Merge branch 'timing_annotation' into arch_exploration

This commit is contained in:
Andrew Pond 2021-09-28 16:22:13 -06:00
commit a486c2690f
31 changed files with 399 additions and 825 deletions

View File

@ -1,102 +0,0 @@
# Yosys synthesis script for ${TOP_MODULE}
#########################
# Parse input files
#########################
# Read verilog files
${READ_VERILOG_FILE}
# Read technology library
read_verilog -lib -specify ${YOSYS_CELL_SIM_VERILOG}
#########################
# Prepare for synthesis
#########################
# Identify top module from hierarchy
hierarchy -check -top ${TOP_MODULE}
# - Convert process blocks to AST
proc
# Flatten all the gates/primitives
flatten
# Identify tri-state buffers from 'z' signal in AST
# with follow-up optimizations to clean up AST
tribuf -logic
opt_expr
opt_clean
# demote inout ports to input or output port
# with follow-up optimizations to clean up AST
deminout
opt
opt_expr
opt_clean
check
opt
wreduce -keepdc
peepopt
pmuxtree
opt_clean
########################
# Map multipliers
# Inspired from synth_xilinx.cc
#########################
# Avoid merging any registers into DSP, reserve memory port registers first
memory_dff
wreduce t:$mul
techmap -map +/mul2dsp.v -map ${YOSYS_DSP_MAP_VERILOG} ${YOSYS_DSP_MAP_PARAMETERS}
select a:mul2dsp
setattr -unset mul2dsp
opt_expr -fine
wreduce
select -clear
chtype -set $mul t:$__soft_mul# Extract arithmetic functions
#########################
# Run coarse synthesis
#########################
# Run a tech map with default library
techmap
alumacc
share
opt
fsm
# Run a quick follow-up optimization to sweep out unused nets/signals
opt -fast
# Optimize any memory cells by merging share-able ports and collecting all the ports belonging to memorcy cells
memory -nomap
opt_clean
#########################
# Map muxes to pmuxes
#########################
techmap -map +/pmux2mux.v
#########################
# Map flip-flops
#########################
techmap -map ${YOSYS_DFF_MAP_VERILOG}
opt_expr -mux_undef
simplemap
opt_expr
opt_merge
opt_rmdff
opt_clean
opt
#########################
# Map LUTs
#########################
abc -lut ${LUT_SIZE}
#########################
# Check and show statisitics
#########################
hierarchy -check
stat
#########################
# Output netlists
#########################
opt_clean -purge
write_blif ${OUTPUT_BLIF}

View File

@ -1,6 +1,6 @@
# Run VPR for the 'and' design # Run VPR for the 'and' design
#--write_rr_graph example_rr_graph.xml #--write_rr_graph example_rr_graph.xml
vpr ${VPR_ARCH_FILE} ${VPR_TESTBENCH_BLIF} --device ${OPENFPGA_VPR_DEVICE_LAYOUT} vpr ${VPR_ARCH_FILE} ${VPR_TESTBENCH_BLIF} --clock_modeling ${OPENFPGA_CLOCK_MODELING} ${OPENFPGA_VPR_DEVICE_LAYOUT}
# Read OpenFPGA architecture definition # Read OpenFPGA architecture definition
read_openfpga_arch -f ${OPENFPGA_ARCH_FILE} read_openfpga_arch -f ${OPENFPGA_ARCH_FILE}
@ -10,7 +10,7 @@ read_openfpga_simulation_setting -f ${OPENFPGA_SIM_SETTING_FILE}
# Annotate the OpenFPGA architecture to VPR data base # Annotate the OpenFPGA architecture to VPR data base
# to debug use --verbose options # to debug use --verbose options
link_openfpga_arch --sort_gsb_chan_node_in_edges link_openfpga_arch --activity_file ${ACTIVITY_FILE} --sort_gsb_chan_node_in_edges
# Check and correct any naming conflicts in the BLIF netlist # Check and correct any naming conflicts in the BLIF netlist
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
@ -71,4 +71,4 @@ write_analysis_sdc --file ./SDC_analysis
exit exit
# Note : # Note :
# To run verification at the end of the flow maintain source in ./SRC directory # To run verification at the end of the flow maintain source in ./SRC directory

View File

@ -0,0 +1,75 @@
# Run VPR for the 'and' design
#--write_rr_graph example_rr_graph.xml
vpr ${VPR_ARCH_FILE} ${VPR_TESTBENCH_BLIF} --device ${OPENFPGA_VPR_DEVICE_LAYOUT}
# Read OpenFPGA architecture definition
read_openfpga_arch -f ${OPENFPGA_ARCH_FILE}
# Read OpenFPGA simulation settings
read_openfpga_simulation_setting -f ${OPENFPGA_SIM_SETTING_FILE}
# Annotate the OpenFPGA architecture to VPR data base
# to debug use --verbose options
link_openfpga_arch --sort_gsb_chan_node_in_edges
# Check and correct any naming conflicts in the BLIF netlist
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
# Apply fix-up to clustering nets based on routing results
pb_pin_fixup --verbose
# Apply fix-up to Look-Up Table truth tables based on packing results
lut_truth_table_fixup
# Build the module graph
# - Enabled compression on routing architecture modules
# - Enable pin duplication on grid modules
build_fabric --compress_routing #--verbose
# Write the fabric hierarchy of module graph to a file
# This is used by hierarchical PnR flows
write_fabric_hierarchy --file ./fabric_hierarchy.txt
# Repack the netlist to physical pbs
# This must be done before bitstream generator and testbench generation
# Strongly recommend it is done after all the fix-up have been applied
repack #--verbose
# Build the bitstream
# - Output the fabric-independent bitstream to a file
build_architecture_bitstream --verbose --write_file fabric_independent_bitstream.xml
# Build fabric-dependent bitstream
build_fabric_bitstream --verbose
# Write fabric-dependent bitstream
write_fabric_bitstream --file fabric_bitstream.bit --format plain_text ${OPENFPGA_FAST_CONFIGURATION}
# Write the Verilog netlist for FPGA fabric
# - Enable the use of explicit port mapping in Verilog netlist
write_fabric_verilog --file ./SRC --explicit_port_mapping --include_timing --print_user_defined_template --verbose
# Write the Verilog testbench for FPGA fabric
# - We suggest the use of same output directory as fabric Verilog netlists
# - Must specify the reference benchmark file if you want to output any testbenches
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
write_full_testbench --file ./SRC --reference_benchmark_file_path ${REFERENCE_VERILOG_TESTBENCH} --include_signal_init --explicit_port_mapping --bitstream fabric_bitstream.bit ${OPENFPGA_FAST_CONFIGURATION}
# Write the SDC files for PnR backend
# - Turn on every options here
write_pnr_sdc --file ./SDC
# Write SDC to disable timing for configure ports
write_sdc_disable_timing_configure_ports --file ./SDC/disable_configure_ports.sdc
# Write the SDC to run timing analysis for a mapped FPGA fabric
write_analysis_sdc --file ./SDC_analysis
# Finish and exit OpenFPGA
exit
# Note :
# To run verification at the end of the flow maintain source in ./SRC directory
{"mode":"full","isActive":false}

