lstinputlisting[basicstyle=\ttfamily\fontsize{5pt}{6pt}\selectfont, language=verilog]{PRESENTATION_ExOth/axis_test.v}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[t, fragile]{Example: Symbolic Model Checking (2/2)}
|
||||
\begin{lstlisting}[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont, language=ys, frame=single]
|
||||
read_verilog -sv axis_master.v axis_test.v
|
||||
hierarchy -top axis_test
|
||||
|
||||
proc; flatten;;
|
||||
sat -seq 50 -prove-asserts
|
||||
\end{lstlisting}
|
||||
|
||||
\bigskip
|
||||
\dots with unmodified {\tt axis\_master.v}:
|
||||
\begin{lstlisting}[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont]
|
||||
Solving problem with 159344 variables and 442126 clauses..
|
||||
SAT proof finished - model found: FAIL!
|
||||
\end{lstlisting}
|
||||
|
||||
\bigskip
|
||||
\dots with fixed {\tt axis\_master.v}:
|
||||
\begin{lstlisting}[basicstyle=\ttfamily\fontsize{8pt}{10pt}\selectfont]
|
||||
Solving problem with 159144 variables and 441626 clauses..
|
||||
SAT proof finished - no model found: SUCCESS!
|
||||
\end{lstlisting}
|
||||
\end{frame}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\subsection{Summary}
|
||||
|
||||
\begin{frame}{\subsecname}
|
||||
\begin{itemize}
|
||||
\item Yosys provides useful features beyond synthesis.
|
||||
\item The commands {\tt sat} and {\tt eval} can be used to analyse the behavior of a circuit.
|
||||
\item The {\tt sat} command can also be used for symbolic model checking.
|
||||
\item This can be useful for debugging and testing designs and Yosys extensions alike.
|
||||
\end{itemize}
|
||||
|
||||
\bigskip
|
||||
\bigskip
|
||||
\begin{center}
|
||||
Questions?
|
||||
\end{center}
|
||||
|
||||
\bigskip
|
||||
\bigskip
|
||||
\begin{center}
|
||||
\url{https://yosyshq.net/yosys/}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
|
@ -1 +0,0 @@
|
|||
*.dot
|
Loading…
Reference in New Issue