yosys/passes/techmap/abc9_ops.cc

1038 lines
32 KiB
C++
Raw Normal View History

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
* 2019 Eddie Hung <eddie@fpgeh.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/register.h"
2019-12-30 18:36:33 -06:00
#include "kernel/sigtools.h"
2019-12-30 20:00:49 -06:00
#include "kernel/utils.h"
#include "kernel/celltypes.h"
#define ABC9_DELAY_BASE_ID 9000
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
int map_autoidx;
inline std::string remap_name(RTLIL::IdString abc9_name)
{
return stringf("$abc$%d$%s", map_autoidx, abc9_name.c_str()+1);
}
void check(RTLIL::Design *design)
{
dict<IdString,IdString> box_lookup;
for (auto m : design->modules()) {
auto it = m->attributes.find(ID(abc9_box_id));
if (it == m->attributes.end())
continue;
if (m->name.begins_with("$paramod"))
continue;
auto id = it->second.as_int();
auto r = box_lookup.insert(std::make_pair(stringf("$__boxid%d", id), m->name));
if (!r.second)
log_error("Module '%s' has the same abc9_box_id = %d value as '%s'.\n",
log_id(m), id, log_id(r.first->second));
// Make carry in the last PI, and carry out the last PO
// since ABC requires it this way
IdString carry_in, carry_out;
for (const auto &port_name : m->ports) {
auto w = m->wire(port_name);
log_assert(w);
if (w->get_bool_attribute("\\abc9_carry")) {
if (w->port_input) {
if (carry_in != IdString())
log_error("Module '%s' contains more than one 'abc9_carry' input port.\n", log_id(m));
carry_in = port_name;
}
if (w->port_output) {
if (carry_out != IdString())
log_error("Module '%s' contains more than one 'abc9_carry' output port.\n", log_id(m));
carry_out = port_name;
}
}
}
if (carry_in != IdString() && carry_out == IdString())
log_error("Module '%s' contains an 'abc9_carry' input port but no output port.\n", log_id(m));
if (carry_in == IdString() && carry_out != IdString())
log_error("Module '%s' contains an 'abc9_carry' output port but no input port.\n", log_id(m));
}
}
void break_scc(RTLIL::Module *module)
{
// For every unique SCC found, (arbitrarily) find the first
// cell in the component, and convert all wires driven by
// its output ports into a new PO, and drive its previous
// sinks with a new PI
pool<RTLIL::Const> ids_seen;
for (auto cell : module->selected_cells()) {
auto it = cell->attributes.find(ID(abc9_scc_id));
if (it == cell->attributes.end())
continue;
auto r = ids_seen.insert(it->second);
cell->attributes.erase(it);
if (!r.second)
continue;
for (auto &c : cell->connections_) {
if (c.second.is_fully_const()) continue;
if (cell->output(c.first)) {
SigBit b = c.second.as_bit();
Wire *w = b.wire;
if (w->port_input) {
// In this case, hopefully the loop break has been already created
// Get the non-prefixed wire
Wire *wo = module->wire(stringf("%s.abco", b.wire->name.c_str()));
log_assert(wo != nullptr);
log_assert(wo->port_output);
log_assert(b.offset < GetSize(wo));
c.second = RTLIL::SigBit(wo, b.offset);
}
else {
// Create a new output/input loop break
w->port_input = true;
w = module->wire(stringf("%s.abco", w->name.c_str()));
if (!w) {
w = module->addWire(stringf("%s.abco", b.wire->name.c_str()), GetSize(b.wire));
w->port_output = true;
}
else {
log_assert(w->port_input);
log_assert(b.offset < GetSize(w));
}
w->set_bool_attribute(ID(abc9_scc_break));
c.second = RTLIL::SigBit(w, b.offset);
}
}
}
}
module->fixup_ports();
}
2019-12-30 20:00:49 -06:00
void unbreak_scc(RTLIL::Module *module)
{
// Now 'unexpose' those wires by undoing
// the expose operation -- remove them from PO/PI
// and re-connecting them back together
for (auto wire : module->wires()) {
auto it = wire->attributes.find(ID(abc9_scc_break));
if (it != wire->attributes.end()) {
wire->attributes.erase(it);
log_assert(wire->port_output);
wire->port_output = false;
std::string name = wire->name.str();
