timing files renamed

This commit is contained in:
Andrew Pond 2021-07-21 14:12:32 -06:00
parent 60ac09d315
commit 6cb51d1e7d
7 changed files with 973 additions and 16 deletions

View File

@ -0,0 +1,102 @@
# Yosys synthesis script for ${TOP_MODULE}
#########################
# Parse input files
#########################
# Read verilog files
${READ_VERILOG_FILE}
# Read technology library
read_verilog -lib -specify ${YOSYS_CELL_SIM_VERILOG}
#########################
# Prepare for synthesis
#########################
# Identify top module from hierarchy
hierarchy -check -top ${TOP_MODULE}
# - Convert process blocks to AST
proc
# Flatten all the gates/primitives
flatten
# Identify tri-state buffers from 'z' signal in AST
# with follow-up optimizations to clean up AST
tribuf -logic
opt_expr
opt_clean
# demote inout ports to input or output port
# with follow-up optimizations to clean up AST
deminout
opt
opt_expr
opt_clean
check
opt
wreduce -keepdc
peepopt
pmuxtree
opt_clean
########################
# Map multipliers
# Inspired from synth_xilinx.cc
#########################
# Avoid merging any registers into DSP, reserve memory port registers first
memory_dff
#########################
# Run coarse synthesis
#########################
# Run a tech map with default library
techmap
alumacc
share
opt
fsm
# Run a quick follow-up optimization to sweep out unused nets/signals
opt -fast
# Optimize any memory cells by merging share-able ports and collecting all the ports belonging to memorcy cells
memory -nomap
opt_clean
#########################
# Map logics to BRAMs
#########################
memory_bram -rules ${YOSYS_BRAM_MAP_RULES}
techmap -map ${YOSYS_BRAM_MAP_VERILOG}
opt -fast -mux_undef -undriven -fine
memory_map
opt -undriven -fine
#########################
# Map pmuxes to muxes
#########################
techmap -map +/pmux2mux.v
#########################
# Map flip-flops
#########################
techmap -map ${YOSYS_DFF_MAP_VERILOG}
opt_expr -mux_undef
simplemap
opt_expr
opt_merge
opt_rmdff
opt_clean
opt
#########################
# Map LUTs
#########################
abc -lut ${LUT_SIZE}
#########################
# Check and show statisitics
#########################
hierarchy -check
stat
#########################
# Output netlists
#########################
opt_clean -purge
write_blif ${OUTPUT_BLIF}

View File

@ -0,0 +1,62 @@
INPAD_DELAY: 0.11e-9
OUTPAD_DELAY: 0.11e-9
FF_T_SETUP: 0.39e-9
FF_T_CLK2Q: 0.43e-9
LUT_OUT0_TO_FLE_OUT_DELAY: 0.89e-9
FF0_Q_TO_FLE_OUT_DELAY: 0.88e-9
LUT_OUT1_TO_FLE_OUT_DELAY: 0.78e-9
FF1_Q_TO_FLE_OUT_DELAY: 0.89e-9
LUT5_DELAY: 235e-12 # LUT5_DELAY NOT ACCURATE
LUT5_OUT_TO_FLE_OUT_DELAY: 25e-12 # LUT5_OUT_TO_FLE_OUT_DELAY NOT ACCURATE
LUT6_DELAY: 235e-12 # LUT6_DELAY NOT ACCURATE
LUT6_OUT_TO_FLE_OUT_DELAY: 25e-12 # LUT6_OUT_TO_FLE_OUT_DELAY NOT ACCURATE
CROSSBAR_I_TO_FLE_IN_DELAY: 95e-12 # CROSSBAR_I_TO_FLE_IN_DELAY NOT ACCURATE
CROSSBAR_FLE_OUT_TO_FLE_IN_DELAY: 95e-12 # FLE_OUT_TO_FLE_IN_DELAY NOT ACCURATE
CLB_CIN_TO_FLE_CIN: 0.16e-9 # CLB_CIN_TO_FLE_CIN NOT ACCURATE
################# Adder Delays #################
ADDER_CIN2OUT_DELAY: 1.21e-9
ADDER_CIN2COUT_DELAY: 1.21e-9
ADDER_IN2OUT_DELAY: 1.21e-9
ADDER_IN2COUT_DELAY: 1.21e-9
ARITHMETIC_ADDER_OUT_TO_ARITHMETIC_OUT: 25e-12
ARITHMETIC_FF_OUT_TO_ARITHMETIC_OUT: 45e-12
################# MULT18 Delays #################
MULT18_A2Y_DELAY_MAX: 1.523e-9
MULT18_A2Y_DELAY_MIN: 0.776e-9
MULT18_B2Y_DELAY_MAX: 1.523e-9
MULT18_B2Y_DELAY_MIN: 0.776e-9
MULT18_SLICE_A2A_DELAY_MAX: 134e-12 # MULT18_SLICE_A2A_DELAY_MAX NOT ACCURATE
MULT18_SLICE_A2A_DELAY_MIN: 74e-12 # MULT18_SLICE_A2A_DELAY_MIN NOT ACCURATE
MULT18_SLICE_B2B_DELAY_MAX: 134e-12 # MULT18_SLICE_B2B_DELAY_MAX NOT ACCURATE
MULT18_SLICE_B2B_DELAY_MIN: 74e-12 # MULT18_SLICE_B2B_DELAY_MIN NOT ACCURATE
MULT18_SLICE_OUT2OUT_DELAY_MAX: 1.93e-9 # MULT18_SLICE_OUT2OUT_DELAY_MAX NOT ACCURATE
MULT18_SLICE_OUT2OUT_DELAY_MIN: 74e-12 # MULT18_SLICE_OUT2OUT_DELAY_MIN NOT ACCURATE
################# BRAM Delays #################
DPRAM_128x8_CLK_TO_WADDR_DELAY: 509e-12
DPRAM_128x8_CLK_TO_RADDR_DELAY: 509e-12
DPRAM_128x8_CLK_TO_DATA_IN_DELAY: 509e-12
DPRAM_128x8_CLK_TO_WEN_DELAY: 509e-12
DPRAM_128x8_CLK_TO_REN_DELAY: 509e-12
DPRAM_128x8_CLK_TO_DATA_OUT_DELAY: 1.234e-9
MEMORY_WADDR_TO_BRAM_WADDR_DELAY: 132e-12
MEMORY_RADDR_TO_BRAM_RADDR_DELAY: 132e-12
MEMORY_DATA_IN_TO_BRAM_DATA_IN_DELAY: 132e-12
MEMORY_WEN_TO_BRAM_WEN_DELAY: 132e-12
MEMORY_REN_TO_BRAM_REN_DELAY: 132e-12
BRAM_DATA_OUT_TO_MEMORY_DATA_OUT_DELAY: 40e-12

