2020-02-13 16:27:16 -06:00
/********************************************************************
* This file includes functions to print Verilog modules for a Grid
* ( CLBs , I / Os , heterogeneous blocks etc . )
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
# include <ctime>
# include <vector>
/* Headers from vtrutil library */
# include "vtr_geometry.h"
# include "vtr_log.h"
# include "vtr_assert.h"
# include "vtr_time.h"
/* Headers from vpr library */
# include "vpr_utils.h"
# include "circuit_library_utils.h"
# include "openfpga_reserved_words.h"
# include "openfpga_naming.h"
# include "openfpga_interconnect_types.h"
2020-03-27 17:03:42 -05:00
# include "openfpga_physical_tile_utils.h"
2020-02-13 16:27:16 -06:00
# include "pb_type_utils.h"
# include "pb_graph_utils.h"
# include "module_manager_utils.h"
# include "build_grid_module_utils.h"
# include "build_grid_module_duplicated_pins.h"
# include "build_grid_modules.h"
/* begin namespace openfpga */
namespace openfpga {
/********************************************************************
* Add ports / pins to a grid module
* This function will iterate over all the pins that are defined
* in type_descripter and give a name by its height , side and index
*
* In particular , for I / O grid , only part of the ports on required
* on a specific side .
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
static
void add_grid_module_pb_type_ports ( ModuleManager & module_manager ,
const ModuleId & grid_module ,
t_physical_tile_type_ptr grid_type_descriptor ,
const e_side & border_side ) {
/* Ensure that we have a valid grid_type_descriptor */
VTR_ASSERT ( nullptr ! = grid_type_descriptor ) ;
/* Find the pin side for I/O grids*/
std : : vector < e_side > grid_pin_sides ;
/* For I/O grids, we care only one side
* Otherwise , we will iterate all the 4 sides
*/
if ( true = = is_io_type ( grid_type_descriptor ) ) {
grid_pin_sides . push_back ( find_grid_module_pin_side ( grid_type_descriptor , border_side ) ) ;
} else {
grid_pin_sides = { TOP , RIGHT , BOTTOM , LEFT } ;
}
/* Create a map between pin class type and grid pin direction */
std : : map < e_pin_type , ModuleManager : : e_module_port_type > pin_type2type_map ;
pin_type2type_map [ RECEIVER ] = ModuleManager : : MODULE_INPUT_PORT ;
pin_type2type_map [ DRIVER ] = ModuleManager : : MODULE_OUTPUT_PORT ;
/* Iterate over sides, height and pins */
for ( const e_side & side : grid_pin_sides ) {
for ( int iwidth = 0 ; iwidth < grid_type_descriptor - > width ; + + iwidth ) {
for ( int iheight = 0 ; iheight < grid_type_descriptor - > height ; + + iheight ) {
for ( int ipin = 0 ; ipin < grid_type_descriptor - > num_pins ; + + ipin ) {
if ( true ! = grid_type_descriptor - > pinloc [ iwidth ] [ iheight ] [ side ] [ ipin ] ) {
continue ;
}
/* Reach here, it means this pin is on this side */
int class_id = grid_type_descriptor - > pin_class [ ipin ] ;
e_pin_type pin_class_type = grid_type_descriptor - > class_inf [ class_id ] . type ;
/* Generate the pin name,
* we give a empty coordinate but it will not be used ( see details in the function
*/
vtr : : Point < size_t > dummy_coordinate ;
std : : string port_name = generate_grid_port_name ( dummy_coordinate , iwidth , iheight , side , ipin , false ) ;
BasicPort grid_port ( port_name , 0 , 0 ) ;
/* Add the port to the module */
module_manager . add_port ( grid_module , grid_port , pin_type2type_map [ pin_class_type ] ) ;
}
}
}
}
}
/********************************************************************
* Add module nets to connect ports / pins of a grid module
* to its child modules
* This function will iterate over all the pins that are defined
* in type_descripter and find the corresponding pin in the top
* pb_graph_node of the grid
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
static
void add_grid_module_nets_connect_pb_type_ports ( ModuleManager & module_manager ,
const ModuleId & grid_module ,
const ModuleId & child_module ,
const size_t & child_instance ,
t_physical_tile_type_ptr grid_type_descriptor ,
const e_side & border_side ) {
/* Ensure that we have a valid grid_type_descriptor */
VTR_ASSERT ( nullptr ! = grid_type_descriptor ) ;