RTLIL::Wire *i_wire = module->wire(name.substr(0, GetSize(name) - 5));
log_assert(i_wire);
log_assert(i_wire->port_input);
i_wire->port_input = false;
module->connect(i_wire, wire);
}
}
module->fixup_ports();
}
2019-12-30 20:00:49 -06:00
void prep_dff(RTLIL::Module *module)
{
2019-12-30 18:36:33 -06:00
auto design = module->design;
log_assert(design);
SigMap assign_map(module);
typedef SigSpec clkdomain_t;
dict<clkdomain_t, int> clk_to_mergeability;
2020-01-04 11:17:01 -06:00
for (auto cell : module->selected_cells()) {
if (cell->type != "$__ABC9_FF_")
continue;
2019-12-30 18:36:33 -06:00
2020-01-04 11:17:01 -06:00
Wire *abc9_clock_wire = module->wire(stringf("%s.clock", cell->name.c_str()));
if (abc9_clock_wire == NULL)
log_error("'%s.clock' is not a wire present in module '%s'.\n", cell->name.c_str(), log_id(module));
SigSpec abc9_clock = assign_map(abc9_clock_wire);
clkdomain_t key(abc9_clock);
auto r = clk_to_mergeability.insert(std::make_pair(abc9_clock, clk_to_mergeability.size() + 1));
auto r2 YS_ATTRIBUTE(unused) = cell->attributes.insert(std::make_pair(ID(abc9_mergeability), r.first->second));
log_assert(r2.second);
Wire *abc9_init_wire = module->wire(stringf("%s.init", cell->name.c_str()));
if (abc9_init_wire == NULL)
log_error("'%s.init' is not a wire present in module '%s'.\n", cell->name.c_str(), log_id(module));
log_assert(GetSize(abc9_init_wire) == 1);
SigSpec abc9_init = assign_map(abc9_init_wire);
if (!abc9_init.is_fully_const())
log_error("'%s.init' is not a constant wire present in module '%s'.\n", cell->name.c_str(), log_id(module));
r2 = cell->attributes.insert(std::make_pair(ID(abc9_init), abc9_init.as_const()));
log_assert(r2.second);
}
RTLIL::Module *holes_module = design->module(stringf("%s$holes", module->name.c_str()));
if (holes_module) {
dict<SigSig, SigSig> replace;
for (auto it = holes_module->cells_.begin(); it != holes_module->cells_.end(); ) {
auto cell = it->second;
if (cell->type.in("$_DFF_N_", "$_DFF_NN0_", "$_DFF_NN1_", "$_DFF_NP0_", "$_DFF_NP1_",
"$_DFF_P_", "$_DFF_PN0_", "$_DFF_PN1", "$_DFF_PP0_", "$_DFF_PP1_")) {
SigBit D = cell->getPort("\\D");
SigBit Q = cell->getPort("\\Q");
// Remove the DFF cell from what needs to be a combinatorial box
it = holes_module->cells_.erase(it);
Wire *port;
if (GetSize(Q.wire) == 1)
port = holes_module->wire(stringf("$abc%s", Q.wire->name.c_str()));
else
port = holes_module->wire(stringf("$abc%s[%d]", Q.wire->name.c_str(), Q.offset));
log_assert(port);
// Prepare to replace "assign <port> = DFF.Q;" with "assign <port> = DFF.D;"
// in order to extract the combinatorial control logic that feeds the box
// (i.e. clock enable, synchronous reset, etc.)
replace.insert(std::make_pair(SigSig(port,Q), SigSig(port,D)));
// Since `flatten` above would have created wires named "<cell>.Q",
// extract the pre-techmap cell name
auto pos = Q.wire->name.str().rfind(".");
log_assert(pos != std::string::npos);
IdString driver = Q.wire->name.substr(0, pos);
// And drive the signal that was previously driven by "DFF.Q" (typically
// used to implement clock-enable functionality) with the "<cell>.$abc9_currQ"
// wire (which itself is driven an input port) we inserted above
Wire *currQ = holes_module->wire(stringf("%s.abc9_ff.Q", driver.c_str()));
log_assert(currQ);
holes_module->connect(Q, currQ);
}
else
++it;
}
for (auto &conn : holes_module->connections_) {
auto it = replace.find(conn);
if (it != replace.end())
conn = it->second;
}
}
2019-12-30 18:36:33 -06:00
}
2020-01-04 11:17:01 -06:00
void prep_holes(RTLIL::Module *module, bool dff)
2019-12-30 20:00:49 -06:00
{
auto design = module->design;
log_assert(design);
SigMap sigmap(module);
dict<SigBit, pool<IdString>> bit_drivers, bit_users;
TopoSort<IdString, RTLIL::sort_by_id_str> toposort;