View File

@ -0,0 +1,47 @@
INPAD_DELAY: 0.11e-9
OUTPAD_DELAY: 0.11e-9
FF_T_SETUP: 0.39e-9
FF_T_CLK2Q: 0.43e-9
LUT_OUT0_TO_FLE_OUT_DELAY: 0.89e-9
FF0_Q_TO_FLE_OUT_DELAY: 0.88e-9
LUT_OUT1_TO_FLE_OUT_DELAY: 0.78e-9
FF1_Q_TO_FLE_OUT_DELAY: 0.89e-9
LUT5_DELAY: 235e-12 # LUT5_DELAY NOT ACCURATE
LUT5_OUT_TO_FLE_OUT_DELAY: 25e-12 # LUT5_OUT_TO_FLE_OUT_DELAY NOT ACCURATE
LUT6_DELAY: 235e-12 # LUT6_DELAY NOT ACCURATE
LUT6_OUT_TO_FLE_OUT_DELAY: 25e-12 # LUT6_OUT_TO_FLE_OUT_DELAY NOT ACCURATE
CROSSBAR_I_TO_FLE_IN_DELAY: 95e-12 # CROSSBAR_I_TO_FLE_IN_DELAY NOT ACCURATE
CROSSBAR_FLE_OUT_TO_FLE_IN_DELAY: 95e-12 # FLE_OUT_TO_FLE_IN_DELAY NOT ACCURATE
CLB_CIN_TO_FLE_CIN: 0.16e-9 # CLB_CIN_TO_FLE_CIN NOT ACCURATE
################# Adder Delays #################
ADDER_CIN2OUT_DELAY: 1.21e-9
ADDER_CIN2COUT_DELAY: 1.21e-9
ADDER_IN2OUT_DELAY: 1.21e-9
ADDER_IN2COUT_DELAY: 1.21e-9
ARITHMETIC_ADDER_OUT_TO_ARITHMETIC_OUT: 25e-12
ARITHMETIC_FF_OUT_TO_ARITHMETIC_OUT: 45e-12
################# BRAM Delays #################
DPRAM_128x8_CLK_TO_WADDR_DELAY: 509e-12
DPRAM_128x8_CLK_TO_RADDR_DELAY: 509e-12
DPRAM_128x8_CLK_TO_DATA_IN_DELAY: 509e-12
DPRAM_128x8_CLK_TO_WEN_DELAY: 509e-12
DPRAM_128x8_CLK_TO_REN_DELAY: 509e-12
DPRAM_128x8_CLK_TO_DATA_OUT_DELAY: 1.234e-9
MEMORY_WADDR_TO_BRAM_WADDR_DELAY: 132e-12
MEMORY_RADDR_TO_BRAM_RADDR_DELAY: 132e-12
MEMORY_DATA_IN_TO_BRAM_DATA_IN_DELAY: 132e-12
MEMORY_WEN_TO_BRAM_WEN_DELAY: 132e-12
MEMORY_REN_TO_BRAM_REN_DELAY: 132e-12
BRAM_DATA_OUT_TO_MEMORY_DATA_OUT_DELAY: 40e-12