for ( t_logical_block_type_ptr lb_type : grid_type_descriptor - > equivalent_sites ) {
t_pb_graph_node * top_pb_graph_node = lb_type - > pb_graph_head ;
VTR_ASSERT ( nullptr ! = top_pb_graph_node ) ;
for ( int iport = 0 ; iport < top_pb_graph_node - > num_input_ports ; + + iport ) {
for ( int ipin = 0 ; ipin < top_pb_graph_node - > num_input_pins [ iport ] ; + + ipin ) {
add_grid_module_net_connect_pb_graph_pin ( module_manager , grid_module ,
child_module , child_instance ,
grid_type_descriptor ,
& ( top_pb_graph_node - > input_pins [ iport ] [ ipin ] ) ,
border_side ,
INPUT2INPUT_INTERC ) ;
}
}
for ( int iport = 0 ; iport < top_pb_graph_node - > num_output_ports ; + + iport ) {
for ( int ipin = 0 ; ipin < top_pb_graph_node - > num_output_pins [ iport ] ; + + ipin ) {
add_grid_module_net_connect_pb_graph_pin ( module_manager , grid_module ,
child_module , child_instance ,
grid_type_descriptor ,
& ( top_pb_graph_node - > output_pins [ iport ] [ ipin ] ) ,
border_side ,
OUTPUT2OUTPUT_INTERC ) ;
}
}
for ( int iport = 0 ; iport < top_pb_graph_node - > num_clock_ports ; + + iport ) {
for ( int ipin = 0 ; ipin < top_pb_graph_node - > num_clock_pins [ iport ] ; + + ipin ) {
add_grid_module_net_connect_pb_graph_pin ( module_manager , grid_module ,
child_module , child_instance ,
grid_type_descriptor ,
& ( top_pb_graph_node - > clock_pins [ iport ] [ ipin ] ) ,
border_side ,
INPUT2INPUT_INTERC ) ;
}
}
}
}
2020-04-05 18:26:44 -05:00
/********************************************************************
2020-04-06 21:44:00 -05:00
* Add module nets between primitive module and its internal circuit module
* This is only applicable to the primitive module of a grid
2020-04-05 18:26:44 -05:00
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
static
void add_primitive_module_fpga_global_io_port ( ModuleManager & module_manager ,
const ModuleId & primitive_module ,
const ModuleId & logic_module ,
const size_t & logic_instance_id ,
const ModuleManager : : e_module_port_type & module_io_port_type ,
const CircuitLibrary & circuit_lib ,
const CircuitModelId & primitive_model ,
const CircuitPortId & circuit_port ) {
BasicPort module_port ( generate_fpga_global_io_port_name ( std : : string ( GIO_INOUT_PREFIX ) , circuit_lib , primitive_model , circuit_port ) , circuit_lib . port_size ( circuit_port ) ) ;
ModulePortId primitive_io_port_id = module_manager . add_port ( primitive_module , module_port , module_io_port_type ) ;
ModulePortId logic_io_port_id = module_manager . find_module_port ( logic_module , circuit_lib . port_prefix ( circuit_port ) ) ;
BasicPort logic_io_port = module_manager . module_port ( logic_module , logic_io_port_id ) ;
VTR_ASSERT ( logic_io_port . get_width ( ) = = module_port . get_width ( ) ) ;
/* Wire the GPIO port form primitive_module to the logic module!*/
for ( size_t pin_id = 0 ; pin_id < module_port . pins ( ) . size ( ) ; + + pin_id ) {
ModuleNetId net = module_manager . create_module_net ( primitive_module ) ;
if ( ( ModuleManager : : MODULE_GPIO_PORT = = module_io_port_type )
| | ( ModuleManager : : MODULE_GPIN_PORT = = module_io_port_type ) ) {
module_manager . add_module_net_source ( primitive_module , net , primitive_module , 0 , primitive_io_port_id , module_port . pins ( ) [ pin_id ] ) ;
module_manager . add_module_net_sink ( primitive_module , net , logic_module , logic_instance_id , logic_io_port_id , logic_io_port . pins ( ) [ pin_id ] ) ;
} else {
VTR_ASSERT ( ModuleManager : : MODULE_GPOUT_PORT = = module_io_port_type ) ;
module_manager . add_module_net_source ( primitive_module , net , logic_module , logic_instance_id , logic_io_port_id , logic_io_port . pins ( ) [ pin_id ] ) ;
module_manager . add_module_net_sink ( primitive_module , net , primitive_module , 0 , primitive_io_port_id , module_port . pins ( ) [ pin_id ] ) ;
}
}
}
2020-02-13 16:27:16 -06:00
/********************************************************************
* Print Verilog modules of a primitive node in the pb_graph_node graph
* This generic function can support all the different types of primitive nodes
* i . e . , Look - Up Tables ( LUTs ) , Flip - flops ( FFs ) and hard logic blocks such as adders .