View File

@ -0,0 +1,28 @@
Naming convention for timing annotation files
Convention follows the VPR architecture file naming convention, with some extra detail appended to the end.
k<lut_size>: Look-Up Table (LUT) size of FPGA. If you have fracturable LUTs or multiple LUT circuits, this should be largest input size.
The keyword 'frac' is to specify if fracturable LUT is used or not.
The keyword 'Native' is to specify if fracturable LUT design is a native one (without mode switch) or a standard one (with mode switch).
N<le_size>: Number of logic elements for a CLB. If you have multiple CLB architectures, this should be largest number.
tileable: If the routing architecture is tileable or not.
The keyword 'IO' specifies if the I/O tile is tileable or not
fracdff: Use multi-mode DFF model, where reset/set/clock polarity is configurable
adder_chain: If hard adder/carry chain is used inside CLBs
register_chain: If shift register chain is used inside CLBs
scan_chain: If scan chain testing infrastructure is used inside CLBs
__mem<mem_size>: If block RAM (BRAM) is used or not. If used, the memory size should be clarified here. The keyword 'wide' is to specify if the BRAM spans more than 1 column. The keyword 'frac' is to specify if the BRAM is fracturable to operate in different modes.
__dsp<dsp_size>: If Digital Signal Processor (DSP) is used or not. If used, the input size should be clarified here. The keyword 'wide' is to specify if the DSP spans more than 1 column. The keyword 'frac' is to specify if the DSP is fracturable to operate in different modes.
aib: If the Advanced Interface Bus (AIB) is used in place of some I/Os.
multi_io_capacity: If I/O capacity is different on each side of FPGAs.
reduced_io: If I/Os only appear a certain or multiple sides of FPGAs
registerable_io: If I/Os are registerable (can be either combinational or sequential)
<feature_size>: The technology node which the delay numbers are extracted from.
TileOrgz: How tile is organized.
Top-left (Tl): the pins of a tile are placed on the top side and left side only
Top-right (Tr): the pins of a tile are placed on the top side and right side only
Bottom-right (Br): the pins of a tile are placed on the bottom side and right side only
GlobalTileClk: How many clocks are defined through global ports from physical tiles. is the number of clocks
Other features are used in naming should be listed here.
tt/ff/ss: timing coners specified at the end of the file name. Each file under the specific architecture is tied to a certain corner, as the timing values will change with the corner.

View File

@ -1,33 +1,17 @@
L1_SB_MUX_DELAY: 1.44e-9
L2_SB_MUX_DELAY: 1.44e-9
L4_SB_MUX_DELAY: 1.44e-9
CB_MUX_DELAY: 1.38e-9
L1_WIRE_R: 100
L1_WIRE_C: 1e-12
L2_WIRE_R: 100
L2_WIRE_C: 1e-12
L4_WIRE_R: 100
L4_WIRE_C: 1e-12
INPAD_DELAY: 0.11e-9 INPAD_DELAY: 0.11e-9
OUTPAD_DELAY: 0.11e-9 OUTPAD_DELAY: 0.11e-9
FF_T_SETUP: 0.39e-9 FF_T_SETUP: 0.39e-9
FF_T_CLK2Q: 0.43e-9 FF_T_CLK2Q: 0.43e-9
LUT_OUT0_TO_FF_D_DELAY: 1.14e-9
LUT_OUT1_TO_FF_D_DELAY: 0.56e-9
LUT_OUT0_TO_FLE_OUT_DELAY: 0.89e-9 LUT_OUT0_TO_FLE_OUT_DELAY: 0.89e-9
FF0_Q_TO_FLE_OUT_DELAY: 0.88e-9 FF0_Q_TO_FLE_OUT_DELAY: 0.88e-9
LUT_OUT1_TO_FLE_OUT_DELAY: 0.78e-9 LUT_OUT1_TO_FLE_OUT_DELAY: 0.78e-9
FF1_Q_TO_FLE_OUT_DELAY: 0.89e-9 FF1_Q_TO_FLE_OUT_DELAY: 0.89e-9
LUT3_DELAY: 0.92e-9
LUT3_OUT_TO_FLE_OUT_DELAY: 1.44e-9
LUT4_DELAY: 1.21e-9 LUT4_DELAY: 1.21e-9
LUT4_OUT_TO_FLE_OUT_DELAY: 1.46e-9 LUT4_OUT_TO_FLE_OUT_DELAY: 1.46e-9
LUT5_DELAY: 235e-12 # LUT5_DELAY NOT ACCURATE LUT5_DELAY: 235e-12 # LUT5_DELAY NOT ACCURATE
LUT5_OUT_TO_FLE_OUT_DELAY: 25e-12 # LUT5_OUT_TO_FLE_OUT_DELAY NOT ACCURATE LUT5_OUT_TO_FLE_OUT_DELAY: 25e-12 # LUT5_OUT_TO_FLE_OUT_DELAY NOT ACCURATE
LUT6_DELAY: 235e-12 # LUT6_DELAY NOT ACCURATE LUT6_DELAY: 235e-12 # LUT6_DELAY NOT ACCURATE
LUT6_OUT_TO_FLE_OUT_DELAY: 25e-12 # LUT6_OUT_TO_FLE_OUT_DELAY NOT ACCURATE LUT6_OUT_TO_FLE_OUT_DELAY: 25e-12 # LUT6_OUT_TO_FLE_OUT_DELAY NOT ACCURATE
REGIN_TO_FF0_DELAY: 1.12e-9
FF0_TO_FF1_DELAY: 0.56e-9
CROSSBAR_I_TO_FLE_IN_DELAY: 95e-12 # CROSSBAR_I_TO_FLE_IN_DELAY NOT ACCURATE CROSSBAR_I_TO_FLE_IN_DELAY: 95e-12 # CROSSBAR_I_TO_FLE_IN_DELAY NOT ACCURATE
CROSSBAR_FLE_OUT_TO_FLE_IN_DELAY: 95e-12 # FLE_OUT_TO_FLE_IN_DELAY NOT ACCURATE CROSSBAR_FLE_OUT_TO_FLE_IN_DELAY: 95e-12 # FLE_OUT_TO_FLE_IN_DELAY NOT ACCURATE
@ -48,15 +32,6 @@ ARITHMETIC_FF_OUT_TO_ARITHMETIC_OUT: 45e-12
################# MULT9 Delays #################
MULT9_A2Y_DELAY_MAX: 1.523e-9
MULT9_A2Y_DELAY_MIN: 0.776e-9
MULT9_B2Y_DELAY_MAX: 1.523e-9
MULT9_B2Y_DELAY_MIN: 0.776e-9
################# MULT18 Delays ################# ################# MULT18 Delays #################
MULT18_A2Y_DELAY_MAX: 1.523e-9 MULT18_A2Y_DELAY_MAX: 1.523e-9
@ -79,7 +54,7 @@ DPRAM_128x8_CLK_TO_RADDR_DELAY: 509e-12
DPRAM_128x8_CLK_TO_DATA_IN_DELAY: 509e-12 DPRAM_128x8_CLK_TO_DATA_IN_DELAY: 509e-12
DPRAM_128x8_CLK_TO_WEN_DELAY: 509e-12 DPRAM_128x8_CLK_TO_WEN_DELAY: 509e-12
DPRAM_128x8_CLK_TO_REN_DELAY: 509e-12 DPRAM_128x8_CLK_TO_REN_DELAY: 509e-12
DPRAM_128x8_CLK_TO_DATA_OUT_DELAY: 1.234e-9 DPRAM_128x8_CLK_TO_DATA_OUT_DELAY: 6.73e-9
MEMORY_WADDR_TO_BRAM_WADDR_DELAY: 132e-12 MEMORY_WADDR_TO_BRAM_WADDR_DELAY: 132e-12
MEMORY_RADDR_TO_BRAM_RADDR_DELAY: 132e-12 MEMORY_RADDR_TO_BRAM_RADDR_DELAY: 132e-12