View File

@ -0,0 +1,44 @@
INPAD_DELAY: 0.11e-9
OUTPAD_DELAY: 0.11e-9
FF_T_SETUP: 0.39e-9
FF_T_CLK2Q: 0.43e-9
LUT_OUT0_TO_FLE_OUT_DELAY: 0.89e-9
FF0_Q_TO_FLE_OUT_DELAY: 0.88e-9
LUT_OUT1_TO_FLE_OUT_DELAY: 0.78e-9
FF1_Q_TO_FLE_OUT_DELAY: 0.89e-9
LUT5_DELAY: 235e-12 # LUT5_DELAY NOT ACCURATE
LUT5_OUT_TO_FLE_OUT_DELAY: 25e-12 # LUT5_OUT_TO_FLE_OUT_DELAY NOT ACCURATE
LUT6_DELAY: 235e-12 # LUT6_DELAY NOT ACCURATE
LUT6_OUT_TO_FLE_OUT_DELAY: 25e-12 # LUT6_OUT_TO_FLE_OUT_DELAY NOT ACCURATE
CROSSBAR_I_TO_FLE_IN_DELAY: 95e-12 # CROSSBAR_I_TO_FLE_IN_DELAY NOT ACCURATE
CROSSBAR_FLE_OUT_TO_FLE_IN_DELAY: 95e-12 # FLE_OUT_TO_FLE_IN_DELAY NOT ACCURATE
CLB_CIN_TO_FLE_CIN: 0.16e-9 # CLB_CIN_TO_FLE_CIN NOT ACCURATE
################# Adder Delays #################
ADDER_CIN2OUT_DELAY: 1.21e-9
ADDER_CIN2COUT_DELAY: 1.21e-9
ADDER_IN2OUT_DELAY: 1.21e-9
ADDER_IN2COUT_DELAY: 1.21e-9
ARITHMETIC_ADDER_OUT_TO_ARITHMETIC_OUT: 25e-12
ARITHMETIC_FF_OUT_TO_ARITHMETIC_OUT: 45e-12
################# MULT18 Delays #################
MULT18_A2Y_DELAY_MAX: 1.523e-9
MULT18_A2Y_DELAY_MIN: 0.776e-9
MULT18_B2Y_DELAY_MAX: 1.523e-9
MULT18_B2Y_DELAY_MIN: 0.776e-9
MULT18_SLICE_A2A_DELAY_MAX: 134e-12 # MULT18_SLICE_A2A_DELAY_MAX NOT ACCURATE
MULT18_SLICE_A2A_DELAY_MIN: 74e-12 # MULT18_SLICE_A2A_DELAY_MIN NOT ACCURATE
MULT18_SLICE_B2B_DELAY_MAX: 134e-12 # MULT18_SLICE_B2B_DELAY_MAX NOT ACCURATE
MULT18_SLICE_B2B_DELAY_MIN: 74e-12 # MULT18_SLICE_B2B_DELAY_MIN NOT ACCURATE
MULT18_SLICE_OUT2OUT_DELAY_MAX: 1.93e-9 # MULT18_SLICE_OUT2OUT_DELAY_MAX NOT ACCURATE
MULT18_SLICE_OUT2OUT_DELAY_MIN: 74e-12 # MULT18_SLICE_OUT2OUT_DELAY_MIN NOT ACCURATE

View File

@ -38,10 +38,10 @@ CLB_CIN_TO_FLE_CIN: 0.16e-9 # CLB_CIN_TO_FLE_CIN NOT ACCURATE
################# Adder Delays #################
ADDER_LUT4_CIN2OUT_DELAY: 1.21e-9
ADDER_LUT4_CIN2COUT_DELAY: 1.21e-9
ADDER_LUT4_IN2OUT_DELAY: 1.21e-9
ADDER_LUT4_IN2COUT_DELAY: 1.21e-9
ADDER_CIN2OUT_DELAY: 1.21e-9
ADDER_CIN2COUT_DELAY: 1.21e-9
ADDER_IN2OUT_DELAY: 1.21e-9
ADDER_IN2COUT_DELAY: 1.21e-9
ARITHMETIC_ADDER_OUT_TO_ARITHMETIC_OUT: 25e-12
ARITHMETIC_FF_OUT_TO_ARITHMETIC_OUT: 45e-12