bool abc9_box_seen = false;
for (auto cell : module->selected_cells()) {
if (cell->type == "$__ABC9_FF_")
continue;
auto inst_module = module->design->module(cell->type);
2020-01-04 11:17:01 -06:00
bool abc9_box = inst_module && inst_module->attributes.count("\\abc9_box_id");
bool abc9_flop = false;
if (abc9_box) {
abc9_flop = inst_module->get_bool_attribute("\\abc9_flop");
if (abc9_flop && !dff)
continue;
abc9_box_seen = abc9_box;
}
else if (!yosys_celltypes.cell_known(cell->type))
continue;
2019-12-30 20:00:49 -06:00
for (auto conn : cell->connections()) {
if (cell->input(conn.first))
for (auto bit : sigmap(conn.second))
bit_users[bit].insert(cell->name);
2019-12-30 20:00:49 -06:00
2020-01-04 11:17:01 -06:00
if (cell->output(conn.first) && !abc9_flop)
for (auto bit : sigmap(conn.second))
bit_drivers[bit].insert(cell->name);
2019-12-30 20:00:49 -06:00
}
toposort.node(cell->name);
2019-12-30 20:00:49 -06:00
}
if (!abc9_box_seen)
return;
for (auto &it : bit_users)
if (bit_drivers.count(it.first))
for (auto driver_cell : bit_drivers.at(it.first))
for (auto user_cell : it.second)
toposort.edge(driver_cell, user_cell);
#if 0
toposort.analyze_loops = true;
#endif
bool no_loops YS_ATTRIBUTE(unused) = toposort.sort();
#if 0
unsigned i = 0;
for (auto &it : toposort.loops) {
log(" loop %d\n", i++);
for (auto cell_name : it) {
auto cell = module->cell(cell_name);
log_assert(cell);
log("\t%s (%s @ %s)\n", log_id(cell), log_id(cell->type), cell->get_src_attribute().c_str());
}
}
#endif
log_assert(no_loops);
vector<Cell*> box_list;
for (auto cell_name : toposort.sorted) {
RTLIL::Cell *cell = module->cell(cell_name);
log_assert(cell);
RTLIL::Module* box_module = design->module(cell->type);
2020-01-04 11:17:01 -06:00
if (!box_module || !box_module->attributes.count("\\abc9_box_id"))
2019-12-30 20:00:49 -06:00
continue;
bool blackbox = box_module->get_blackbox_attribute(true /* ignore_wb */);
// Fully pad all unused input connections of this box cell with S0
// Fully pad all undriven output connections of this box cell with anonymous wires
for (const auto &port_name : box_module->ports) {
RTLIL::Wire* w = box_module->wire(port_name);
log_assert(w);
auto it = cell->connections_.find(port_name);
if (w->port_input) {
RTLIL::SigSpec rhs;
if (it != cell->connections_.end()) {
if (GetSize(it->second) < GetSize(w))
it->second.append(RTLIL::SigSpec(State::S0, GetSize(w)-GetSize(it->second)));
rhs = it->second;
}
else {
rhs = RTLIL::SigSpec(State::S0, GetSize(w));
cell->setPort(port_name, rhs);
}
}
if (w->port_output) {
RTLIL::SigSpec rhs;
auto it = cell->connections_.find(w->name);
if (it != cell->connections_.end()) {
if (GetSize(it->second) < GetSize(w))
it->second.append(module->addWire(NEW_ID, GetSize(w)-GetSize(it->second)));
rhs = it->second;
}
else {
Wire *wire = module->addWire(NEW_ID, GetSize(w));
if (blackbox)
wire->set_bool_attribute(ID(abc9_padding));
rhs = wire;
cell->setPort(port_name, rhs);
}
}
}
2020-01-04 11:17:01 -06:00
cell->attributes["\\abc9_box_seq"] = box_list.size();
//log_debug("%s.%s is box %d\n", log_id(module), log_id(cell), box_list.size());
2019-12-30 20:00:49 -06:00
box_list.emplace_back(cell);
}
log_assert(!box_list.empty());
RTLIL::Module *holes_module = design->addModule(stringf("%s$holes", module->name.c_str()));
log_assert(holes_module);
holes_module->set_bool_attribute("\\abc9_holes");
2019-12-30 20:00:49 -06:00
dict<IdString, Cell*> cell_cache;
2020-01-03 15:21:56 -06:00
dict<IdString, std::vector<IdString>> box_ports;
2019-12-30 20:00:49 -06:00
int port_id = 1;
for (auto cell : box_list) {
RTLIL::Module* orig_box_module = design->module(cell->type);
log_assert(orig_box_module);
IdString derived_name = orig_box_module->derive(design, cell->parameters);
RTLIL::Module* box_module = design->module(derived_name);