View File

@ -0,0 +1,47 @@
INPAD_DELAY: 0.11e-9
OUTPAD_DELAY: 0.11e-9
FF_T_SETUP: 0.39e-9
FF_T_CLK2Q: 0.43e-9
LUT_OUT0_TO_FLE_OUT_DELAY: 0.89e-9
FF0_Q_TO_FLE_OUT_DELAY: 0.88e-9
LUT_OUT1_TO_FLE_OUT_DELAY: 0.78e-9
FF1_Q_TO_FLE_OUT_DELAY: 0.89e-9
LUT5_DELAY: 235e-12 # LUT5_DELAY NOT ACCURATE
LUT5_OUT_TO_FLE_OUT_DELAY: 25e-12 # LUT5_OUT_TO_FLE_OUT_DELAY NOT ACCURATE
LUT6_DELAY: 235e-12 # LUT6_DELAY NOT ACCURATE
LUT6_OUT_TO_FLE_OUT_DELAY: 25e-12 # LUT6_OUT_TO_FLE_OUT_DELAY NOT ACCURATE
CROSSBAR_I_TO_FLE_IN_DELAY: 95e-12 # CROSSBAR_I_TO_FLE_IN_DELAY NOT ACCURATE
CROSSBAR_FLE_OUT_TO_FLE_IN_DELAY: 95e-12 # FLE_OUT_TO_FLE_IN_DELAY NOT ACCURATE
CLB_CIN_TO_FLE_CIN: 0.16e-9 # CLB_CIN_TO_FLE_CIN NOT ACCURATE
################# Adder Delays #################
ADDER_CIN2OUT_DELAY: 1.21e-9
ADDER_CIN2COUT_DELAY: 1.21e-9
ADDER_IN2OUT_DELAY: 1.21e-9
ADDER_IN2COUT_DELAY: 1.21e-9
ARITHMETIC_ADDER_OUT_TO_ARITHMETIC_OUT: 25e-12
ARITHMETIC_FF_OUT_TO_ARITHMETIC_OUT: 45e-12
################# BRAM Delays #################
DPRAM_128x8_CLK_TO_WADDR_DELAY: 509e-12
DPRAM_128x8_CLK_TO_RADDR_DELAY: 509e-12
DPRAM_128x8_CLK_TO_DATA_IN_DELAY: 509e-12
DPRAM_128x8_CLK_TO_WEN_DELAY: 509e-12
DPRAM_128x8_CLK_TO_REN_DELAY: 509e-12
DPRAM_128x8_CLK_TO_DATA_OUT_DELAY: 6.73e-9
MEMORY_WADDR_TO_BRAM_WADDR_DELAY: 132e-12
MEMORY_RADDR_TO_BRAM_RADDR_DELAY: 132e-12
MEMORY_DATA_IN_TO_BRAM_DATA_IN_DELAY: 132e-12
MEMORY_WEN_TO_BRAM_WEN_DELAY: 132e-12
MEMORY_REN_TO_BRAM_REN_DELAY: 132e-12
BRAM_DATA_OUT_TO_MEMORY_DATA_OUT_DELAY: 40e-12