View File

@ -0,0 +1,702 @@
<!--
Flagship Heterogeneous Architecture (No Carry Chains) for VTR 7.0.
- 40 nm technology
- General purpose logic block:
K = 4, N = 4, fracturable 4 LUTs (can operate as one 4-LUT or two 3-LUTs with all 3 inputs shared)
with optionally registered outputs
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
Details on Modelling:
Based on flagship k4_frac_N4_mem32K_40nm.xml architecture.
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
-->
<architecture>
<!--
ODIN II specific config begins
Describes the types of user-specified netlist blocks (in blif, this corresponds to
".model [type_of_block]") that this architecture supports.
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
already special structures in blif (.names, .input, .output, and .latch)
that describe them.
-->
<models>
<model name="adder">
<input_ports>
<port name="a" combinational_sink_ports="sumout cout"/>
<port name="b" combinational_sink_ports="sumout cout"/>
<port name="cin" combinational_sink_ports="sumout cout"/>
</input_ports>
<output_ports>
<port name="cout"/>
<port name="sumout"/>
</output_ports>
</model>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="io">
<input_ports>
<port name="outpad"/>
</input_ports>
<output_ports>
<port name="inpad"/>
</output_ports>
</model>
<!-- A virtual model for I/O to be used in the physical mode of io block -->
<model name="frac_lut4">
<input_ports>
<port name="in"/>
</input_ports>
<output_ports>
<port name="lut3_out"/>
<port name="lut4_out"/>
</output_ports>
</model>
<model name="dual_port_ram">
<input_ports>
<!-- write address lines -->
<port name="waddr" clock="clk"/>
<!-- read address lines -->
<port name="raddr" clock="clk"/>
<!-- data lines can be broken down into smaller bit widths minimum size 1 -->
<port name="d_in" clock="clk"/>
<!-- write enable -->
<port name="wen" clock="clk"/>
<!-- read enable -->
<port name="ren" clock="clk"/>
<!-- memories are often clocked -->
<port name="clk" is_clock="1"/>
</input_ports>
<output_ports>
<!-- output can be broken down into smaller bit widths minimum size 1 -->
<port name="d_out" clock="clk"/>
</output_ports>
</model>
</models>
<tiles>
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
If you need to register the I/O, define clocks in the circuit models
These clocks can be handled in back-end
-->
<tile name="io" capacity="8" area="0">
<equivalent_sites>
<site pb_type="io"/>
</equivalent_sites>
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="custom">
<loc side="left">io.outpad io.inpad</loc>
<loc side="top">io.outpad io.inpad</loc>
<loc side="right">io.outpad io.inpad</loc>
<loc side="bottom">io.outpad io.inpad</loc>
</pinlocations>
</tile>
<tile name="clb" area="53894">
<equivalent_sites>
<site pb_type="clb"/>
</equivalent_sites>
<input name="I" num_pins="12" equivalent="full"/>
<input name="cin" num_pins="1"/>
<output name="O" num_pins="8" equivalent="none"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10">
<fc_override port_name="cin" fc_type="frac" fc_val="0"/>
<fc_override port_name="cout" fc_type="frac" fc_val="0"/>
</fc>
<!--pinlocations pattern="spread"/-->
<pinlocations pattern="custom">
<loc side="left">clb.clk</loc>
<loc side="top">clb.cin</loc>
<loc side="right">clb.O[3:0] clb.I[5:0]</loc>
<loc side="bottom">clb.cout clb.O[7:4] clb.I[11:6]</loc>
</pinlocations>
</tile>
<tile name="memory" height="2" area="548000">
<equivalent_sites>
<site pb_type="memory"/>
</equivalent_sites>
<input name="waddr" num_pins="7"/>
<input name="raddr" num_pins="7"/>
<input name="d_in" num_pins="8"/>
<input name="wen" num_pins="1"/>
<input name="ren" num_pins="1"/>
<output name="d_out" num_pins="8"/>
<clock name="clk" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="spread"/>
</tile>
</tiles>
<!-- ODIN II specific config ends -->
<!-- Physical descriptions begin -->
<layout tileable="true">
<auto_layout aspect_ratio="1.0">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
<!--Column of 'memory' with 'EMPTY' blocks wherever a 'memory' does not fit. Vertical offset by 1 for perimeter.-->
<col type="memory" startx="2" starty="1" repeatx="8" priority="20"/>
<col type="EMPTY" startx="2" repeatx="8" starty="1" priority="19"/>
</auto_layout>
<fixed_layout name="3x2" width="5" height="4">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
<!--Column of 'memory' with 'EMPTY' blocks wherever a 'memory' does not fit. Vertical offset by 1 for perimeter.-->
<col type="memory" startx="2" starty="1" repeatx="8" priority="20"/>
<col type="EMPTY" startx="2" repeatx="8" starty="1" priority="19"/>
</fixed_layout>
<fixed_layout name="4x4" width="6" height="6">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'-->
<fill type="clb" priority="10"/>
<!--Column of 'memory' with 'EMPTY' blocks wherever a 'memory' does not fit. Vertical offset by 1 for perimeter.-->
<col type="memory" startx="2" starty="1" repeatx="8" priority="20"/>
<col type="EMPTY" startx="2" repeatx="8" starty="1" priority="19"/>
</fixed_layout>
</layout>
<device>
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
lined up with Stratix IV.
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
by 2.5x when looking up in Jeff's tables.
The delay values are lined up with Stratix IV, which has an architecture similar to this
proposed FPGA, and which is also 40 nm
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
4x minimum drive strength buffer. -->
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
-->
<area grid_logic_tile_area="0"/>
<chan_width_distr>
<x distr="uniform" peak="1.000000"/>
<y distr="uniform" peak="1.000000"/>
</chan_width_distr>
<switch_block type="wilton" fs="3" sub_type="subset" sub_fs="3"/>
<connection_block input_switch_name="ipin_cblock"/>
</device>
<switchlist>
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
book area formula. This means the mux transistors are about 5x minimum drive strength.
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
2.5x when looking up in Jeff's tables.
