yosys/kernel/drivertools.cc

950 lines
23 KiB
C++
Raw Permalink Normal View History

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2024 Jannis Harder <jix@yosyshq.com> <me@jix.one>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/drivertools.h"
YOSYS_NAMESPACE_BEGIN
DriveBit::DriveBit(SigBit const &bit)
{
if (bit.is_wire())
*this = DriveBitWire(bit.wire, bit.offset);
else
*this = bit.data;
}
void DriveBit::merge(DriveBit const &other)
{
if (other.type_ == DriveType::NONE)
return;
if (type_ == DriveType::NONE) {
*this = other;
return;
}
if (type_ != DriveType::MULTIPLE) {
DriveBitMultiple multi(std::move(*this));
*this = std::move(multi);
}
multiple().merge(other);
}
void DriveBitMultiple::merge(DriveBit const &single)
{
if (single.type() == DriveType::NONE)
return;
if (single.type() == DriveType::MULTIPLE) {
merge(single.multiple());
return;
}
multiple_.emplace(single);
}
void DriveBitMultiple::merge(DriveBit &&single)
{
if (single.type() == DriveType::NONE)
return;
if (single.type() == DriveType::MULTIPLE) {
merge(std::move(single.multiple()));
return;
}
multiple_.emplace(std::move(single));
}
DriveBitMultiple DriveChunkMultiple::operator[](int i) const
{
DriveBitMultiple result;
for (auto const &single : multiple_)
result.merge(single[i]);
return result;
}
bool DriveChunkWire::can_append(DriveBitWire const &bit) const
{
return bit.wire == wire && bit.offset == offset + width;
}
bool DriveChunkWire::try_append(DriveBitWire const &bit)
{
if (!can_append(bit))
return false;
width += 1;
return true;
}
bool DriveChunkWire::try_append(DriveChunkWire const &chunk)
{
if (chunk.wire != wire || chunk.offset != offset + width)
return false;
width += chunk.width;
return true;
}
bool DriveChunkPort::can_append(DriveBitPort const &bit) const
{
return bit.cell == cell && bit.port == port && bit.offset == offset + width;
}
bool DriveChunkPort::try_append(DriveBitPort const &bit)
{
if (!can_append(bit))
return false;
width += 1;
return true;
}
bool DriveChunkPort::try_append(DriveChunkPort const &chunk)
{
if (chunk.cell != cell || chunk.port != port || chunk.offset != offset + width)
return false;
width += chunk.width;
return true;
}
bool DriveChunkMarker::can_append(DriveBitMarker const &bit) const
{
return bit.marker == marker && bit.offset == offset + width;
}
bool DriveChunkMarker::try_append(DriveBitMarker const &bit)
{
if (!can_append(bit))
return false;
width += 1;
return true;
}
bool DriveChunkMarker::try_append(DriveChunkMarker const &chunk)
{
if (chunk.marker != marker || chunk.offset != offset + width)
return false;
width += chunk.width;
return true;
}
bool DriveChunkMultiple::can_append(DriveBitMultiple const &bit) const
{
if (bit.multiple().size() != multiple_.size())
return false;
int const_drivers = 0;
for (DriveChunk const &single : multiple_)
if (single.is_constant())
const_drivers += 1;
if (const_drivers > 1)
return false;
for (DriveBit const &single : bit.multiple())
if (single.is_constant())
const_drivers -= 1;
if (const_drivers != 0)
return false;
for (DriveChunk const &single : multiple_)
{
switch (single.type())
{
case DriveType::CONSTANT: {
} break;
case DriveType::WIRE: {
auto const &wire = single.wire();
DriveBit next = DriveBitWire(wire.wire, wire.offset + wire.width);
if (!bit.multiple().count(next))
return false;
} break;
case DriveType::PORT: {
auto const &port = single.port();
DriveBit next = DriveBitPort(port.cell, port.port, port.offset + port.width);
if (!bit.multiple().count(next))
return false;
} break;