View File

@ -0,0 +1,44 @@
INPAD_DELAY: 0.11e-9
OUTPAD_DELAY: 0.11e-9
FF_T_SETUP: 0.39e-9
FF_T_CLK2Q: 0.43e-9
LUT_OUT0_TO_FLE_OUT_DELAY: 0.89e-9
FF0_Q_TO_FLE_OUT_DELAY: 0.88e-9
LUT_OUT1_TO_FLE_OUT_DELAY: 0.78e-9
FF1_Q_TO_FLE_OUT_DELAY: 0.89e-9
LUT5_DELAY: 235e-12 # LUT5_DELAY NOT ACCURATE
LUT5_OUT_TO_FLE_OUT_DELAY: 25e-12 # LUT5_OUT_TO_FLE_OUT_DELAY NOT ACCURATE
LUT6_DELAY: 235e-12 # LUT6_DELAY NOT ACCURATE
LUT6_OUT_TO_FLE_OUT_DELAY: 25e-12 # LUT6_OUT_TO_FLE_OUT_DELAY NOT ACCURATE
CROSSBAR_I_TO_FLE_IN_DELAY: 95e-12 # CROSSBAR_I_TO_FLE_IN_DELAY NOT ACCURATE
CROSSBAR_FLE_OUT_TO_FLE_IN_DELAY: 95e-12 # FLE_OUT_TO_FLE_IN_DELAY NOT ACCURATE
CLB_CIN_TO_FLE_CIN: 0.16e-9 # CLB_CIN_TO_FLE_CIN NOT ACCURATE
################# Adder Delays #################
ADDER_CIN2OUT_DELAY: 1.21e-9
ADDER_CIN2COUT_DELAY: 1.21e-9
ADDER_IN2OUT_DELAY: 1.21e-9
ADDER_IN2COUT_DELAY: 1.21e-9
ARITHMETIC_ADDER_OUT_TO_ARITHMETIC_OUT: 25e-12
ARITHMETIC_FF_OUT_TO_ARITHMETIC_OUT: 45e-12
################# MULT18 Delays #################
MULT18_A2Y_DELAY_MAX: 1.523e-9
MULT18_A2Y_DELAY_MIN: 0.776e-9
MULT18_B2Y_DELAY_MAX: 1.523e-9
MULT18_B2Y_DELAY_MIN: 0.776e-9
MULT18_SLICE_A2A_DELAY_MAX: 134e-12 # MULT18_SLICE_A2A_DELAY_MAX NOT ACCURATE
MULT18_SLICE_A2A_DELAY_MIN: 74e-12 # MULT18_SLICE_A2A_DELAY_MIN NOT ACCURATE
MULT18_SLICE_B2B_DELAY_MAX: 134e-12 # MULT18_SLICE_B2B_DELAY_MAX NOT ACCURATE
MULT18_SLICE_B2B_DELAY_MIN: 74e-12 # MULT18_SLICE_B2B_DELAY_MIN NOT ACCURATE
MULT18_SLICE_OUT2OUT_DELAY_MAX: 1.93e-9 # MULT18_SLICE_OUT2OUT_DELAY_MAX NOT ACCURATE
MULT18_SLICE_OUT2OUT_DELAY_MIN: 74e-12 # MULT18_SLICE_OUT2OUT_DELAY_MIN NOT ACCURATE

View File

@ -0,0 +1,48 @@
// Basic DFF
module \$_DFF_P_ (D, C, Q);
input D;
input C;
output Q;
parameter _TECHMAP_WIREINIT_Q_ = 1'bx;
dff _TECHMAP_REPLACE_ (.Q(Q), .D(D), .C(C));
endmodule
// Async active-high reset
module \$_DFF_PP0_ (D, C, R, Q);
input D;
input C;
input R;
output Q;
parameter _TECHMAP_WIREINIT_Q_ = 1'bx;
dffr _TECHMAP_REPLACE_ (.Q(Q), .D(D), .C(C), .R(R));
endmodule
// Async active-high set
module \$_DFF_PP1_ (D, C, R, Q);
input D;
input C;
input R;
output Q;
parameter _TECHMAP_WIREINIT_Q_ = 1'bx;
dffs _TECHMAP_REPLACE_ (.Q(Q), .D(D), .C(C), .S(R));
endmodule
// Async active-low reset
module \$_DFF_PN0_ (D, C, R, Q);
input D;
input C;
input R;
output Q;
parameter _TECHMAP_WIREINIT_Q_ = 1'bx;
dffrn _TECHMAP_REPLACE_ (.Q(Q), .D(D), .C(C), .RN(R));
endmodule
// Async active-low set
module \$_DFF_PN1_ (D, C, R, Q);
input D;
input C;
input R;
output Q;
parameter _TECHMAP_WIREINIT_Q_ = 1'bx;
dffsn _TECHMAP_REPLACE_ (.Q(Q), .D(D), .C(C), .SN(R));
endmodule

View File

@ -0,0 +1,18 @@
bram $__MY_DPRAM_128x8
init 0
abits 7
dbits 8
groups 2
ports 1 1
wrmode 1 0
enable 1 1
transp 0 0
clocks 1 1
clkpol 1 1
endbram
match $__MY_DPRAM_128x8
min efficiency 0
make_transp
endmatch

View File

@ -0,0 +1,21 @@
module $__MY_DPRAM_128x8 (
output [0:7] B1DATA,
input CLK1,
input [0:6] B1ADDR,
input [0:6] A1ADDR,
input [0:7] A1DATA,
input A1EN,
input B1EN );
generate
dpram_128x8 #() _TECHMAP_REPLACE_ (
.clk (CLK1),
.wen (A1EN),
.waddr (A1ADDR),
.data_in (A1DATA),
.ren (B1EN),
.raddr (B1ADDR),
.data_out (B1DATA) );
endgenerate
endmodule

View File

@ -1,58 +1,58 @@
//----------------------------- //-----------------------------
// Dual-port RAM 128x8 bit (1Kbit) // Dual-port RAM 128x8 bit (1Kbit)
// Core logic // Core logic
//----------------------------- //-----------------------------
module dpram_128x8_core ( module dpram_128x8_core (
input wclk, input wclk,
input wen, input wen,
input [0:6] waddr, input [0:6] waddr,
input [0:7] data_in, input [0:7] data_in,
input rclk, input rclk,
input ren, input ren,
input [0:6] raddr, input [0:6] raddr,
output [0:7] data_out ); output [0:7] data_out );
reg [0:7] ram[0:127]; reg [0:7] ram[0:127];
reg [0:7] internal; reg [0:7] internal;
assign data_out = internal; assign data_out = internal;
always @(posedge wclk) begin always @(posedge wclk) begin
if(wen) begin if(wen) begin
ram[waddr] <= data_in; ram[waddr] <= data_in;
end end
end end
always @(posedge rclk) begin always @(posedge rclk) begin
if(ren) begin if(ren) begin
internal <= ram[raddr]; internal <= ram[raddr];
end end
end end
endmodule endmodule
//----------------------------- //-----------------------------
// Dual-port RAM 128x8 bit (1Kbit) wrapper // Dual-port RAM 128x8 bit (1Kbit) wrapper
// where the read clock and write clock // where the read clock and write clock
// are combined to a unified clock // are combined to a unified clock
//----------------------------- //-----------------------------
module dpram_128x8 ( module dpram_128x8 (
input clk, input clk,
input wen, input wen,
input ren, input ren,
input [0:6] waddr, input [0:6] waddr,
input [0:6] raddr, input [0:6] raddr,
input [0:7] data_in, input [0:7] data_in,
output [0:7] data_out ); output [0:7] data_out );
dpram_128x8_core memory_0 ( dpram_128x8_core memory_0 (
.wclk (clk), .wclk (clk),
.wen (wen), .wen (wen),
.waddr (waddr), .waddr (waddr),
.data_in (data_in), .data_in (data_in),
.rclk (clk), .rclk (clk),
.ren (ren), .ren (ren),
.raddr (raddr), .raddr (raddr),
.data_out (data_out) ); .data_out (data_out) );
endmodule endmodule