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
<switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
</switchlist>
<segmentlist>
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
<!-- GIVE a specific name for the segment! OpenFPGA appreciate that! -->
<segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
<mux name="0"/>
<sb type="pattern">1 1 1 1 1</sb>
<cb type="pattern">1 1 1 1</cb>
</segment>
</segmentlist>
<directlist>
<direct name="adder_carry" from_pin="clb.cout" to_pin="clb.cin" x_offset="0" y_offset="-1" z_offset="0"/>
</directlist>
<complexblocklist>
<!-- Define I/O pads begin -->
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
<pb_type name="io">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
If you need to register the I/O, define clocks in the circuit models
These clocks can be handled in back-end
-->
<!-- A mode denotes the physical implementation of an I/O
This mode will be not packable but is mainly used for fabric verilog generation
-->
<mode name="physical" disable_packing="true">
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="iopad.outpad">
<delay_constant max="${OUTPAD_DELAY}" in_port="io.outpad" out_port="iopad.outpad"/>
</direct>
<direct name="inpad" input="iopad.inpad" output="io.inpad">
<delay_constant max="${INPAD_DELAY}" in_port="iopad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<!-- IOs can operate as either inputs or outputs.
Delays below come from Ian Kuon. They are small, so they should be interpreted as
the delays to and from registers in the I/O (and generally I/Os are registered
today and that is when you timing analyze them.
-->
<mode name="inpad">
<pb_type name="inpad" blif_model=".input" num_pb="1">
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="inpad" input="inpad.inpad" output="io.inpad">
<delay_constant max="${INPAD_DELAY}" in_port="iopad.inpad" out_port="io.inpad"/>
</direct>
</interconnect>
</mode>
<mode name="outpad">
<pb_type name="outpad" blif_model=".output" num_pb="1">
<input name="outpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="outpad.outpad">
<delay_constant max="${OUTPAD_DELAY}" in_port="io.outpad" out_port="iopad.outpad"/>
</direct>
</interconnect>
</mode>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<!-- IOs go on the periphery of the FPGA, for consistency,
make it physically equivalent on all sides so that only one definition of I/Os is needed.
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
-->
<!-- Place I/Os on the sides of the FPGA -->
<power method="ignore"/>
</pb_type>
<!-- Define I/O pads ends -->
<!-- Define general purpose logic block (CLB) begin -->
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
area is 60 L^2 yields a tile area of 84375 MWTAs.
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
This means that only 37% of our area is in the general routing, and 63% is inside the logic
block. Note that the crossbar / local interconnect is considered part of the logic block
area in this analysis. That is a lower proportion of of routing area than most academics
assume, but note that the total routing area really includes the crossbar, which would push
routing area up significantly, we estimate into the ~70% range.
-->
<pb_type name="clb">
<input name="I" num_pins="12" equivalent="full"/>
<input name="cin" num_pins="1"/>
<output name="O" num_pins="8" equivalent="none"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Describe fracturable logic element.
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
The outputs of the fracturable logic element can be optionally registered
-->
<pb_type name="fle" num_pb="4">
<input name="in" num_pins="4"/>
<input name="cin" num_pins="1"/>
<output name="out" num_pins="2"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Physical mode definition begin (physical implementation of the fle) -->
<mode name="physical" disable_packing="true">
<pb_type name="fabric" num_pb="1">
<input name="in" num_pins="4"/>
<input name="cin" num_pins="1"/>
<output name="out" num_pins="2"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<pb_type name="frac_logic" num_pb="1">
<input name="in" num_pins="4"/>
<output name="out" num_pins="2"/>
<!-- Define LUT -->
<pb_type name="frac_lut4" blif_model=".subckt frac_lut4" num_pb="1">
<input name="in" num_pins="4"/>
<output name="lut3_out" num_pins="2"/>
<output name="lut4_out" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="direct1" input="frac_logic.in" output="frac_lut4.in"/>
<direct name="direct2" input="frac_lut4.lut3_out[1]" output="frac_logic.out[1]"/>
<!-- Xifan Tang: I use out[0] because the output of lut6 in lut6 mode is wired to the out[0] -->
<mux name="mux1" input="frac_lut4.lut4_out frac_lut4.lut3_out[0]" output="frac_logic.out[0]"/>
</interconnect>
</pb_type>
<!-- Define flip-flop -->
<pb_type name="ff" blif_model=".latch" num_pb="2" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<!-- Define adders -->
<pb_type name="adder" blif_model=".subckt adder" num_pb="1">
<input name="a" num_pins="1"/>
<input name="b" num_pins="1"/>
<input name="cin" num_pins="1"/>
<output name="cout" num_pins="1"/>
<output name="sumout" num_pins="1"/>
<delay_constant max="${ADDER_IN2OUT_DELAY}" in_port="adder.a" out_port="adder.sumout"/>
<delay_constant max="${ADDER_IN2OUT_DELAY}" in_port="adder.b" out_port="adder.sumout"/>
<delay_constant max="${ADDER_CIN2OUT_DELAY}" in_port="adder.cin" out_port="adder.sumout"/>
<delay_constant max="${ADDER_IN2COUT_DELAY}" in_port="adder.a" out_port="adder.cout"/>
<delay_constant max="${ADDER_IN2COUT_DELAY}" in_port="adder.b" out_port="adder.cout"/>
<delay_constant max="${ADDER_CIN2COUT_DELAY}" in_port="adder.cin" out_port="adder.cout"/>
</pb_type>
<interconnect>
<direct name="direct1" input="fabric.in" output="frac_logic.in"/>
<direct name="direct2" input="fabric.cin" output="adder[0:0].cin"/>
<direct name="direct3" input="adder[0:0].cout" output="fabric.cout"/>
<direct name="direct4" input="frac_logic.out[0:0]" output="adder[0:0].a"/>