cell->type = derived_name;
cell->parameters.clear();
2019-12-30 20:00:49 -06:00
int box_inputs = 0;
auto r = cell_cache.insert(std::make_pair(derived_name, nullptr));
Cell *holes_cell = r.first->second;
if (r.second && box_module->get_bool_attribute("\\whitebox")) {
holes_cell = holes_module->addCell(cell->name, cell->type);
holes_cell->parameters = cell->parameters;
r.first->second = holes_cell;
if (box_module->has_processes())
Pass::call_on_module(design, box_module, "proc");
2020-01-03 15:21:56 -06:00
}
2019-12-30 20:00:49 -06:00
2020-01-03 15:21:56 -06:00
auto r2 = box_ports.insert(cell->type);
if (r2.second) {
// Make carry in the last PI, and carry out the last PO
// since ABC requires it this way
IdString carry_in, carry_out;
for (const auto &port_name : box_module->ports) {
auto w = box_module->wire(port_name);
log_assert(w);
if (w->get_bool_attribute("\\abc9_carry")) {
if (w->port_input)
2020-01-03 15:21:56 -06:00
carry_in = port_name;
if (w->port_output)
2020-01-03 15:21:56 -06:00
carry_out = port_name;
}
else
r2.first->second.push_back(port_name);
}
if (carry_in != IdString()) {
r2.first->second.push_back(carry_in);
r2.first->second.push_back(carry_out);
}
2019-12-30 20:00:49 -06:00
}
2020-01-03 15:21:56 -06:00
for (const auto &port_name : box_ports.at(cell->type)) {
2019-12-30 20:00:49 -06:00
RTLIL::Wire *w = box_module->wire(port_name);
log_assert(w);
RTLIL::Wire *holes_wire;
RTLIL::SigSpec port_sig;
if (w->port_input)
for (int i = 0; i < GetSize(w); i++) {
box_inputs++;
holes_wire = holes_module->wire(stringf("\\i%d", box_inputs));
if (!holes_wire) {
holes_wire = holes_module->addWire(stringf("\\i%d", box_inputs));
holes_wire->port_input = true;
holes_wire->port_id = port_id++;
holes_module->ports.push_back(holes_wire->name);
}
if (holes_cell)
port_sig.append(holes_wire);
}
if (w->port_output)
for (int i = 0; i < GetSize(w); i++) {
if (GetSize(w) == 1)
holes_wire = holes_module->addWire(stringf("$abc%s.%s", cell->name.c_str(), log_id(w->name)));
else
holes_wire = holes_module->addWire(stringf("$abc%s.%s[%d]", cell->name.c_str(), log_id(w->name), i));
holes_wire->port_output = true;
holes_wire->port_id = port_id++;
holes_module->ports.push_back(holes_wire->name);
if (holes_cell)
port_sig.append(holes_wire);
else
holes_module->connect(holes_wire, State::S0);
}
if (!port_sig.empty()) {
if (r.second)
holes_cell->setPort(w->name, port_sig);
else
holes_module->connect(holes_cell->getPort(w->name), port_sig);
}
}
// For flops only, create an extra 1-bit input that drives a new wire
// called "<cell>.$abc9_currQ" that is used below
if (box_module->get_bool_attribute("\\abc9_flop")) {
log_assert(holes_cell);
box_inputs++;
Wire *holes_wire = holes_module->wire(stringf("\\i%d", box_inputs));
if (!holes_wire) {
holes_wire = holes_module->addWire(stringf("\\i%d", box_inputs));
holes_wire->port_input = true;
holes_wire->port_id = port_id++;
holes_module->ports.push_back(holes_wire->name);
}
Wire *w = holes_module->addWire(stringf("%s.abc9_ff.Q", cell->name.c_str()));
2019-12-30 20:00:49 -06:00
holes_module->connect(w, holes_wire);
}
}
}
void prep_times(RTLIL::Design *design)
{
std::set<int> delays;
std::vector<Cell*> boxes;
std::map<int,std::vector<int>> requireds;
for (auto module : design->selected_modules()) {
if (module->get_bool_attribute("\\abc9_holes"))
continue;
if (module->processes.size() > 0) {
log("Skipping module %s as it contains processes.\n", log_id(module));
continue;
}
boxes.clear();
for (auto cell : module->cells()) {
if (cell->type.in(ID($_AND_), ID($_NOT_), ID($__ABC9_FF_), ID($__ABC9_DELAY)))
continue;
RTLIL::Module* inst_module = module->design->module(cell->type);
if (!inst_module)
continue;
if (!inst_module->get_blackbox_attribute())
continue;
// Flop inputs cannot have required times