View File

@ -7,13 +7,14 @@ PYTHON_EXEC=python3.8
# OpenFPGA Shell with VPR8 # OpenFPGA Shell with VPR8
############################################## ##############################################
echo -e "Micro benchmark regression tests"; echo -e "Micro benchmark regression tests";
run-task benchmark_sweep/counter --debug --show_thread_logs # run-task benchmark_sweep/counter --debug --show_thread_logs
run-task benchmark_sweep/mac_units --debug --show_thread_logs # run-task benchmark_sweep/mac_units --debug --show_thread_logs
# Verify MCNC big20 benchmark suite with ModelSim # # Verify MCNC big20 benchmark suite with ModelSim
# Please make sure you have ModelSim installed in the environment # # Please make sure you have ModelSim installed in the environment
# Otherwise, it will fail # # Otherwise, it will fail
run-task benchmark_sweep/mcnc_big20 --debug --show_thread_logs # run-task benchmark_sweep/mcnc_big20 --debug --show_thread_logs
#python3 openfpga_flow/scripts/run_modelsim.py mcnc_big20 --run_sim #python3 openfpga_flow/scripts/run_modelsim.py mcnc_big20 --run_sim
run-task benchmark_sweep/signal_gen --debug --show_thread_logs run-task benchmark_sweep/signal_gen --debug --show_thread_logs
run-task benchmark_sweep/processor --debug --show_thread_logs

0
openfpga_flow/scripts/run_fpga_task.py Normal file → Executable file
View File

View File

@ -21,9 +21,9 @@ openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_frac_N4_
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
openfpga_vpr_device_layout=3x2 openfpga_vpr_device_layout=3x2
# Yosys script parameters # Yosys script parameters
yosys_cell_sim_verilog=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/openfpga_brams_sim.v yosys_cell_sim_verilog=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/common/openfpga_dff_map.v
yosys_bram_map_rules=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/openfpga_brams.txt yosys_bram_map_rules=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/common/openfpga_brams.txt
yosys_bram_map_verilog=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/openfpga_brams_map.v yosys_bram_map_verilog=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/common/openfpga_dff_map.v
[ARCHITECTURES] [ARCHITECTURES]
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_frac_N4_tileable_adder_chain_mem1K_40nm.xml arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_frac_N4_tileable_adder_chain_mem1K_40nm.xml

View File

@ -20,8 +20,8 @@ openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_shell_scrip
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_frac_N4_fracff_40nm_cc_openfpga.xml openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_frac_N4_fracff_40nm_cc_openfpga.xml
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/fixed_sim_openfpga.xml openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/fixed_sim_openfpga.xml
# Yosys script parameters # Yosys script parameters
yosys_cell_sim_verilog=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/openfpga_dff_sim.v yosys_cell_sim_verilog=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/common/openfpga_dff_sim.v
yosys_dff_map_verilog=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/openfpga_dff_map.v yosys_dff_map_verilog=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_yosys_techlib/common/openfpga_dff_map.v
[ARCHITECTURES] [ARCHITECTURES]
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_frac_N4_tileable_fracff_40nm.xml arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_frac_N4_tileable_fracff_40nm.xml

View File

@ -0,0 +1,39 @@
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# Configuration file for running experiments
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
# Each job execute fpga_flow script on combination of architecture & benchmark
# timeout_each_job is timeout for each job
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
[GENERAL]
run_engine=openfpga_shell
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
power_analysis = true
spice_output=false
verilog_output=true
timeout_each_job = 20*60
fpga_flow=yosys_vpr
[OpenFPGA_SHELL]
openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_shell_scripts/generate_bitstream_global_tile_multiclock_example_script.openfpga
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_frac_N4_adder_chain_40nm_cc_openfpga.xml
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/fixed_sim_openfpga.xml
openfpga_vpr_device_layout=auto
openfpga_fast_configuration=
[ARCHITECTURES]
arch0=${PATH:OPENFPGA_PATH}/openfpga_flow/vpr_arch/k4_frac_N4_tileable_adder_chain_40nm.xml
[BENCHMARKS]
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/processor/picorv32/picorv32.v
bench1=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/processor/vexriscv/vexriscv_small.v
[SYNTHESIS_PARAM]
bench0_top = picorv32
bench0_chan_width = 300
bench1_top = VexRiscv
bench1_chan_width = 300
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
end_flow_with_test=

View File

@ -20,6 +20,7 @@ openfpga_shell_template=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_shell_scrip
openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_cc_openfpga.xml openfpga_arch_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_arch/k4_N4_40nm_cc_openfpga.xml
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
openfpga_vpr_device_layout= openfpga_vpr_device_layout=
openfpga_clock_modeling=ideal
openfpga_fast_configuration= openfpga_fast_configuration=
[ARCHITECTURES] [ARCHITECTURES]