case DriveType::MARKER: {
auto const &marker = single.marker();
DriveBit next = DriveBitMarker(marker.marker, marker.offset + marker.width);
if (!bit.multiple().count(next))
return false;
} break;
default:
return false;
}
}
return true;
}
bool DriveChunkMultiple::can_append(DriveChunkMultiple const &chunk) const
{
if (chunk.multiple().size() != multiple_.size())
return false;
int const_drivers = 0;
for (DriveChunk const &single : multiple_)
if (single.is_constant())
const_drivers += 1;
if (const_drivers > 1)
return false;
for (DriveChunk const &single : chunk.multiple())
if (single.is_constant())
const_drivers -= 1;
if (const_drivers != 0)
return false;
for (DriveChunk const &single : multiple_)
{
switch (single.type())
{
case DriveType::CONSTANT: {
} break;
case DriveType::WIRE: {
auto const &wire = single.wire();
DriveChunk next = DriveChunkWire(wire.wire, wire.offset + wire.width, chunk.size());
if (!chunk.multiple().count(next))
return false;
} break;
case DriveType::PORT: {
auto const &port = single.port();
DriveChunk next = DriveChunkPort(port.cell, port.port, port.offset + port.width, chunk.size());
if (!chunk.multiple().count(next))
return false;
} break;
case DriveType::MARKER: {
auto const &marker = single.marker();
DriveChunk next = DriveChunkMarker(marker.marker, marker.offset + marker.width, chunk.size());
if (!chunk.multiple().count(next))
return false;
} break;
default:
return false;
}
}
return true;
}
bool DriveChunkMultiple::try_append(DriveBitMultiple const &bit)
{
if (!can_append(bit))
return false;
width_ += 1;
State constant;
for (DriveBit const &single : bit.multiple())
if (single.is_constant())
constant = single.constant();
for (DriveChunk &single : multiple_)
{
switch (single.type())
{
case DriveType::CONSTANT: {
single.constant().bits().push_back(constant);
} break;
case DriveType::WIRE: {
single.wire().width += 1;
} break;
case DriveType::PORT: {
single.port().width += 1;
} break;
case DriveType::MARKER: {
single.marker().width += 1;
} break;
default:
log_abort();
}
}
return true;
}
bool DriveChunkMultiple::try_append(DriveChunkMultiple const &chunk)
{
if (!can_append(chunk))
return false;
int width = chunk.size();
width_ += width;
Const constant;
for (DriveChunk const &single : chunk.multiple())
if (single.is_constant())
constant = single.constant();
for (DriveChunk &single : multiple_)
{
switch (single.type())
{
case DriveType::CONSTANT: {
auto &bits = single.constant().bits();
bits.insert(bits.end(), constant.bits().begin(), constant.bits().end());
} break;
case DriveType::WIRE: {
single.wire().width += width;
} break;
case DriveType::PORT: {
single.port().width += width;
} break;
case DriveType::MARKER: {
single.marker().width += width;
} break;
default:
log_abort();
}
}
return true;
}
bool DriveChunk::can_append(DriveBit const &bit) const
{
if (size() == 0)
return true;
if (bit.type() != type_)
return false;
switch (type_)
{
case DriveType::NONE:
return true;
case DriveType::CONSTANT:
return true;
case DriveType::WIRE:
return wire_.can_append(bit.wire());
case DriveType::PORT:
return port_.can_append(bit.port());
case DriveType::MULTIPLE:
return multiple_.can_append(bit.multiple());
default:
log_abort();
}
}
bool DriveChunk::try_append(DriveBit const &bit)
{
if (size() == 0)
*this = bit;
if (bit.type() != type_)
return false;
switch (type_)
{
case DriveType::NONE:
none_ += 1;
return true;
case DriveType::CONSTANT:
constant_.bits().push_back(bit.constant());
return true;
case DriveType::WIRE:
return wire_.try_append(bit.wire());
case DriveType::PORT:
return port_.try_append(bit.port());
case DriveType::MULTIPLE:
return multiple_.try_append(bit.multiple());
default:
log_abort();
}
}
bool DriveChunk::try_append(DriveChunk const &chunk)
{
if (size() == 0)
*this = chunk;
if (chunk.type_ != type_)
return false;
switch (type_)
{
case DriveType::NONE:
none_ += chunk.none_;
return true;
case DriveType::CONSTANT:
constant_.bits().insert(constant_.bits().end(), chunk.constant_.begin(), chunk.constant_.end());
return true;
case DriveType::WIRE:
return wire_.try_append(chunk.wire());
case DriveType::PORT:
return port_.try_append(chunk.port());
case DriveType::MARKER:
return marker_.try_append(chunk.marker());
case DriveType::MULTIPLE:
return multiple_.try_append(chunk.multiple());
}
log_abort();
}
void DriveSpec::append(DriveBit const &bit)
{
hash_ = 0;
if (!packed()) {
bits_.push_back(bit);
width_ += 1;
return;
}
if (chunks_.empty() || !chunks_.back().try_append(bit))
chunks_.emplace_back(bit);
width_ += 1;
}
void DriveSpec::append(DriveChunk const &chunk)
{
hash_ = 0;
pack();
if (chunks_.empty() || !chunks_.back().try_append(chunk))
chunks_.emplace_back(chunk);
width_ += chunk.size();
}
void DriveSpec::pack() const {
if (bits_.empty())
return;
std::vector<DriveBit> bits(std::move(bits_));
for (auto &bit : bits)
if (chunks_.empty() || !chunks_.back().try_append(bit))
chunks_.emplace_back(std::move(bit));
}
void DriveSpec::unpack() const {
if (chunks_.empty())
return;
for (auto &chunk : chunks_)
{
for (int i = 0, width = chunk.size(); i != width; ++i)
{
bits_.emplace_back(chunk[i]);
}
}
chunks_.clear();
}
void DriveSpec::compute_width()
{
width_ = 0;
for (auto const &chunk : chunks_)
width_ += chunk.size();
}
void DriverMap::DriveBitGraph::add_edge(DriveBitId src, DriveBitId dst)
{
if (first_edges.emplace(src, dst).first->second == dst)
return;
if (second_edges.emplace(src, dst).first->second == dst)
return;
more_edges[src].emplace(dst);
}
DriverMap::DriveBitId DriverMap::DriveBitGraph::pop_edge(DriveBitId src)
{
// TODO unused I think?
auto found_more = more_edges.find(src);
if (found_more != more_edges.end()) {
auto result = found_more->second.pop();
if (found_more->second.empty())
more_edges.erase(found_more);
return result;
}
auto found_second = second_edges.find(src);
if (found_second != second_edges.end()) {
auto result = found_second->second;
second_edges.erase(found_second);
return result;
}
auto found_first = first_edges.find(src);
if (found_first != first_edges.end()) {
auto result = found_first->second;
first_edges.erase(found_first);
return result;
}
return DriveBitId();
}
void DriverMap::DriveBitGraph::clear(DriveBitId src)
{
first_edges.erase(src);
second_edges.erase(src);
more_edges.erase(src);
}
bool DriverMap::DriveBitGraph::contains(DriveBitId src)
{
return first_edges.count(src);
}
int DriverMap::DriveBitGraph::count(DriveBitId src)
{
if (!first_edges.count(src))
return 0;
if (!second_edges.count(src))
return 1;
auto found = more_edges.find(src);
if (found == more_edges.end())
return 2;
return GetSize(found->second) + 2;
}
DriverMap::DriveBitId DriverMap::DriveBitGraph::at(DriveBitId src, int index)
{
if (index == 0)
return first_edges.at(src);
else if (index == 1)
return second_edges.at(src);
else
return *more_edges.at(src).element(index - 2);
}
DriverMap::BitMode DriverMap::bit_mode(DriveBit const &bit)
{
switch (bit.type())
{
case DriveType::NONE:
return BitMode::NONE;
case DriveType::CONSTANT:
// TODO how to handle Sx here?