// (required time should be captured by flop box)
// TODO: enforce this
if (cell->attributes.count(ID(abc9_box_id)))
continue;
boxes.emplace_back(cell);
}
delays.clear();
requireds.clear();
for (auto cell : boxes) {
RTLIL::Module* inst_module = module->design->module(cell->type);
for (auto &conn : cell->connections_) {
auto port_wire = inst_module->wire(conn.first);
if (!port_wire->port_input)
continue;
auto it = port_wire->attributes.find("\\abc9_required");
if (it == port_wire->attributes.end())
continue;
int count = 0;
requireds.clear();
if (it->second.flags == 0) {
count = 1;
requireds[it->second.as_int()].push_back(0);
}
else
for (const auto &tok : split_tokens(it->second.decode_string()))
requireds[atoi(tok.c_str())].push_back(count++);
if (count > 1 && count != GetSize(port_wire))
log_error("%s.%s is %d bits wide but abc9_required = %s has %d value(s)!\n", log_id(cell->type), log_id(conn.first),
GetSize(port_wire), log_signal(it->second), count);
SigSpec O = module->addWire(NEW_ID, GetSize(conn.second));
for (const auto &i : requireds) {
delays.insert(i.first);
for (auto offset : i.second) {
auto box = module->addCell(NEW_ID, ID($__ABC9_DELAY));
box->setPort(ID(I), conn.second[offset]);
box->setPort(ID(O), O[offset]);
box->setParam(ID(DELAY), i.first);
conn.second[offset] = O[offset];
}
}
}
}
std::stringstream ss;
bool first = true;
for (auto d : delays)
if (first) {
first = false;
ss << d;
}
else
ss << " " << d;
module->attributes[ID(abc9_delays)] = ss.str();
}
}
void write_box(RTLIL::Module *module, const std::string &src, const std::string &dst) {
std::ofstream ofs(dst);
log_assert(ofs.is_open());
// Since ABC can only accept one box file, we have to copy
// over the existing box file
if (src != "(null)") {
std::ifstream ifs(src);
ofs << ifs.rdbuf() << std::endl;
ifs.close();
}
auto it = module->attributes.find(ID(abc9_delays));
if (it != module->attributes.end()) {
for (const auto &tok : split_tokens(it->second.decode_string())) {
int d = atoi(tok.c_str());
ofs << "$__ABC9_DELAY@" << d << " " << ABC9_DELAY_BASE_ID + d << " 0 1 1" << std::endl;
ofs << d << std::endl;
}
}
ofs.close();
}
void reintegrate(RTLIL::Module *module)
{
auto design = module->design;
log_assert(design);
map_autoidx = autoidx++;
RTLIL::Module *mapped_mod = design->module(stringf("%s$abc9", module->name.c_str()));
if (mapped_mod == NULL)
log_error("ABC output file does not contain a module `%s$abc'.\n", log_id(module));
for (auto w : mapped_mod->wires())
module->addWire(remap_name(w->name), GetSize(w));
dict<IdString,IdString> box_lookup;
for (auto m : design->modules()) {
auto it = m->attributes.find(ID(abc9_box_id));
if (it == m->attributes.end())
continue;
if (m->name.begins_with("$paramod"))
continue;
auto id = it->second.as_int();
auto r YS_ATTRIBUTE(unused) = box_lookup.insert(std::make_pair(stringf("$__boxid%d", id), m->name));
log_assert(r.second);
}
pool<IdString> delay_boxes;
std::vector<Cell*> boxes;
for (auto cell : module->cells().to_vector()) {
if (cell->type.in(ID($_AND_), ID($_NOT_), ID($__ABC9_FF_)))
module->remove(cell);
else if (cell->type.begins_with("$paramod$__ABC9_DELAY\\DELAY=")) {
delay_boxes.insert(cell->name);
module->remove(cell);
}
else if (cell->attributes.erase("\\abc9_box_seq"))
boxes.emplace_back(cell);
}
dict<SigBit, pool<IdString>> bit_drivers, bit_users;
TopoSort<IdString, RTLIL::sort_by_id_str> toposort;
dict<RTLIL::Cell*,RTLIL::Cell*> not2drivers;
dict<SigBit, std::vector<RTLIL::Cell*>> bit2sinks;
dict<IdString,std::vector<IdString>> box_ports;
std::map<IdString, int> cell_stats;
for (auto mapped_cell : mapped_mod->cells())
{
toposort.node(mapped_cell->name);
if (mapped_cell->type == ID($_NOT_)) {
RTLIL::SigBit a_bit = mapped_cell->getPort(ID::A);
RTLIL::SigBit y_bit = mapped_cell->getPort(ID::Y);
bit_users[a_bit].insert(mapped_cell->name);