*
* The Verilog module will consist of two parts :
* 1. Logic module of the primitive node
* This module performs the logic function of the block
* 2. Memory module of the primitive node
* This module stores the configuration bits for the logic module
* if the logic module is a programmable resource , such as LUT
*
* Verilog module structure :
*
* Primitive block
* + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +
* | |
* | + - - - - - - - - - + + - - - - - - - - - + |
* in | - - - - - > | | - - - > | | < - - - - - - | configuration lines
* | | Logic | . . . | Memory | |
* out | < - - - - - | | - - - > | | |
* | + - - - - - - - - - + + - - - - - - - - - + |
* | |
* + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +
*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
static
void build_primitive_block_module ( ModuleManager & module_manager ,
const VprDeviceAnnotation & device_annotation ,
const CircuitLibrary & circuit_lib ,
const e_config_protocol_type & sram_orgz_type ,
const CircuitModelId & sram_model ,
2020-02-13 16:38:26 -06:00
t_pb_graph_node * primitive_pb_graph_node ,
const bool & verbose ) {
2020-02-13 16:27:16 -06:00
/* Ensure a valid pb_graph_node */
VTR_ASSERT ( nullptr ! = primitive_pb_graph_node ) ;
/* Find the circuit model id linked to the pb_graph_node */
const CircuitModelId & primitive_model = device_annotation . pb_type_circuit_model ( primitive_pb_graph_node - > pb_type ) ;
/* Generate the module name for this primitive pb_graph_node*/
std : : string primitive_module_name = generate_physical_block_module_name ( primitive_pb_graph_node - > pb_type ) ;
2020-02-13 16:38:26 -06:00
VTR_LOGV ( verbose ,
" Building module '%s'... " ,
primitive_module_name . c_str ( ) ) ;
2020-02-13 16:27:16 -06:00
/* Create a module of the primitive LUT and register it to module manager */
ModuleId primitive_module = module_manager . add_module ( primitive_module_name ) ;
/* Ensure that the module has been created and thus unique! */
VTR_ASSERT ( ModuleId : : INVALID ( ) ! = primitive_module ) ;
/* Note: to cooperate with the pb_type hierarchy and connections, we add the port of primitive pb_type here.
* Since we have linked pb_type ports to circuit models when setting up FPGA - X2P ,
* no ports of the circuit model will be missing here
*/
add_primitive_pb_type_ports_to_module_manager ( module_manager , primitive_module ,
primitive_pb_graph_node - > pb_type , device_annotation ) ;
/* Add configuration ports */
/* Shared SRAM ports*/
size_t num_shared_config_bits = find_circuit_num_shared_config_bits ( circuit_lib , primitive_model , sram_orgz_type ) ;
if ( 0 < num_shared_config_bits ) {
/* Check: this SRAM organization type must be memory-bank ! */
VTR_ASSERT ( CONFIG_MEM_MEMORY_BANK = = sram_orgz_type ) ;
/* Generate a list of ports */
add_reserved_sram_ports_to_module_manager ( module_manager , primitive_module ,
num_shared_config_bits ) ;
}
/* Regular (independent) SRAM ports */
size_t num_config_bits = find_circuit_num_config_bits ( circuit_lib , primitive_model ) ;
if ( 0 < num_config_bits ) {
add_sram_ports_to_module_manager ( module_manager , primitive_module ,
circuit_lib , sram_model , sram_orgz_type ,
num_config_bits ) ;
}
/* Find the module id in the module manager */
ModuleId logic_module = module_manager . find_module ( circuit_lib . model_name ( primitive_model ) ) ;
VTR_ASSERT ( ModuleId : : INVALID ( ) ! = logic_module ) ;
size_t logic_instance_id = module_manager . num_instance ( primitive_module , logic_module ) ;
/* Add the logic module as a child of primitive module */
module_manager . add_child_module ( primitive_module , logic_module ) ;
/* Add nets to connect the logic model ports to pb_type ports */
add_primitive_pb_type_module_nets ( module_manager , primitive_module ,
logic_module , logic_instance_id ,
circuit_lib , primitive_pb_graph_node - > pb_type ,
device_annotation ) ;
/* Add the associated memory module as a child of primitive module */
std : : string memory_module_name = generate_memory_module_name ( circuit_lib , primitive_model , sram_model , std : : string ( MEMORY_MODULE_POSTFIX ) ) ;
ModuleId memory_module = module_manager . find_module ( memory_module_name ) ;
/* If there is no memory module required, we can skip the assocated net addition */
if ( ModuleId : : INVALID ( ) ! = memory_module ) {
size_t memory_instance_id = module_manager . num_instance ( primitive_module , memory_module ) ;
/* Add the memory module as a child of primitive module */
module_manager . add_child_module ( primitive_module , memory_module ) ;
/* Set an instance name to bind to a block in bitstream generation */
module_manager . set_child_instance_name ( primitive_module , memory_module , memory_instance_id , memory_module_name ) ;
/* Add nets to connect regular and mode-select SRAM ports to the SRAM port of memory module */
add_module_nets_between_logic_and_memory_sram_bus ( module_manager , primitive_module ,
logic_module , logic_instance_id ,
memory_module , memory_instance_id ,
circuit_lib , primitive_model ) ;
/* Record memory-related information */
module_manager . add_configurable_child ( primitive_module , memory_module , memory_instance_id ) ;
}
2020-04-13 13:58:44 -05:00
2020-02-13 16:27:16 -06:00
/* Add all the nets to connect configuration ports from memory module to primitive modules
* This is a one - shot addition that covers all the memory modules in this primitive module !