<direct name="direct5" input="frac_logic.out[1:1]" output="adder[0:0].b"/>
<complete name="direct6" input="fabric.clk" output="ff[1:0].clk"/>
<mux name="mux1" input="frac_logic.out[0:0] adder[0].cout" output="ff[0:0].D">
<delay_constant max="25e-12" in_port="frac_logic.out[0:0]" out_port="ff[0:0].D"/>
<delay_constant max="45e-12" in_port="adder[0].cout" out_port="ff[0:0].D"/>
</mux>
<mux name="mux2" input="frac_logic.out[1:1] adder[0].sumout" output="ff[1:1].D">
<delay_constant max="25e-12" in_port="frac_logic.out[1:1]" out_port="ff[1:1].D"/>
<delay_constant max="45e-12" in_port="adder[0].sumout" out_port="ff[1:1].D"/>
</mux>
<mux name="mux3" input="adder[0].cout ff[0].Q frac_logic.out[0]" output="fabric.out[0]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="adder[0].cout frac_logic.out[0]" out_port="fabric.out[0]"/>
<delay_constant max="45e-12" in_port="ff[0].Q" out_port="fabric.out[0]"/>
</mux>
<mux name="mux4" input="adder[0].sumout ff[1].Q frac_logic.out[1]" output="fabric.out[1]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="adder[0].sumout frac_logic.out[1]" out_port="fabric.out[1]"/>
<delay_constant max="45e-12" in_port="ff[1].Q" out_port="fabric.out[1]"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in" output="fabric.in"/>
<direct name="direct2" input="fle.cin" output="fabric.cin"/>
<direct name="direct3" input="fabric.out" output="fle.out"/>
<direct name="direct4" input="fabric.cout" output="fle.cout"/>
<direct name="direct5" input="fle.clk" output="fabric.clk"/>
</interconnect>
</mode>
<!-- Physical mode definition end (physical implementation of the fle) -->
<!-- Dual 3-LUT mode definition begin -->
<mode name="n2_lut3">
<pb_type name="lut3inter" num_pb="1">
<input name="in" num_pins="3"/>
<output name="out" num_pins="2"/>
<clock name="clk" num_pins="1"/>
<pb_type name="ble3" num_pb="2">
<input name="in" num_pins="3"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Define the LUT -->
<pb_type name="lut3" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="3" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
-->
<delay_matrix type="max" in_port="lut3.in" out_port="lut3.out">
235e-12
235e-12
235e-12
</delay_matrix>
</pb_type>
<!-- Define the flip-flop -->
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble3.in[2:0]" output="lut3[0:0].in[2:0]"/>
<direct name="direct2" input="lut3[0:0].out" output="ff[0:0].D">
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
<pack_pattern name="ble3" in_port="lut3[0:0].out" out_port="ff[0:0].D"/>
</direct>
<direct name="direct3" input="ble3.clk" output="ff[0:0].clk"/>
<mux name="mux1" input="ff[0:0].Q lut3.out[0:0]" output="ble3.out[0:0]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="lut3.out[0:0]" out_port="ble3.out[0:0]"/>
<delay_constant max="45e-12" in_port="ff[0:0].Q" out_port="ble3.out[0:0]"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="lut3inter.in" output="ble3[0:0].in"/>
<direct name="direct2" input="lut3inter.in" output="ble3[1:1].in"/>
<direct name="direct3" input="ble3[1:0].out" output="lut3inter.out"/>
<complete name="complete1" input="lut3inter.clk" output="ble3[1:0].clk"/>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[2:0]" output="lut3inter.in"/>
<direct name="direct2" input="lut3inter.out" output="fle.out"/>
<direct name="direct3" input="fle.clk" output="lut3inter.clk"/>
</interconnect>
</mode>
<!-- Dual 3-LUT mode definition end -->
<!-- BEGIN arithmetic mode of dual lut3 + adders -->
<mode name="arithmetic">
<pb_type name="arithmetic" num_pb="1">
<input name="in" num_pins="3"/>
<input name="cin" num_pins="1"/>
<output name="out" num_pins="2"/>
<output name="cout" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Special dual-LUT mode that drives adder only -->
<pb_type name="lut3" blif_model=".names" num_pb="2" class="lut">
<input name="in" num_pins="3" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
-->
<delay_matrix type="max" in_port="lut3.in" out_port="lut3.out">
195e-12
195e-12
195e-12
</delay_matrix>
</pb_type>
<pb_type name="adder" blif_model=".subckt adder" num_pb="1">
<input name="a" num_pins="1"/>
<input name="b" num_pins="1"/>
<input name="cin" num_pins="1"/>
<output name="cout" num_pins="1"/>
<output name="sumout" num_pins="1"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="2" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<complete name="clock" input="arithmetic.clk" output="ff.clk"/>
<direct name="lut_in1" input="arithmetic.in[2:0]" output="lut3[0:0].in[2:0]"/>
<direct name="lut_in2" input="arithmetic.in[2:0]" output="lut3[1:1].in[2:0]"/>
<direct name="lut_to_add1" input="lut3[0:0].out" output="adder.a">
</direct>
<direct name="lut_to_add2" input="lut3[1:1].out" output="adder.b">
</direct>
<direct name="carry_in" input="arithmetic.cin" output="adder.cin">
<pack_pattern name="chain" in_port="arithmetic.cin" out_port="adder.cin"/>
</direct>
<direct name="carry_out" input="adder.cout" output="arithmetic.cout">
<pack_pattern name="chain" in_port="adder.cout" out_port="arithmetic.cout"/>
</direct>
<mux name="cout" input="ff[0:0].Q adder.cout" output="arithmetic.out[0:0]">
<delay_constant max="25e-12" in_port="adder.sumout" out_port="arithmetic.out[0:0]"/>
<delay_constant max="45e-12" in_port="ff[0:0].Q" out_port="arithmetic.out[0:0]"/>
</mux>
<mux name="sumout" input="ff[1:1].Q adder.sumout" output="arithmetic.out[1:1]">
<delay_constant max="25e-12" in_port="adder.sumout" out_port="arithmetic.out[1:1]"/>
<delay_constant max="45e-12" in_port="ff[1:1].Q" out_port="arithmetic.out[1:1]"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[2:0]" output="arithmetic[0:0].in"/>
<direct name="carry_in" input="fle.cin" output="arithmetic[0:0].cin">
<pack_pattern name="chain" in_port="fle.cin" out_port="arithmetic[0:0].cin"/>
</direct>
<direct name="carry_out" input="arithmetic[0:0].cout" output="fle.cout">
<pack_pattern name="chain" in_port="arithmetic.cout" out_port="fle.cout"/>
</direct>
<complete name="direct3" input="fle.clk" output="arithmetic.clk"/>