return bit.constant() == State::Sz ? BitMode::NONE : BitMode::DRIVER;
case DriveType::WIRE: {
auto const &wire = bit.wire();
bool driver = wire.wire->port_input;
bool driven = wire.wire->port_output;
if (driver && !driven)
return BitMode::DRIVER;
else if (driven && !driver)
return BitMode::DRIVEN;
else if (driver && driven)
return BitMode::TRISTATE;
else
return keep_wire(bit.wire().wire) ? BitMode::KEEP : BitMode::NONE;
}
case DriveType::PORT: {
auto const &port = bit.port();
bool driver = celltypes.cell_output(port.cell->type, port.port);
bool driven = celltypes.cell_input(port.cell->type, port.port);
if (driver && !driven)
return BitMode::DRIVER;
else if (driven && !driver)
return BitMode::DRIVEN_UNIQUE;
else
return BitMode::TRISTATE;
}
case DriveType::MARKER: {
// TODO user supplied classification
log_abort();
}
default:
log_abort();
}
}
DriverMap::DriveBitId DriverMap::id_from_drive_bit(DriveBit const &bit)
{
switch (bit.type())
{
case DriveType::NONE:
return -1;
case DriveType::CONSTANT:
return (int)bit.constant();
case DriveType::WIRE: {
auto const &wire_bit = bit.wire();
int offset = next_offset;
auto insertion = wire_offsets.emplace(wire_bit.wire, offset);
if (insertion.second) {
if (wire_bit.wire->width == 1) {
log_assert(wire_bit.offset == 0);
isolated_drive_bits.emplace(offset, bit);
} else
drive_bits.emplace(offset, DriveBitWire(wire_bit.wire, 0));
next_offset += wire_bit.wire->width;
}
return insertion.first->second.id + wire_bit.offset;
}
case DriveType::PORT: {
auto const &port_bit = bit.port();
auto key = std::make_pair(port_bit.cell, port_bit.port);
int offset = next_offset;
auto insertion = port_offsets.emplace(key, offset);
if (insertion.second) {
int width = port_bit.cell->connections().at(port_bit.port).size();
if (width == 1 && offset == 0) {
log_assert(port_bit.offset == 0);
isolated_drive_bits.emplace(offset, bit);
} else
drive_bits.emplace(offset, DriveBitPort(port_bit.cell, port_bit.port, 0));
next_offset += width;
}
return insertion.first->second.id + port_bit.offset;
}
default:
log_assert(false && "unsupported DriveType in DriverMap");
}
log_abort();
}
DriveBit DriverMap::drive_bit_from_id(DriveBitId id)
{
auto found_isolated = isolated_drive_bits.find(id);
if (found_isolated != isolated_drive_bits.end())
return found_isolated->second;
auto found = drive_bits.upper_bound(id);
if (found == drive_bits.begin()) {
return id < 0 ? DriveBit() : DriveBit((State) id.id);
}
--found;
DriveBit result = found->second;
if (result.is_wire()) {
result.wire().offset += id.id - found->first.id;
} else {
log_assert(result.is_port());
result.port().offset += id.id - found->first.id;
}
return result;
}
void DriverMap::connect_directed_merge(DriveBitId driven_id, DriveBitId driver_id)
{
if (driven_id == driver_id)
return;
same_driver.merge(driven_id, driver_id);
for (int i = 0, end = connected_drivers.count(driven_id); i != end; ++i)
connected_drivers.add_edge(driver_id, connected_drivers.at(driven_id, i));
connected_drivers.clear(driven_id);
for (int i = 0, end = connected_undirected.count(driven_id); i != end; ++i)
connected_undirected.add_edge(driver_id, connected_undirected.at(driven_id, i));
connected_undirected.clear(driven_id);
}
void DriverMap::connect_directed_buffer(DriveBitId driven_id, DriveBitId driver_id)
{
connected_drivers.add_edge(driven_id, driver_id);
}
void DriverMap::connect_undirected(DriveBitId a_id, DriveBitId b_id)
{
connected_undirected.add_edge(a_id, b_id);
connected_undirected.add_edge(b_id, a_id);
}
void DriverMap::add(Module *module)
{
for (auto const &conn : module->connections())
add(conn.first, conn.second);
for (auto cell : module->cells())
for (auto const &conn : cell->connections())
add_port(cell, conn.first, conn.second);
}
// Add a single bit connection to the driver map.
void DriverMap::add(DriveBit const &a, DriveBit const &b)
{
DriveBitId a_id = id_from_drive_bit(a);
DriveBitId b_id = id_from_drive_bit(b);
DriveBitId orig_a_id = a_id;
DriveBitId orig_b_id = b_id;
a_id = same_driver.find(a_id);
b_id = same_driver.find(b_id);
if (a_id == b_id)
return;
BitMode a_mode = bit_mode(orig_a_id == a_id ? a : drive_bit_from_id(a_id));
BitMode b_mode = bit_mode(orig_b_id == b_id ? b : drive_bit_from_id(b_id));
// If either bit is just a wire that we don't need to keep, merge and
// use the other end as representative bit.