bit_drivers[y_bit].insert(mapped_cell->name);
if (!a_bit.wire) {
mapped_cell->setPort(ID::Y, module->addWire(NEW_ID));
RTLIL::Wire *wire = module->wire(remap_name(y_bit.wire->name));
log_assert(wire);
module->connect(RTLIL::SigBit(wire, y_bit.offset), State::S1);
}
else {
RTLIL::Cell* driver_lut = nullptr;
// ABC can return NOT gates that drive POs
if (!a_bit.wire->port_input) {
// If it's not a NOT gate that that comes from a PI directly,
// find the driver LUT and clone that to guarantee that we won't
// increase the max logic depth
// (TODO: Optimise by not cloning unless will increase depth)
RTLIL::IdString driver_name;
if (GetSize(a_bit.wire) == 1)
driver_name = stringf("%s$lut", a_bit.wire->name.c_str());
else
driver_name = stringf("%s[%d]$lut", a_bit.wire->name.c_str(), a_bit.offset);
driver_lut = mapped_mod->cell(driver_name);
}
if (!driver_lut) {
// If a driver couldn't be found (could be from PI or box CI)
// then implement using a LUT
RTLIL::Cell *cell = module->addLut(remap_name(stringf("%s$lut", mapped_cell->name.c_str())),
RTLIL::SigBit(module->wires_.at(remap_name(a_bit.wire->name)), a_bit.offset),
RTLIL::SigBit(module->wires_.at(remap_name(y_bit.wire->name)), y_bit.offset),
RTLIL::Const::from_string("01"));
bit2sinks[cell->getPort(ID::A)].push_back(cell);
cell_stats[ID($lut)]++;
}
else
not2drivers[mapped_cell] = driver_lut;
}
continue;
}
if (mapped_cell->type.in(ID($lut), ID($__ABC9_FF_))) {
RTLIL::Cell *cell = module->addCell(remap_name(mapped_cell->name), mapped_cell->type);
cell->parameters = mapped_cell->parameters;
cell->attributes = mapped_cell->attributes;
for (auto &mapped_conn : mapped_cell->connections()) {
RTLIL::SigSpec newsig;
for (auto c : mapped_conn.second.chunks()) {
if (c.width == 0)
continue;
//log_assert(c.width == 1);
if (c.wire)
c.wire = module->wires_.at(remap_name(c.wire->name));
newsig.append(c);
}
cell->setPort(mapped_conn.first, newsig);
if (cell->input(mapped_conn.first)) {
for (auto i : newsig)
bit2sinks[i].push_back(cell);
for (auto i : mapped_conn.second)
bit_users[i].insert(mapped_cell->name);
}
if (cell->output(mapped_conn.first))
for (auto i : mapped_conn.second)
bit_drivers[i].insert(mapped_cell->name);
}
}
else if (delay_boxes.count(mapped_cell->name)) {
SigBit I = mapped_cell->getPort(ID(i));
SigBit O = mapped_cell->getPort(ID(o));
if (I.wire)
I.wire = module->wires_.at(remap_name(I.wire->name));
log_assert(O.wire);
O.wire = module->wires_.at(remap_name(O.wire->name));
module->connect(O, I);
continue;
}
else {
RTLIL::Cell *existing_cell = module->cell(mapped_cell->name);
log_assert(existing_cell);
log_assert(mapped_cell->type.begins_with("$__boxid"));
auto type = box_lookup.at(mapped_cell->type, IdString());
if (type == IdString())
log_error("No module with abc9_box_id = %s found.\n", mapped_cell->type.c_str() + strlen("$__boxid"));
mapped_cell->type = type;
RTLIL::Cell *cell = module->addCell(remap_name(mapped_cell->name), mapped_cell->type);
cell->parameters = existing_cell->parameters;
cell->attributes = existing_cell->attributes;
module->swap_names(cell, existing_cell);
auto it = mapped_cell->connections_.find("\\i");
log_assert(it != mapped_cell->connections_.end());
SigSpec inputs = std::move(it->second);
mapped_cell->connections_.erase(it);
it = mapped_cell->connections_.find("\\o");
log_assert(it != mapped_cell->connections_.end());
SigSpec outputs = std::move(it->second);
mapped_cell->connections_.erase(it);
RTLIL::Module* box_module = design->module(mapped_cell->type);
auto abc9_flop = box_module->attributes.count("\\abc9_flop");
if (!abc9_flop) {
for (const auto &i : inputs)
bit_users[i].insert(mapped_cell->name);
for (const auto &i : outputs)
bit_drivers[i].insert(mapped_cell->name);
2020-01-07 11:32:58 -06:00
}
auto r2 = box_ports.insert(cell->type);