<direct name="direct4" input="arithmetic.out" output="fle.out"/>
</interconnect>
</mode>
<!-- 4-LUT mode definition begin -->
<mode name="n1_lut4">
<!-- Define 4-LUT mode -->
<pb_type name="ble4" num_pb="1">
<input name="in" num_pins="4"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Define LUT -->
<pb_type name="lut4" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="4" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
397e-12
-->
<delay_matrix type="max" in_port="lut4.in" out_port="lut4.out">
261e-12
261e-12
261e-12
261e-12
</delay_matrix>
</pb_type>
<!-- Define flip-flop -->
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<direct name="direct1" input="ble4.in" output="lut4[0:0].in"/>
<direct name="direct2" input="lut4.out" output="ff.D">
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
<pack_pattern name="ble4" in_port="lut4.out" out_port="ff.D"/>
</direct>
<direct name="direct3" input="ble4.clk" output="ff.clk"/>
<mux name="mux1" input="ff.Q lut4.out" output="ble4.out">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="lut4.out" out_port="ble4.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble4.out"/>
</mux>
</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in" output="ble4.in"/>
<direct name="direct2" input="ble4.out" output="fle.out[0:0]"/>
<direct name="direct3" input="fle.clk" output="ble4.clk"/>
</interconnect>
</mode>
<!-- 4-LUT mode definition end -->
</pb_type>
<interconnect>
<!-- We use a full crossbar to get logical equivalence at inputs of CLB
The delays below come from Stratix IV. the delay through a connection block
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
delay within the crossbar is 95 ps.
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
Since all our outputs LUT outputs go to a BLE output, and have a delay of
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
to get the part that should be marked on the crossbar. -->
<complete name="crossbar" input="clb.I fle[3:0].out" output="fle[3:0].in">
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[3:0].in"/>
<delay_constant max="75e-12" in_port="fle[3:0].out" out_port="fle[3:0].in"/>
</complete>
<complete name="clks" input="clb.clk" output="fle[3:0].clk">
</complete>
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
naive specification).
-->
<direct name="clbouts1" input="fle[3:0].out[0:0]" output="clb.O[3:0]"/>
<direct name="clbouts2" input="fle[3:0].out[1:1]" output="clb.O[7:4]"/>
<!-- Carry chain links -->
<direct name="carry_in" input="clb.cin" output="fle[0:0].cin">
<!-- Put all inter-block carry chain delay on this one edge -->
<delay_constant max="0.16e-9" in_port="clb.cin" out_port="fle[0:0].cin"/>
<pack_pattern name="chain" in_port="clb.cin" out_port="fle[0:0].cin"/>
</direct>
<direct name="carry_out" input="fle[3:3].cout" output="clb.cout">
<pack_pattern name="chain" in_port="fle[3:3].cout" out_port="clb.cout"/>
</direct>
<direct name="carry_link" input="fle[2:0].cout" output="fle[3:1].cin">
<pack_pattern name="chain" in_port="fle[2:0].cout" out_port="fle[3:1].cin"/>
</direct>
</interconnect>
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
<!-- Place this general purpose logic block in any unspecified column -->
</pb_type>
<!-- Define general purpose logic block (CLB) ends -->
<!-- Define single-mode dual-port memory begin -->
<pb_type name="memory">
<input name="waddr" num_pins="7"/>
<input name="raddr" num_pins="7"/>
<input name="d_in" num_pins="8"/>
<input name="wen" num_pins="1"/>
<input name="ren" num_pins="1"/>
<output name="d_out" num_pins="8"/>
<clock name="clk" num_pins="1"/>
<!-- Specify the 128x8=1Kbit memory block
Note: the delay numbers are extracted from VPR flagship XML without modification
Should align to the process technology we using to create the 1K dual-port RAM
-->
<mode name="mem_128x8_dp">
<pb_type name="mem_128x8_dp" blif_model=".subckt dual_port_ram" class="memory" num_pb="1">
<input name="waddr" num_pins="7" port_class="address"/>
<input name="raddr" num_pins="7" port_class="address"/>
<input name="d_in" num_pins="8" port_class="data_in"/>
<input name="wen" num_pins="1" port_class="write_en"/>
<input name="ren" num_pins="1" port_class="write_en"/>
<output name="d_out" num_pins="8" port_class="data_out"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="509e-12" port="mem_128x8_dp.waddr" clock="clk"/>
<T_setup value="509e-12" port="mem_128x8_dp.raddr" clock="clk"/>
<T_setup value="509e-12" port="mem_128x8_dp.d_in" clock="clk"/>
<T_setup value="509e-12" port="mem_128x8_dp.wen" clock="clk"/>
<T_setup value="509e-12" port="mem_128x8_dp.ren" clock="clk"/>
<T_clock_to_Q max="1.234e-9" port="mem_128x8_dp.d_out" clock="clk"/>
<power method="pin-toggle">
<port name="clk" energy_per_toggle="17.9e-12"/>
<static_power power_per_instance="0.0"/>
</power>
</pb_type>
<interconnect>
<direct name="waddress" input="memory.waddr" output="mem_128x8_dp.waddr">
<delay_constant max="132e-12" in_port="memory.waddr" out_port="mem_128x8_dp.waddr"/>
</direct>
<direct name="raddress" input="memory.raddr" output="mem_128x8_dp.raddr">
<delay_constant max="132e-12" in_port="memory.raddr" out_port="mem_128x8_dp.raddr"/>
</direct>
<direct name="data_input" input="memory.d_in" output="mem_128x8_dp.d_in">
<delay_constant max="132e-12" in_port="memory.d_in" out_port="mem_128x8_dp.d_in"/>
</direct>
<direct name="writeen" input="memory.wen" output="mem_128x8_dp.wen">
<delay_constant max="132e-12" in_port="memory.wen" out_port="mem_128x8_dp.wen"/>
</direct>
<direct name="readen" input="memory.ren" output="mem_128x8_dp.ren">
<delay_constant max="132e-12" in_port="memory.ren" out_port="mem_128x8_dp.ren"/>
</direct>
<direct name="dataout" input="mem_128x8_dp.d_out" output="memory.d_out">
<delay_constant max="40e-12" in_port="mem_128x8_dp.d_out" out_port="memory.d_out"/>
</direct>
<direct name="clk" input="memory.clk" output="mem_128x8_dp.clk">
</direct>
</interconnect>
</mode>
</pb_type>
<!-- Define single-mode dual-port memory end -->
</complexblocklist>
</architecture>