2024-05-01 05:47:16 -05:00
if (a_mode == BitMode::NONE && !(b_mode == BitMode::DRIVEN_UNIQUE || b_mode == BitMode::DRIVEN))
connect_directed_merge(a_id, b_id);
2024-05-01 05:47:16 -05:00
else if (b_mode == BitMode::NONE && !(a_mode == BitMode::DRIVEN_UNIQUE || a_mode == BitMode::DRIVEN))
connect_directed_merge(b_id, a_id);
// If either bit requires a driven value and has a unique driver, merge
// and use the other end as representative bit.
else if (a_mode == BitMode::DRIVEN_UNIQUE && !(b_mode == BitMode::DRIVEN_UNIQUE || b_mode == BitMode::DRIVEN))
connect_directed_buffer(a_id, b_id);
else if (b_mode == BitMode::DRIVEN_UNIQUE && !(a_mode == BitMode::DRIVEN_UNIQUE || a_mode == BitMode::DRIVEN))
connect_directed_buffer(b_id, a_id);
// If either bit only drives a value, store a directed connection from
// it to the other bit.
else if (a_mode == BitMode::DRIVER)
connect_directed_buffer(b_id, a_id);
else if (b_mode == BitMode::DRIVER)
connect_directed_buffer(a_id, b_id);
// Otherwise we store an undirected connection which we will resolve
// during querying.
else
connect_undirected(a_id, b_id);
return;
}
// Specialized version that avoids unpacking
void DriverMap::add(SigSpec const &a, SigSpec const &b)
{
log_assert(a.size() == b.size());
auto const &a_chunks = a.chunks();
auto const &b_chunks = b.chunks();
auto a_chunk = a_chunks.begin();
auto a_end = a_chunks.end();
int a_offset = 0;
auto b_chunk = b_chunks.begin();
int b_offset = 0;
SigChunk tmp_a, tmp_b;
while (a_chunk != a_end) {
int a_width = a_chunk->width - a_offset;
if (a_width == 0) {
a_offset = 0;
++a_chunk;
continue;
}
int b_width = b_chunk->width - b_offset;
if (b_width == 0) {
b_offset = 0;
++b_chunk;
continue;
}
int width = std::min(a_width, b_width);
log_assert(width > 0);
SigChunk const &a_subchunk =
a_offset == 0 && a_width == width ? *a_chunk : a_chunk->extract(a_offset, width);
SigChunk const &b_subchunk =
b_offset == 0 && b_width == width ? *b_chunk : b_chunk->extract(b_offset, width);
add(a_subchunk, b_subchunk);
a_offset += width;
b_offset += width;
}
}
void DriverMap::add_port(Cell *cell, IdString const &port, SigSpec const &b)
{
int offset = 0;
for (auto const &chunk : b.chunks()) {
add(chunk, DriveChunkPort(cell, port, offset, chunk.width));
offset += chunk.size();
}
}
void DriverMap::orient_undirected(DriveBitId id)
{
pool<DriveBitId> &seen = orient_undirected_seen;
pool<DriveBitId> &drivers = orient_undirected_drivers;
dict<DriveBitId, int> &distance = orient_undirected_distance;
seen.clear();
drivers.clear();
seen.emplace(id);
for (int pos = 0; pos < GetSize(seen); ++pos) {
DriveBitId current = *seen.element(seen.size() - 1 - pos);
DriveBit bit = drive_bit_from_id(current);
BitMode mode = bit_mode(bit);
if (mode == BitMode::DRIVER || mode == BitMode::TRISTATE)
drivers.emplace(current);
if (connected_drivers.contains(current))
drivers.emplace(current);
int undirected_driver_count = connected_undirected.count(current);
for (int i = 0; i != undirected_driver_count; ++i)
seen.emplace(same_driver.find(connected_undirected.at(current, i)));
}
if (drivers.empty())
for (auto seen_id : seen)
drivers.emplace(seen_id);
for (auto driver : drivers)
{
distance.clear();
distance.emplace(driver, 0);
for (int pos = 0; pos < GetSize(distance); ++pos) {
auto current_it = distance.element(distance.size() - 1 - pos);
DriveBitId current = current_it->first;
int undirected_driver_count = connected_undirected.count(current);
for (int i = 0; i != undirected_driver_count; ++i)
{
DriveBitId next = same_driver.find(connected_undirected.at(current, i));