*/
2020-03-08 15:58:56 -05:00
if ( 0 < module_manager . configurable_children ( primitive_module ) . size ( ) ) {
2020-02-13 16:27:16 -06:00
add_module_nets_memory_config_bus ( module_manager , primitive_module ,
sram_orgz_type , circuit_lib . design_tech_type ( sram_model ) ) ;
}
/* Add global ports to the pb_module:
* This is a much easier job after adding sub modules ( instances ) ,
* we just need to find all the global ports from the child modules and build a list of it
*/
add_module_global_ports_from_child_modules ( module_manager , primitive_module ) ;
/* Find the inout ports required by the primitive node, and add them to the module
* This is mainly due to the I / O blocks , which have inout ports for the top - level fabric
*/
2020-04-08 17:54:08 -05:00
for ( const auto & port : circuit_lib . model_global_ports ( primitive_model , false ) ) {
if ( ( CIRCUIT_MODEL_PORT_INOUT = = circuit_lib . port_type ( port ) )
& & ( true = = circuit_lib . port_is_io ( port ) ) ) {
2020-04-05 18:26:44 -05:00
add_primitive_module_fpga_global_io_port ( module_manager , primitive_module ,
logic_module , logic_instance_id ,
ModuleManager : : MODULE_GPIO_PORT ,
circuit_lib ,
primitive_model ,
port ) ;
2020-04-08 17:54:08 -05:00
} else if ( ( CIRCUIT_MODEL_PORT_INPUT = = circuit_lib . port_type ( port ) )
& & ( true = = circuit_lib . port_is_io ( port ) ) ) {
2020-04-05 18:26:44 -05:00
add_primitive_module_fpga_global_io_port ( module_manager , primitive_module ,
logic_module , logic_instance_id ,
ModuleManager : : MODULE_GPIN_PORT ,
circuit_lib ,
primitive_model ,
port ) ;
} else if ( CIRCUIT_MODEL_PORT_OUTPUT = = circuit_lib . port_type ( port ) ) {
add_primitive_module_fpga_global_io_port ( module_manager , primitive_module ,
logic_module , logic_instance_id ,
ModuleManager : : MODULE_GPOUT_PORT ,
circuit_lib ,
primitive_model ,
port ) ;
2020-02-13 16:27:16 -06:00
}
}
2020-02-13 16:38:26 -06:00
VTR_LOGV ( verbose , " Done \n " ) ;
2020-02-13 16:27:16 -06:00
}
/********************************************************************
* This function add a net for a pin - to - pin connection defined in pb_graph
* It supports two cases for the pin - to - pin connection
* 1. The net source is a pb_graph_pin while the net sink is a pin of an interconnection
* 2. The net source is a pin of an interconnection while the net sink a pb_graph_pin
* The type is enabled by an argument pin2pin_interc_type
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
static
void add_module_pb_graph_pin2pin_net ( ModuleManager & module_manager ,
const ModuleId & pb_module ,
const ModuleId & interc_module ,
const size_t & interc_instance ,
const std : : string & interc_port_name ,
const size_t & interc_pin_id ,
t_pb_graph_pin * pb_graph_pin ,
const enum e_pin2pin_interc_type & pin2pin_interc_type ) {
ModuleNetId pin2pin_net = module_manager . create_module_net ( pb_module ) ;
/* Find port and pin ids for the module, which is the parent of pb_graph_pin */
t_pb_type * pin_pb_type = pb_graph_pin - > parent_node - > pb_type ;
/* Find the module contains the source pin */
ModuleId pin_pb_type_module = module_manager . find_module ( generate_physical_block_module_name ( pin_pb_type ) ) ;
VTR_ASSERT ( true = = module_manager . valid_module_id ( pin_pb_type_module ) ) ;
size_t pin_pb_type_instance = 0 ; /* Deposite the instance with a zero, which is the default value is the source module is actually pb_module itself */
if ( pin_pb_type_module ! = pb_module ) {
pin_pb_type_instance = pb_graph_pin - > parent_node - > placement_index ;
/* Ensure this is an valid instance */
VTR_ASSERT ( pin_pb_type_instance < module_manager . num_instance ( pb_module , pin_pb_type_module ) ) ;
}
ModulePortId pin_module_port_id = module_manager . find_module_port ( pin_pb_type_module , generate_pb_type_port_name ( pb_graph_pin - > port ) ) ;
VTR_ASSERT ( true = = module_manager . valid_module_port_id ( pin_pb_type_module , pin_module_port_id ) ) ;
size_t pin_module_pin_id = pb_graph_pin - > pin_number ;
/* Ensure this is an valid pin index */
VTR_ASSERT ( pin_module_pin_id < module_manager . module_port ( pin_pb_type_module , pin_module_port_id ) . get_width ( ) ) ;
/* Find port and pin ids for the interconnection module */
ModulePortId interc_port_id = module_manager . find_module_port ( interc_module , interc_port_name ) ;
VTR_ASSERT ( true = = module_manager . valid_module_port_id ( interc_module , interc_port_id ) ) ;
/* Ensure this is an valid pin index */
VTR_ASSERT ( interc_pin_id < module_manager . module_port ( interc_module , interc_port_id ) . get_width ( ) ) ;