View File

@ -1 +0,0 @@
/home/apond/sofa/SCRIPT/skywater_openfpga_task

View File

@ -1,620 +0,0 @@
<!--
Flagship Heterogeneous Architecture (No Carry Chains) for VTR 7.0.
- 40 nm technology
- General purpose logic block:
K = 4, N = 4, fracturable 4 LUTs (can operate as one 4-LUT or two 3-LUTs with all 3 inputs shared)
with optionally registered outputs
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
Authors: Xifan Tang
-->
<architecture>
<!--
ODIN II specific config begins
Describes the types of user-specified netlist blocks (in blif, this corresponds to
".model [type_of_block]") that this architecture supports.
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
already special structures in blif (.names, .input, .output, and .latch)
that describe them.
-->
<models>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="io">
<input_ports>
<port name="outpad"/>
</input_ports>
<output_ports>
<port name="inpad"/>
</output_ports>
</model>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="frac_lut4">
<input_ports>
<port name="in"/>
</input_ports>
<output_ports>
<port name="lut3_out"/>
<port name="lut4_out"/>
</output_ports>
</model>
<!-- A virtual model for scan-chain flip-flop to be used in the physical mode of FF -->
<model name="dff">
<input_ports>
<port name="D" clock="C"/>
<port name="C" is_clock="1"/>
</input_ports>
<output_ports>
<port name="Q" clock="C"/>
</output_ports>
</model>
<!-- A virtual model for scan-chain flip-flop to be used in the physical mode of FF -->
<model name="dffr">
<input_ports>
<port name="D" clock="C"/>
<port name="R" clock="C"/>
<port name="C" is_clock="1"/>
</input_ports>
<output_ports>
<port name="Q" clock="C"/>
</output_ports>
</model>
<!-- A virtual model for scan-chain flip-flop to be used in the physical mode of FF -->
<model name="dffrn">
<input_ports>
<port name="D" clock="C"/>
<port name="RN" clock="C"/>
<port name="C" is_clock="1"/>
</input_ports>
<output_ports>
<port name="Q" clock="C"/>
</output_ports>
</model>
</models>
<tiles>
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
If you need to register the I/O, define clocks in the circuit models
These clocks can be handled in back-end
-->
<tile name="io" capacity="8" area="0">
<equivalent_sites>
<site pb_type="io"/>
</equivalent_sites>
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="custom">
<loc side="left">io.outpad io.inpad</loc>
<loc side="top">io.outpad io.inpad</loc>
<loc side="right">io.outpad io.inpad</loc>
<loc side="bottom">io.outpad io.inpad</loc>
</pinlocations>
</tile>
<tile name="clb" area="53894">
<equivalent_sites>
<site pb_type="clb"/>
</equivalent_sites>
<input name="I" num_pins="12" equivalent="full"/>
<input name="reset" num_pins="1" is_non_clock_global="true"/>
<output name="O" num_pins="8" equivalent="none"/>
<clock name="clk" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10">
<fc_override port_name="clk" fc_type="frac" fc_val="0"/>
<fc_override port_name="reset" fc_type="frac" fc_val="0"/>
</fc>
<pinlocations pattern="spread"/>
</tile>
</tiles>
<!-- ODIN II specific config ends -->
<!-- Physical descriptions begin -->
<layout tileable="true">
<auto_layout aspect_ratio="1.0">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
</auto_layout>
<fixed_layout name="2x2" width="4" height="4">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
</fixed_layout>
<fixed_layout name="4x4" width="6" height="6">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
</fixed_layout>
</layout>
<device>
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
lined up with Stratix IV.
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
by 2.5x when looking up in Jeff's tables.
The delay values are lined up with Stratix IV, which has an architecture similar to this
proposed FPGA, and which is also 40 nm
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
4x minimum drive strength buffer. -->
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
-->
<area grid_logic_tile_area="0"/>
<chan_width_distr>
<x distr="uniform" peak="1.000000"/>
<y distr="uniform" peak="1.000000"/>
</chan_width_distr>
<switch_block type="wilton" fs="3" sub_type="subset" sub_fs="3"/>
<connection_block input_switch_name="ipin_cblock"/>
</device>
<switchlist>
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
book area formula. This means the mux transistors are about 5x minimum drive strength.
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
2.5x when looking up in Jeff's tables.
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
<switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
</switchlist>
<segmentlist>
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
<!-- GIVE a specific name for the segment! OpenFPGA appreciate that! -->
<segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
<mux name="0"/>
<sb type="pattern">1 1 1 1 1</sb>
<cb type="pattern">1 1 1 1</cb>
</segment>
</segmentlist>
<complexblocklist>
<!-- Define I/O pads begin -->
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
<pb_type name="io">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
If you need to register the I/O, define clocks in the circuit models
These clocks can be handled in back-end
-->
<!-- A mode denotes the physical implementation of an I/O
This mode will be not packable but is mainly used for fabric verilog generation
-->
<mode name="physical" disable_packing="true">
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="iopad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
</direct>
<direct name="inpad" input="iopad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<!-- IOs can operate as either inputs or outputs.
Delays below come from Ian Kuon. They are small, so they should be interpreted as
the delays to and from registers in the I/O (and generally I/Os are registered
today and that is when you timing analyze them.
-->
<mode name="inpad">
<pb_type name="inpad" blif_model=".input" num_pb="1">
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="inpad" input="inpad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<mode name="outpad">
<pb_type name="outpad" blif_model=".output" num_pb="1">
<input name="outpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="outpad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
</direct>
</interconnect>
</mode>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<!-- IOs go on the periphery of the FPGA, for consistency,
make it physically equivalent on all sides so that only one definition of I/Os is needed.
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
-->
<!-- Place I/Os on the sides of the FPGA -->
<power method="ignore"/>
</pb_type>
<!-- Define I/O pads ends -->
<!-- Define general purpose logic block (CLB) begin -->
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
area is 60 L^2 yields a tile area of 84375 MWTAs.
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
This means that only 37% of our area is in the general routing, and 63% is inside the logic
block. Note that the crossbar / local interconnect is considered part of the logic block
area in this analysis. That is a lower proportion of of routing area than most academics
assume, but note that the total routing area really includes the crossbar, which would push
routing area up significantly, we estimate into the ~70% range.
-->
<pb_type name="clb">
<input name="I" num_pins="12" equivalent="full"/>
<input name="reset" num_pins="1"/>
<output name="O" num_pins="8" equivalent="none"/>
<clock name="clk" num_pins="1"/>
<!-- Describe fracturable logic element.
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
The outputs of the fracturable logic element can be optionally registered
-->
<pb_type name="fle" num_pb="4">
<input name="in" num_pins="4"/>
<input name="reset" num_pins="1"/>
<output name="out" num_pins="2"/>
<clock name="clk" num_pins="1"/>
<!-- Physical mode definition begin (physical implementation of the fle) -->
<mode name="physical" disable_packing="true">
<pb_type name="fabric" num_pb="1">
<input name="in" num_pins="4"/>
<input name="reset" num_pins="1"/>
<output name="out" num_pins="2"/>
<clock name="clk" num_pins="1"/>
<pb_type name="frac_logic" num_pb="1">
<input name="in" num_pins="4"/>
<output name="out" num_pins="2"/>
<!-- Define LUT -->
<pb_type name="frac_lut4" blif_model=".subckt frac_lut4" num_pb="1">
<input name="in" num_pins="4"/>
<output name="lut3_out" num_pins="2"/>
<output name="lut4_out" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="direct1" input="frac_logic.in" output="frac_lut4.in"/>
<direct name="direct2" input="frac_lut4.lut3_out[1]" output="frac_logic.out[1]"/>
<!-- Xifan Tang: I use out[0] because the output of lut6 in lut6 mode is wired to the out[0] -->
<mux name="mux1" input="frac_lut4.lut4_out frac_lut4.lut3_out[0]" output="frac_logic.out[0]"/>
</interconnect>
</pb_type>
<!-- Define flip-flop -->
<pb_type name="ff" blif_model=".subckt dffr" num_pb="2">
<input name="D" num_pins="1" port_class="D"/>
<input name="R" num_pins="1"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="C" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="C"/>
<T_setup value="66e-12" port="ff.R" clock="C"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="C"/>
</pb_type>
<interconnect>
<direct name="direct1" input="fabric.in" output="frac_logic.in"/>
<direct name="direct2" input="frac_logic.out[1:0]" output="ff[1:0].D"/>
<complete name="direct3" input="fabric.clk" output="ff[1:0].C"/>
<complete name="direct4" input="fabric.reset" output="ff[1:0].R"/>
<mux name="mux1" input="ff[0].Q frac_logic.out[0]" output="fabric.out[0]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="frac_logic.out[0]" out_port="fabric.out[0]"/>
<delay_constant max="45e-12" in_port="ff[0].Q" out_port="fabric.out[0]"/>
</mux>
<mux name="mux2" input="ff[1].Q frac_logic.out[1]" output="fabric.out[1]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="frac_logic.out[1]" out_port="fabric.out[1]"/>