if (r2.second) {
// Make carry in the last PI, and carry out the last PO
// since ABC requires it this way
IdString carry_in, carry_out;
for (const auto &port_name : box_module->ports) {
auto w = box_module->wire(port_name);
log_assert(w);
if (w->get_bool_attribute("\\abc9_carry")) {
if (w->port_input)
carry_in = port_name;
if (w->port_output)
carry_out = port_name;
}
else
r2.first->second.push_back(port_name);
}
if (carry_in != IdString()) {
r2.first->second.push_back(carry_in);
r2.first->second.push_back(carry_out);
}
}
int input_count = 0, output_count = 0;
for (const auto &port_name : box_ports.at(cell->type)) {
RTLIL::Wire *w = box_module->wire(port_name);
log_assert(w);
SigSpec sig;
if (w->port_input) {
sig = inputs.extract(input_count, GetSize(w));
input_count += GetSize(w);
}
if (w->port_output) {
sig = outputs.extract(output_count, GetSize(w));
output_count += GetSize(w);
}
SigSpec newsig;
for (auto c : sig.chunks()) {
if (c.width == 0)
continue;
//log_assert(c.width == 1);
if (c.wire)
c.wire = module->wires_.at(remap_name(c.wire->name));
newsig.append(c);
}
auto it = existing_cell->connections_.find(port_name);
2020-01-07 11:32:58 -06:00
if (it == existing_cell->connections_.end())
continue;
if (GetSize(newsig) > GetSize(it->second))
newsig = newsig.extract(0, GetSize(it->second));
else
log_assert(GetSize(newsig) == GetSize(it->second));
cell->setPort(port_name, newsig);
2020-01-07 11:32:58 -06:00
if (w->port_input && !abc9_flop)
for (const auto &i : newsig)
bit2sinks[i].push_back(cell);
}
}
cell_stats[mapped_cell->type]++;
}
for (auto cell : boxes)
module->remove(cell);
// Copy connections (and rename) from mapped_mod to module
for (auto conn : mapped_mod->connections()) {
if (!conn.first.is_fully_const()) {
auto chunks = conn.first.chunks();
for (auto &c : chunks)
c.wire = module->wires_.at(remap_name(c.wire->name));
conn.first = std::move(chunks);
}
if (!conn.second.is_fully_const()) {
auto chunks = conn.second.chunks();
for (auto &c : chunks)
if (c.wire)
c.wire = module->wires_.at(remap_name(c.wire->name));
conn.second = std::move(chunks);
}
module->connect(conn);
}
for (auto &it : cell_stats)
log("ABC RESULTS: %15s cells: %8d\n", it.first.c_str(), it.second);
int in_wires = 0, out_wires = 0;
// Stitch in mapped_mod's inputs/outputs into module
for (auto port : mapped_mod->ports) {
RTLIL::Wire *w = mapped_mod->wire(port);
RTLIL::Wire *wire = module->wire(port);
log_assert(wire);
RTLIL::Wire *remap_wire = module->wire(remap_name(port));
2020-01-07 11:32:58 -06:00
RTLIL::SigSpec signal(wire, 0, GetSize(remap_wire));
log_assert(GetSize(signal) >= GetSize(remap_wire));
RTLIL::SigSig conn;
if (w->port_output) {
conn.first = signal;
conn.second = remap_wire;
out_wires++;
module->connect(conn);
}
else if (w->port_input) {
conn.first = remap_wire;
conn.second = signal;
in_wires++;
module->connect(conn);
}
}
for (auto &it : bit_users)
if (bit_drivers.count(it.first))
for (auto driver_cell : bit_drivers.at(it.first))
for (auto user_cell : it.second)
toposort.edge(driver_cell, user_cell);
bool no_loops YS_ATTRIBUTE(unused) = toposort.sort();
log_assert(no_loops);
for (auto ii = toposort.sorted.rbegin(); ii != toposort.sorted.rend(); ii++) {
RTLIL::Cell *not_cell = mapped_mod->cell(*ii);
log_assert(not_cell);
if (not_cell->type != ID($_NOT_))
continue;
auto it = not2drivers.find(not_cell);
if (it == not2drivers.end())
continue;
RTLIL::Cell *driver_lut = it->second;
RTLIL::SigBit a_bit = not_cell->getPort(ID::A);
RTLIL::SigBit y_bit = not_cell->getPort(ID::Y);
RTLIL::Const driver_mask;
a_bit.wire = module->wires_.at(remap_name(a_bit.wire->name));
y_bit.wire = module->wires_.at(remap_name(y_bit.wire->name));
auto jt = bit2sinks.find(a_bit);
if (jt == bit2sinks.end())
goto clone_lut;
for (auto sink_cell : jt->second)