/* Add net sources and sinks:
* For input - to - input connection , net_source is pin_graph_pin , while net_sink is interc pin
* For output - to - output connection , net_source is interc pin , while net_sink is pin_graph pin
*/
switch ( pin2pin_interc_type ) {
case INPUT2INPUT_INTERC :
module_manager . add_module_net_source ( pb_module , pin2pin_net , pin_pb_type_module , pin_pb_type_instance , pin_module_port_id , pin_module_pin_id ) ;
module_manager . add_module_net_sink ( pb_module , pin2pin_net , interc_module , interc_instance , interc_port_id , interc_pin_id ) ;
break ;
case OUTPUT2OUTPUT_INTERC :
module_manager . add_module_net_source ( pb_module , pin2pin_net , interc_module , interc_instance , interc_port_id , interc_pin_id ) ;
module_manager . add_module_net_sink ( pb_module , pin2pin_net , pin_pb_type_module , pin_pb_type_instance , pin_module_port_id , pin_module_pin_id ) ;
break ;
default :
2020-02-13 17:05:23 -06:00
VTR_LOGF_ERROR ( __FILE__ , __LINE__ , " Invalid pin-to-pin interconnection type! \n " ) ;
2020-02-13 16:27:16 -06:00
exit ( 1 ) ;
}
}
/********************************************************************
* We check output_pins of cur_pb_graph_node and its the input_edges
* Built the interconnections between outputs of cur_pb_graph_node and outputs of child_pb_graph_node
* src_pb_graph_node . [ in | out ] _pins - - - - - - - - - - - - - - - - - > des_pb_graph_node . [ in | out ] pins
* / | \
* |
* input_pins , edges , output_pins
*
* This function does the following task :
* 1. identify pin interconnection type ,
* 2. Identify the number of fan - in ( Consider interconnection edges of only selected mode )
* 3. Add mux / direct connection as a child module to pb_module
* 4. Add nets related to the mux / direction
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
static
void add_module_pb_graph_pin_interc ( ModuleManager & module_manager ,
const ModuleId & pb_module ,
std : : vector < ModuleId > & memory_modules ,
std : : vector < size_t > & memory_instances ,
const VprDeviceAnnotation & device_annotation ,
const CircuitLibrary & circuit_lib ,
t_pb_graph_pin * des_pb_graph_pin ,
t_mode * physical_mode ) {
/* Find the number of fan-in and detailed interconnection information
* related to the destination pb_graph_pin
*/
t_interconnect * cur_interc = pb_graph_pin_interc ( des_pb_graph_pin , physical_mode ) ;
size_t fan_in = pb_graph_pin_inputs ( des_pb_graph_pin , cur_interc ) . size ( ) ;
/* If no interconnection is needed, we can return early */
if ( ( nullptr = = cur_interc ) | | ( 0 = = fan_in ) ) {
return ;
}
/* Initialize the interconnection type that will be physically implemented in module */
enum e_interconnect interc_type = device_annotation . interconnect_physical_type ( cur_interc ) ;
const CircuitModelId & interc_circuit_model = device_annotation . interconnect_circuit_model ( cur_interc ) ;
/* Find input ports of the wire module */
std : : vector < CircuitPortId > interc_model_inputs = circuit_lib . model_ports_by_type ( interc_circuit_model , CIRCUIT_MODEL_PORT_INPUT , true ) ; /* the last argument to guarantee that we ignore any global inputs */
/* Find output ports of the wire module */
std : : vector < CircuitPortId > interc_model_outputs = circuit_lib . model_ports_by_type ( interc_circuit_model , CIRCUIT_MODEL_PORT_OUTPUT , true ) ; /* the last argument to guarantee that we ignore any global ports */
/* Ensure that we have only 1 input port and 1 output port, this is valid for both wire and MUX */
VTR_ASSERT ( 1 = = interc_model_inputs . size ( ) ) ;
VTR_ASSERT ( 1 = = interc_model_outputs . size ( ) ) ;
/* Branch on the type of physical implementation,
* We add instances of programmable interconnection
*/
switch ( interc_type ) {
case DIRECT_INTERC : {
/* Ensure direct interc has only one fan-in */
VTR_ASSERT ( 1 = = fan_in ) ;
/* For more than one mode defined, the direct interc has more than one input_edge ,
* We need to find which edge is connected the pin we want
*/
t_pb_graph_pin * src_pb_graph_pin = pb_graph_pin_inputs ( des_pb_graph_pin , cur_interc ) [ 0 ] ;
/* Ensure that circuit model is a wire */
VTR_ASSERT ( CIRCUIT_MODEL_WIRE = = circuit_lib . model_type ( interc_circuit_model ) ) ;
/* Find the wire module in the module manager */
ModuleId wire_module = module_manager . find_module ( circuit_lib . model_name ( interc_circuit_model ) ) ;
VTR_ASSERT ( true = = module_manager . valid_module_id ( wire_module ) ) ;
/* Get the instance id and add an instance of wire */