<delay_constant max="45e-12" in_port="ff[1].Q" out_port="fabric.out[1]"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in" output="fabric.in"/>
<direct name="direct2" input="fabric.out" output="fle.out"/>
<direct name="direct3" input="fle.clk" output="fabric.clk"/>
<direct name="direct4" input="fle.reset" output="fabric.reset"/>
</interconnect>
</mode>
<!-- Physical mode definition end (physical implementation of the fle) -->
<!-- Dual 3-LUT mode definition begin -->
<mode name="n2_lut3">
<pb_type name="lut3inter" num_pb="1">
<input name="in" num_pins="3"/>
<input name="reset" num_pins="1"/>
<output name="out" num_pins="2"/>
<clock name="clk" num_pins="1"/>
<pb_type name="ble3" num_pb="2">
<input name="in" num_pins="3"/>
<input name="reset" num_pins="1"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Define the LUT -->
<pb_type name="lut3" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="3" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
-->
<delay_matrix type="max" in_port="lut3.in" out_port="lut3.out">
235e-12
235e-12
235e-12
</delay_matrix>
</pb_type>
<!-- Define the flip-flop -->
<pb_type name="ff" num_pb="1">
<input name="D" num_pins="1"/>
<input name="R" num_pins="1"/>
<output name="Q" num_pins="1"/>
<clock name="C" num_pins="1"/>
<mode name="latch">
<pb_type name="latch" blif_model=".latch" num_pb="1">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="latch.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="latch.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ff.D" output="latch.D"/>
<direct name="direct2" input="ff.C" output="latch.clk"/>
<direct name="direct3" input="latch.Q" output="ff.Q"/>
</interconnect>
</mode>
<mode name="dff">
<pb_type name="dff" blif_model=".subckt dff" num_pb="1">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="C" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="dff.D" clock="C"/>
<T_clock_to_Q max="124e-12" port="dff.Q" clock="C"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ff.D" output="dff.D"/>
<direct name="direct2" input="ff.C" output="dff.C"/>
<direct name="direct3" input="dff.Q" output="ff.Q"/>
</interconnect>
</mode>
<mode name="dffr">
<pb_type name="dffr" blif_model=".subckt dffr" num_pb="1">
<input name="D" num_pins="1" port_class="D"/>
<input name="R" num_pins="1"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="C" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="dffr.D" clock="C"/>
<T_setup value="66e-12" port="dffr.R" clock="C"/>
<T_clock_to_Q max="124e-12" port="dffr.Q" clock="C"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ff.D" output="dffr.D"/>
<direct name="direct2" input="ff.C" output="dffr.C"/>
<direct name="direct3" input="ff.R" output="dffr.R"/>
<direct name="direct4" input="dffr.Q" output="ff.Q"/>
</interconnect>
</mode>
<mode name="dffrn">
<pb_type name="dffrn" blif_model=".subckt dffrn" num_pb="1">
<input name="D" num_pins="1" port_class="D"/>
<input name="RN" num_pins="1"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="C" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="dffrn.D" clock="C"/>
<T_setup value="66e-12" port="dffrn.RN" clock="C"/>
<T_clock_to_Q max="124e-12" port="dffrn.Q" clock="C"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ff.D" output="dffrn.D"/>
<direct name="direct2" input="ff.C" output="dffrn.C"/>
<direct name="direct3" input="ff.R" output="dffrn.RN"/>
<direct name="direct4" input="dffrn.Q" output="ff.Q"/>
</interconnect>
</mode>
</pb_type>
<interconnect>
<direct name="direct1" input="ble3.in[2:0]" output="lut3[0:0].in[2:0]"/>
<direct name="direct2" input="lut3[0:0].out" output="ff[0:0].D">
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
<pack_pattern name="ble3" in_port="lut3[0:0].out" out_port="ff[0:0].D"/>
</direct>
<direct name="direct3" input="ble3.clk" output="ff[0:0].C"/>
<direct name="direct4" input="ble3.reset" output="ff[0:0].R"/>
<mux name="mux1" input="ff[0:0].Q lut3.out[0:0]" output="ble3.out[0:0]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="lut3.out[0:0]" out_port="ble3.out[0:0]"/>
<delay_constant max="45e-12" in_port="ff[0:0].Q" out_port="ble3.out[0:0]"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="lut3inter.in" output="ble3[0:0].in"/>
<direct name="direct2" input="lut3inter.in" output="ble3[1:1].in"/>
<direct name="direct3" input="ble3[1:0].out" output="lut3inter.out"/>
<complete name="complete1" input="lut3inter.clk" output="ble3[1:0].clk"/>
<complete name="complete2" input="lut3inter.reset" output="ble3[1:0].reset"/>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[2:0]" output="lut3inter.in"/>
<direct name="direct2" input="lut3inter.out" output="fle.out"/>
<direct name="direct3" input="fle.clk" output="lut3inter.clk"/>
<direct name="direct4" input="fle.reset" output="lut3inter.reset"/>
</interconnect>
</mode>
<!-- Dual 3-LUT mode definition end -->
<!-- 4-LUT mode definition begin -->
<mode name="n1_lut4">
<!-- Define 4-LUT mode -->
<pb_type name="ble4" num_pb="1">
<input name="in" num_pins="4"/>
<input name="reset" num_pins="1"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Define LUT -->
<pb_type name="lut4" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="4" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
397e-12
-->
<delay_matrix type="max" in_port="lut4.in" out_port="lut4.out">
261e-12
261e-12
261e-12
261e-12
</delay_matrix>
</pb_type>
<!-- Define the flip-flop -->
<pb_type name="ff" num_pb="1">
<input name="D" num_pins="1"/>
<input name="R" num_pins="1"/>
<output name="Q" num_pins="1"/>
<clock name="C" num_pins="1"/>
<mode name="latch">
<pb_type name="latch" blif_model=".latch" num_pb="1">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="latch.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="latch.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ff.D" output="latch.D"/>
<direct name="direct2" input="ff.C" output="latch.clk"/>
<direct name="direct3" input="latch.Q" output="ff.Q"/>
</interconnect>
</mode>
<mode name="dff">
<pb_type name="dff" blif_model=".subckt dff" num_pb="1">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="C" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="dff.D" clock="C"/>
<T_clock_to_Q max="124e-12" port="dff.Q" clock="C"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ff.D" output="dff.D"/>
<direct name="direct2" input="ff.C" output="dff.C"/>
<direct name="direct3" input="dff.Q" output="ff.Q"/>
</interconnect>
</mode>
<mode name="dffr">
<pb_type name="dffr" blif_model=".subckt dffr" num_pb="1">
<input name="D" num_pins="1" port_class="D"/>
<input name="R" num_pins="1"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="C" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="dffr.D" clock="C"/>
<T_setup value="66e-12" port="dffr.R" clock="C"/>
<T_clock_to_Q max="124e-12" port="dffr.Q" clock="C"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ff.D" output="dffr.D"/>
<direct name="direct2" input="ff.C" output="dffr.C"/>
<direct name="direct3" input="ff.R" output="dffr.R"/>
<direct name="direct4" input="dffr.Q" output="ff.Q"/>
</interconnect>
</mode>
<mode name="dffrn">
<pb_type name="dffrn" blif_model=".subckt dffrn" num_pb="1">
<input name="D" num_pins="1" port_class="D"/>
<input name="RN" num_pins="1"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="C" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="dffrn.D" clock="C"/>
<T_setup value="66e-12" port="dffrn.RN" clock="C"/>
<T_clock_to_Q max="124e-12" port="dffrn.Q" clock="C"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ff.D" output="dffrn.D"/>
<direct name="direct2" input="ff.C" output="dffrn.C"/>
<direct name="direct3" input="ff.R" output="dffrn.RN"/>
<direct name="direct4" input="dffrn.Q" output="ff.Q"/>
</interconnect>
</mode>
</pb_type>
<interconnect>
<direct name="direct1" input="ble4.in" output="lut4[0:0].in"/>
<direct name="direct2" input="lut4.out" output="ff.D">
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
<pack_pattern name="ble4" in_port="lut4.out" out_port="ff.D"/>
</direct>
<direct name="direct3" input="ble4.clk" output="ff.C"/>
<direct name="direct4" input="ble4.reset" output="ff.R"/>
<mux name="mux1" input="ff.Q lut4.out" output="ble4.out">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="lut4.out" out_port="ble4.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble4.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in" output="ble4.in"/>
<direct name="direct2" input="ble4.out" output="fle.out[0:0]"/>
<direct name="direct3" input="fle.clk" output="ble4.clk"/>
<direct name="direct4" input="fle.reset" output="ble4.reset"/>
</interconnect>
</mode>
<!-- 6-LUT mode definition end -->
</pb_type>
<interconnect>
<!-- We use a full crossbar to get logical equivalence at inputs of CLB
The delays below come from Stratix IV. the delay through a connection block
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
delay within the crossbar is 95 ps.
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
Since all our outputs LUT outputs go to a BLE output, and have a delay of
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
to get the part that should be marked on the crossbar. -->
<complete name="crossbar" input="clb.I fle[3:0].out" output="fle[3:0].in">
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[3:0].in"/>
<delay_constant max="75e-12" in_port="fle[3:0].out" out_port="fle[3:0].in"/>
</complete>
<complete name="clks" input="clb.clk" output="fle[3:0].clk">
</complete>
<complete name="resets" input="clb.reset" output="fle[3:0].reset">
</complete>
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
naive specification).
-->
<direct name="clbouts1" input="fle[3:0].out[0:0]" output="clb.O[3:0]"/>
<direct name="clbouts2" input="fle[3:0].out[1:1]" output="clb.O[7:4]"/>
</interconnect>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<!-- Place this general purpose logic block in any unspecified column -->
</pb_type>
<!-- Define general purpose logic block (CLB) ends -->
</complexblocklist>
</architecture>