if (sink_cell->type != ID($lut))
goto clone_lut;
// Push downstream LUTs past inverter
for (auto sink_cell : jt->second) {
SigSpec A = sink_cell->getPort(ID::A);
RTLIL::Const mask = sink_cell->getParam(ID(LUT));
int index = 0;
for (; index < GetSize(A); index++)
if (A[index] == a_bit)
break;
log_assert(index < GetSize(A));
int i = 0;
while (i < GetSize(mask)) {
for (int j = 0; j < (1 << index); j++)
std::swap(mask[i+j], mask[i+j+(1 << index)]);
i += 1 << (index+1);
}
A[index] = y_bit;
sink_cell->setPort(ID::A, A);
sink_cell->setParam(ID(LUT), mask);
}
// Since we have rewritten all sinks (which we know
// to be only LUTs) to be after the inverter, we can
// go ahead and clone the LUT with the expectation
// that the original driving LUT will become dangling
// and get cleaned away
clone_lut:
driver_mask = driver_lut->getParam(ID(LUT));
for (auto &b : driver_mask.bits) {
if (b == RTLIL::State::S0) b = RTLIL::State::S1;
else if (b == RTLIL::State::S1) b = RTLIL::State::S0;
}
auto cell = module->addLut(NEW_ID,
driver_lut->getPort(ID::A),
y_bit,
driver_mask);
for (auto &bit : cell->connections_.at(ID::A)) {
bit.wire = module->wires_.at(remap_name(bit.wire->name));
bit2sinks[bit].push_back(cell);
}
}
//log("ABC RESULTS: internal signals: %8d\n", int(signal_list.size()) - in_wires - out_wires);
log("ABC RESULTS: input signals: %8d\n", in_wires);
log("ABC RESULTS: output signals: %8d\n", out_wires);
design->remove(mapped_mod);
}
2019-12-31 00:56:19 -06:00
struct Abc9OpsPass : public Pass {
Abc9OpsPass() : Pass("abc9_ops", "helper functions for ABC9") { }
void help() YS_OVERRIDE
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" abc9_ops [options] [selection]\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
{
log_header(design, "Executing ABC9_OPS pass (helper functions for ABC9).\n");
bool check_mode = false;
bool prep_times_mode = false;
bool break_scc_mode = false;
bool unbreak_scc_mode = false;
2019-12-30 20:00:49 -06:00
bool prep_holes_mode = false;
bool prep_dff_mode = false;
std::string write_box_src, write_box_dst;
bool reintegrate_mode = false;
2020-01-04 11:17:01 -06:00
bool dff_mode = false;
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
std::string arg = args[argidx];
if (arg == "-check") {
check_mode = true;
continue;
}
if (arg == "-break_scc") {
break_scc_mode = true;
continue;
}
if (arg == "-unbreak_scc") {
unbreak_scc_mode = true;
continue;
}
2019-12-30 18:36:33 -06:00
if (arg == "-prep_dff") {
prep_dff_mode = true;
continue;
}
2019-12-30 20:00:49 -06:00
if (arg == "-prep_holes") {
prep_holes_mode = true;
continue;
}
if (arg == "-prep_times") {
prep_times_mode = true;
continue;
}
if (arg == "-write_box" && argidx+2 < args.size()) {
write_box_src = args[++argidx];
write_box_dst = args[++argidx];
rewrite_filename(write_box_src);
rewrite_filename(write_box_dst);
continue;
}
if (arg == "-reintegrate") {
reintegrate_mode = true;
continue;
}
2020-01-04 11:17:01 -06:00
if (arg == "-dff") {
dff_mode = true;
continue;
}
break;
}
extra_args(args, argidx, design);
// TODO: Check at least one mode given
if (check_mode)
check(design);
if (prep_times_mode)
prep_times(design);
for (auto mod : design->selected_modules()) {
if (mod->get_bool_attribute("\\abc9_holes"))
continue;
2019-12-30 20:46:22 -06:00
if (mod->processes.size() > 0) {
log("Skipping module %s as it contains processes.\n", log_id(mod));
continue;
}
if (break_scc_mode)
break_scc(mod);
if (unbreak_scc_mode)
unbreak_scc(mod);
2019-12-30 20:00:49 -06:00
if (prep_holes_mode)
2020-01-04 11:17:01 -06:00
prep_holes(mod, dff_mode);
if (prep_dff_mode)
prep_dff(mod);
if (!write_box_src.empty())
write_box(mod, write_box_src, write_box_dst);
if (reintegrate_mode)
reintegrate(mod);
}
}
2019-12-31 00:56:19 -06:00
} Abc9OpsPass;
PRIVATE_NAMESPACE_END