size_t wire_instance = module_manager . num_instance ( pb_module , wire_module ) ;
module_manager . add_child_module ( pb_module , wire_module ) ;
2020-03-03 13:29:58 -06:00
/* Give an instance name: this name should be consistent with the block name given in SDC generator,
* If you want to bind the SDC generation to modules
*/
std : : string wire_instance_name = generate_instance_name ( module_manager . module_name ( wire_module ) , wire_instance ) ;
module_manager . set_child_instance_name ( pb_module , wire_module , wire_instance , wire_instance_name ) ;
2020-02-13 16:27:16 -06:00
/* Ensure input and output ports of the wire model has only 1 pin respectively */
VTR_ASSERT ( 1 = = circuit_lib . port_size ( interc_model_inputs [ 0 ] ) ) ;
VTR_ASSERT ( 1 = = circuit_lib . port_size ( interc_model_outputs [ 0 ] ) ) ;
/* Add nets to connect the wires to ports of pb_module */
/* First net is to connect input of src_pb_graph_node to input of the wire module */
add_module_pb_graph_pin2pin_net ( module_manager , pb_module ,
wire_module , wire_instance ,
circuit_lib . port_prefix ( interc_model_inputs [ 0 ] ) ,
0 , /* wire input port has only 1 pin */
src_pb_graph_pin ,
INPUT2INPUT_INTERC ) ;
/* Second net is to connect output of the wire module to output of des_pb_graph_pin */
add_module_pb_graph_pin2pin_net ( module_manager , pb_module ,
wire_module , wire_instance ,
circuit_lib . port_prefix ( interc_model_outputs [ 0 ] ) ,
0 , /* wire output port has only 1 pin */
des_pb_graph_pin ,
OUTPUT2OUTPUT_INTERC ) ;
break ;
}
case COMPLETE_INTERC :
case MUX_INTERC : {
/* Check: MUX should have at least 2 fan_in */
VTR_ASSERT ( ( 2 = = fan_in ) | | ( 2 < fan_in ) ) ;
/* Ensure that circuit model is a MUX */
VTR_ASSERT ( CIRCUIT_MODEL_MUX = = circuit_lib . model_type ( interc_circuit_model ) ) ;
/* Find the wire module in the module manager */
ModuleId mux_module = module_manager . find_module ( generate_mux_subckt_name ( circuit_lib , interc_circuit_model , fan_in , std : : string ( ) ) ) ;
VTR_ASSERT ( true = = module_manager . valid_module_id ( mux_module ) ) ;
/* Instanciate the MUX */
size_t mux_instance = module_manager . num_instance ( pb_module , mux_module ) ;
module_manager . add_child_module ( pb_module , mux_module ) ;
/* Give an instance name: this name should be consistent with the block name given in SDC generator,
* If you want to bind the SDC generation to modules
*/
std : : string mux_instance_name = generate_pb_mux_instance_name ( GRID_MUX_INSTANCE_PREFIX , des_pb_graph_pin , std : : string ( " " ) ) ;
module_manager . set_child_instance_name ( pb_module , mux_module , mux_instance , mux_instance_name ) ;
/* Instanciate a memory module for the MUX */
std : : string mux_mem_module_name = generate_mux_subckt_name ( circuit_lib ,
interc_circuit_model ,
fan_in ,
std : : string ( MEMORY_MODULE_POSTFIX ) ) ;
ModuleId mux_mem_module = module_manager . find_module ( mux_mem_module_name ) ;
VTR_ASSERT ( true = = module_manager . valid_module_id ( mux_mem_module ) ) ;
size_t mux_mem_instance = module_manager . num_instance ( pb_module , mux_mem_module ) ;
module_manager . add_child_module ( pb_module , mux_mem_module ) ;
/* Give an instance name: this name should be consistent with the block name given in bitstream manager,
* If you want to bind the bitstream generation to modules
*/
std : : string mux_mem_instance_name = generate_pb_memory_instance_name ( GRID_MEM_INSTANCE_PREFIX , des_pb_graph_pin , std : : string ( " " ) ) ;
module_manager . set_child_instance_name ( pb_module , mux_mem_module , mux_mem_instance , mux_mem_instance_name ) ;
/* Add this MUX as a configurable child to the pb_module */
module_manager . add_configurable_child ( pb_module , mux_mem_module , mux_mem_instance ) ;
/* Add nets to connect SRAM ports of the MUX to the SRAM port of memory module */
add_module_nets_between_logic_and_memory_sram_bus ( module_manager , pb_module ,
mux_module , mux_instance ,
mux_mem_module , mux_mem_instance ,
circuit_lib , interc_circuit_model ) ;
/* Update memory modules and memory instance list */
memory_modules . push_back ( mux_mem_module ) ;
memory_instances . push_back ( mux_mem_instance ) ;
/* Ensure output port of the MUX model has only 1 pin,
* while the input port size is dependent on the architecture conext ,
* no constaints on the circuit model definition
*/
VTR_ASSERT ( 1 = = circuit_lib . port_size ( interc_model_outputs [ 0 ] ) ) ;
/* Create nets to wire between the MUX and PB module */
/* Add a net to wire the inputs of the multiplexer to its source pb_graph_pin inside pb_module
* Here is a tricky part .