View File

@ -246,8 +246,8 @@
<!--pinlocations pattern="spread"/--> <!--pinlocations pattern="spread"/-->
<pinlocations pattern="custom"> <pinlocations pattern="custom">
<loc side="left">clb.clk clb.reset clb.set</loc> <loc side="left">clb.clk clb.reset clb.set</loc>
<loc side="top">clb.cin</loc> <loc side="top">clb.cin clb.O[9:0]</loc>
<loc side="right">clb.O[9:0] clb.I[19:0]</loc> <loc side="right">clb.I[19:0]</loc>
<loc side="bottom">clb.cout clb.O[19:10] clb.I[39:20]</loc> <loc side="bottom">clb.cout clb.O[19:10] clb.I[39:20]</loc>
</pinlocations> </pinlocations>
</tile> </tile>
@ -269,8 +269,8 @@
<pinlocations pattern="custom"> <pinlocations pattern="custom">
<loc side="left">memory.clk</loc> <loc side="left">memory.clk</loc>
<loc side="top"></loc> <loc side="top"></loc>
<loc side="right">memory.waddr[4:0] memory.raddr[4:0] memory.data_in[3:0] memory.wen memory.data_out[3:0]</loc> <loc side="right">memory.waddr[2:0] memory.raddr[3:0] memory.data_in[3:0] memory.wen memory.data_out[3:0]</loc>
<loc side="bottom">memory.waddr[9:5] memory.raddr[9:5] memory.data_in[7:4] memory.ren memory.data_out[7:4]</loc> <loc side="bottom">memory.waddr[6:3] memory.raddr[6:4] memory.data_in[7:4] memory.ren memory.data_out[7:4]</loc>
</pinlocations> </pinlocations>
</tile> </tile>
<tile name="mult_18" height="6" area="396000"> <tile name="mult_18" height="6" area="396000">