View File

@ -519,12 +519,12 @@
<input name="cin" num_pins="1"/>
<output name="cout" num_pins="1"/>
<output name="sumout" num_pins="1"/>
<delay_constant max="${ADDER_LUT4_IN2OUT_DELAY}" in_port="adder.a" out_port="adder.sumout"/>
<delay_constant max="${ADDER_LUT4_IN2OUT_DELAY}" in_port="adder.b" out_port="adder.sumout"/>
<delay_constant max="${ADDER_LUT4_CIN2OUT_DELAY}" in_port="adder.cin" out_port="adder.sumout"/>
<delay_constant max="${ADDER_LUT4_IN2COUT_DELAY}" in_port="adder.a" out_port="adder.cout"/>
<delay_constant max="${ADDER_LUT4_IN2COUT_DELAY}" in_port="adder.b" out_port="adder.cout"/>
<delay_constant max="${ADDER_LUT4_CIN2COUT_DELAY}" in_port="adder.cin" out_port="adder.cout"/>
<delay_constant max="${ADDER_IN2OUT_DELAY}" in_port="adder.a" out_port="adder.sumout"/>
<delay_constant max="${ADDER_IN2OUT_DELAY}" in_port="adder.b" out_port="adder.sumout"/>
<delay_constant max="${ADDER_CIN2OUT_DELAY}" in_port="adder.cin" out_port="adder.sumout"/>
<delay_constant max="${ADDER_IN2COUT_DELAY}" in_port="adder.a" out_port="adder.cout"/>
<delay_constant max="${ADDER_IN2COUT_DELAY}" in_port="adder.b" out_port="adder.cout"/>
<delay_constant max="${ADDER_CIN2COUT_DELAY}" in_port="adder.cin" out_port="adder.cout"/>
</pb_type>
<interconnect>
<direct name="direct1" input="fabric.in" output="frac_logic.in"/>
@ -754,12 +754,12 @@
<input name="cin" num_pins="1"/>
<output name="cout" num_pins="1"/>
<output name="sumout" num_pins="1"/>
<delay_constant max="${ADDER_LUT4_IN2OUT_DELAY}" in_port="adder.a" out_port="adder.sumout"/>
<delay_constant max="${ADDER_LUT4_IN2OUT_DELAY}" in_port="adder.b" out_port="adder.sumout"/>
<delay_constant max="${ADDER_LUT4_CIN2OUT_DELAY}" in_port="adder.cin" out_port="adder.sumout"/>
<delay_constant max="${ADDER_LUT4_IN2COUT_DELAY}" in_port="adder.a" out_port="adder.cout"/>
<delay_constant max="${ADDER_LUT4_IN2COUT_DELAY}" in_port="adder.b" out_port="adder.cout"/>
<delay_constant max="${ADDER_LUT4_CIN2COUT_DELAY}" in_port="adder.cin" out_port="adder.cout"/>
<delay_constant max="${ADDER_IN2OUT_DELAY}" in_port="adder.a" out_port="adder.sumout"/>
<delay_constant max="${ADDER_IN2OUT_DELAY}" in_port="adder.b" out_port="adder.sumout"/>
<delay_constant max="${ADDER_CIN2OUT_DELAY}" in_port="adder.cin" out_port="adder.sumout"/>
<delay_constant max="${ADDER_IN2COUT_DELAY}" in_port="adder.a" out_port="adder.cout"/>
<delay_constant max="${ADDER_IN2COUT_DELAY}" in_port="adder.b" out_port="adder.cout"/>
<delay_constant max="${ADDER_CIN2COUT_DELAY}" in_port="adder.cin" out_port="adder.cout"/>
</pb_type>
<!-- Define multi-mode flip-flop -->
<pb_type name="ff" num_pb="1">