* Not every input edges from the destination pb_graph_pin is used in the physical_model of pb_type
* So , we will skip these input edges when building nets
*/
size_t mux_input_pin_id = 0 ;
for ( t_pb_graph_pin * src_pb_graph_pin : pb_graph_pin_inputs ( des_pb_graph_pin , cur_interc ) ) {
/* Add a net, set its source and sink */
add_module_pb_graph_pin2pin_net ( module_manager , pb_module ,
mux_module , mux_instance ,
circuit_lib . port_prefix ( interc_model_inputs [ 0 ] ) ,
mux_input_pin_id ,
src_pb_graph_pin ,
INPUT2INPUT_INTERC ) ;
mux_input_pin_id + + ;
}
/* Ensure all the fan_in has been covered */
VTR_ASSERT ( mux_input_pin_id = = fan_in ) ;
/* Add a net to wire the output of the multiplexer to des_pb_graph_pin */
add_module_pb_graph_pin2pin_net ( module_manager , pb_module ,
mux_module , mux_instance ,
circuit_lib . port_prefix ( interc_model_outputs [ 0 ] ) ,
0 , /* MUX should have only 1 pin in its output port */
des_pb_graph_pin ,
OUTPUT2OUTPUT_INTERC ) ;
break ;
}
default :
2020-02-13 17:05:23 -06:00
VTR_LOGF_ERROR ( __FILE__ , __LINE__ , " Invalid interconnection type for %s [at Architecture XML LINE%d]! \n " ,
2020-02-13 16:27:16 -06:00
cur_interc - > name , cur_interc - > line_num ) ;
exit ( 1 ) ;
}
}
/********************************************************************
* Add modules and nets for programmable / non - programmable interconnections
* which end to a port of pb_module
* This function will add the following elements to a module
* 1. Instances of direct connections
* 2. Instances of programmable routing multiplexers
* 3. nets to connect direct connections / multiplexer
*
* + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +
* |
* | + - - - - - - - - - - - - - - + + - - - - - - - - - - - - +
* | - - - > | | - - - > | |
* | . . . | Multiplexers | . . . | |
* | - - - > | | - - - > | |
* | + - - - - - - - - - - - - - - + | des_pb_ |
* | | graph_node |
* | + - - - - - - - - - - - - - - + | |
* | - - - > | | - - - > | |
* | . . . | Direct | . . . | |
* | - - - > | Connections | - - - > | |
* | + - - - - - - - - - - - - - - + + - - - - - - - - - - - - +
* |
* + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +
*
* Note : this function should be run after ALL the child pb_modules
* have been added to the pb_module and ALL the ports defined
* in pb_type have been added to the pb_module ! ! !