auto emplaced = distance.emplace(next, current_it->second + 1);
if (emplaced.first->second == current_it->second + 1)
connected_oriented.add_edge(next, current);
}
}
}
for (auto seen_id : seen)
oriented_present.emplace(seen_id);
}
DriveBit DriverMap::operator()(DriveBit const &bit)
{
if (bit.type() == DriveType::MARKER || bit.type() == DriveType::NONE)
return bit;
if (bit.type() == DriveType::MULTIPLE)
{
DriveBit result;
for (auto const &inner : bit.multiple().multiple())
result.merge((*this)(inner));
return result;
}
DriveBitId bit_id = id_from_drive_bit(bit);
DriveBitId bit_repr_id = same_driver.find(bit_id);
DriveBit bit_repr = drive_bit_from_id(bit_repr_id);
BitMode mode = bit_mode(bit_repr);
if (mode == BitMode::KEEP && bit_repr_id != bit_id)
return bit_repr;
int implicit_driver_count = connected_drivers.count(bit_repr_id);
if (connected_undirected.contains(bit_repr_id) && !oriented_present.count(bit_repr_id))
orient_undirected(bit_repr_id);
DriveBit driver;
if (mode == BitMode::DRIVER || mode == BitMode::TRISTATE)
driver = bit_repr;
for (int i = 0; i != implicit_driver_count; ++i)
driver.merge(drive_bit_from_id(connected_drivers.at(bit_repr_id, i)));
int oriented_driver_count = connected_oriented.count(bit_repr_id);
for (int i = 0; i != oriented_driver_count; ++i)
driver.merge(drive_bit_from_id(connected_oriented.at(bit_repr_id, i)));
return driver;
}
DriveSpec DriverMap::operator()(DriveSpec spec)
{
DriveSpec result;
for (int i = 0, width = spec.size(); i != width; ++i)
result.append((*this)(spec[i]));
return result;
}
const char *log_signal(DriveChunkWire const &chunk)
{
const char *id = log_id(chunk.wire->name);
if (chunk.is_whole())
return id;
if (chunk.width == 1)
return log_str(stringf("%s [%d]", id, chunk.offset));
return log_str(stringf("%s [%d:%d]", id, chunk.offset + chunk.width - 1, chunk.offset));
}
const char *log_signal(DriveChunkPort const &chunk)
{
const char *cell_id = log_id(chunk.cell->name);
const char *port_id = log_id(chunk.port);
if (chunk.is_whole())
return log_str(stringf("%s <%s>", cell_id, port_id));
if (chunk.width == 1)
return log_str(stringf("%s <%s> [%d]", cell_id, port_id, chunk.offset));
return log_str(stringf("%s <%s> [%d:%d]", cell_id, port_id, chunk.offset + chunk.width - 1, chunk.offset));
}
const char *log_signal(DriveChunkMarker const &chunk)
{
if (chunk.width == 1)
return log_str(stringf("<marker %d> [%d]", chunk.marker, chunk.offset));
return log_str(stringf("<marker %d> [%d:%d]", chunk.marker, chunk.offset + chunk.width - 1, chunk.offset));
}
const char *log_signal(DriveChunk const &chunk)
{
switch (chunk.type())
{
case DriveType::NONE:
return log_str(stringf("<none x%d>", chunk.size()));
case DriveType::CONSTANT:
return log_const(chunk.constant());
case DriveType::WIRE:
return log_signal(chunk.wire());
case DriveType::PORT:
return log_signal(chunk.port());
case DriveType::MARKER:
return log_signal(chunk.marker());
case DriveType::MULTIPLE: {
std::string str = "<multiple";
const char *sep = " ";
for (auto const &single : chunk.multiple().multiple()) {
str += sep;
sep = ", ";
str += log_signal(single);
}
str += ">";
return log_str(str);
}
default:
log_abort();
}
}
const char *log_signal(DriveSpec const &spec)
{
auto &chunks = spec.chunks();
if (chunks.empty())
return "{}";
if (chunks.size() == 1)
return log_signal(chunks[0]);
std::string str;
const char *sep = "{ ";
for (auto i = chunks.rbegin(), end = chunks.rend(); i != end; ++i)
{
str += sep;
sep = " ";
str += log_signal(*i);
}
str += " }";
return log_str(str);
}
YOSYS_NAMESPACE_END