*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
static
void add_module_pb_graph_port_interc ( ModuleManager & module_manager ,
const ModuleId & pb_module ,
std : : vector < ModuleId > & memory_modules ,
std : : vector < size_t > & memory_instances ,
const VprDeviceAnnotation & device_annotation ,
const CircuitLibrary & circuit_lib ,
t_pb_graph_node * des_pb_graph_node ,
const e_circuit_pb_port_type & pb_port_type ,
t_mode * physical_mode ) {
switch ( pb_port_type ) {
case CIRCUIT_PB_PORT_INPUT : {
for ( int iport = 0 ; iport < des_pb_graph_node - > num_input_ports ; + + iport ) {
for ( int ipin = 0 ; ipin < des_pb_graph_node - > num_input_pins [ iport ] ; + + ipin ) {
/* Get the selected edge of current pin*/
add_module_pb_graph_pin_interc ( module_manager , pb_module ,
memory_modules , memory_instances ,
device_annotation ,
circuit_lib ,
& ( des_pb_graph_node - > input_pins [ iport ] [ ipin ] ) ,
physical_mode ) ;
}
}
break ;
}
case CIRCUIT_PB_PORT_OUTPUT : {
for ( int iport = 0 ; iport < des_pb_graph_node - > num_output_ports ; + + iport ) {
for ( int ipin = 0 ; ipin < des_pb_graph_node - > num_output_pins [ iport ] ; + + ipin ) {
add_module_pb_graph_pin_interc ( module_manager , pb_module ,
memory_modules , memory_instances ,
device_annotation ,
circuit_lib ,
& ( des_pb_graph_node - > output_pins [ iport ] [ ipin ] ) ,
physical_mode ) ;
}
}
break ;
}
case CIRCUIT_PB_PORT_CLOCK : {
for ( int iport = 0 ; iport < des_pb_graph_node - > num_clock_ports ; + + iport ) {
for ( int ipin = 0 ; ipin < des_pb_graph_node - > num_clock_pins [ iport ] ; + + ipin ) {
add_module_pb_graph_pin_interc ( module_manager , pb_module ,
memory_modules , memory_instances ,
device_annotation ,
circuit_lib ,
& ( des_pb_graph_node - > clock_pins [ iport ] [ ipin ] ) ,
physical_mode ) ;
}
}
break ;
}
default :
2020-02-13 17:05:23 -06:00
VTR_LOGF_ERROR ( __FILE__ , __LINE__ , " Invalid pb port type! \n " ) ;
2020-02-13 16:27:16 -06:00
exit ( 1 ) ;
}
}
/********************************************************************
* TODO :
* Add modules and nets for programmable / non - programmable interconnections
* inside a module of pb_type
* This function will add the following elements to a module
* 1. Instances of direct connections
* 2. Instances of programmable routing multiplexers
* 3. nets to connect direct connections / multiplexer
*
* Pb_module
* + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +
* | |
* | + - - - - - - - - - - - - - - + + - - - - - - - - - - - - + + - - - - - - - - - - - - - - + |
* | - - - > | | - - - > | | - - - > | | - - - > |
* | . . . | Multiplexers | . . . | | . . . | Multiplexers | . . . |
* | - - - > | | - - - > | | - - - > | | - - - > |
* | + - - - - - - - - - - - - - - + | Child | + - - - - - - - - - - - - - - + |
* | | Pb_modules | |
* | + - - - - - - - - - - - - - - + | | + - - - - - - - - - - - - - - + |
* | - - - > | | - - - > | | - - - > | | - - - > |
* | . . . | Direct | . . . | | . . . | Direct | . . . |
* | - - - > | Connections | - - - > | | - - - > | Connections | - - - > |
* | + - - - - - - - - - - - - - - + + - - - - - - - - - - - - + + - - - - - - - - - - - - - - + |
* | |
* + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +
*
* Note : this function should be run after ALL the child pb_modules
* have been added to the pb_module and ALL the ports defined
* in pb_type have been added to the pb_module ! ! !
*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
static
void add_module_pb_graph_interc ( ModuleManager & module_manager ,
const ModuleId & pb_module ,
std : : vector < ModuleId > & memory_modules ,
std : : vector < size_t > & memory_instances ,
const VprDeviceAnnotation & device_annotation ,
const CircuitLibrary & circuit_lib ,
t_pb_graph_node * physical_pb_graph_node ,
const int & physical_mode_index ) {
/* Check cur_pb_graph_node*/
VTR_ASSERT ( nullptr ! = physical_pb_graph_node ) ;
/* Assign physical mode */
t_mode * physical_mode = & ( physical_pb_graph_node - > pb_type - > modes [ physical_mode_index ] ) ;
/* We check output_pins of cur_pb_graph_node and its the input_edges
* Built the interconnections between outputs of cur_pb_graph_node and outputs of child_pb_graph_node
* child_pb_graph_node . output_pins - - - - - - - - - - - - - - - - - > cur_pb_graph_node . outpins
* / | \
* |
* input_pins , edges , output_pins
*/
add_module_pb_graph_port_interc ( module_manager , pb_module ,
memory_modules , memory_instances ,
device_annotation ,
circuit_lib ,
physical_pb_graph_node ,
CIRCUIT_PB_PORT_OUTPUT ,
physical_mode ) ;
/* We check input_pins of child_pb_graph_node and its the input_edges
* Built the interconnections between inputs of cur_pb_graph_node and inputs of child_pb_graph_node
* cur_pb_graph_node . input_pins - - - - - - - - - - - - - - - - - > child_pb_graph_node . input_pins
* / | \
* |
* input_pins , edges , output_pins
*/
for ( int child = 0 ; child < physical_pb_graph_node - > pb_type - > modes [ physical_mode_index ] . num_pb_type_children ; + + child ) {
for ( int inst = 0 ; inst < physical_pb_graph_node - > pb_type - > modes [ physical_mode_index ] . pb_type_children [ child ] . num_pb ; + + inst ) {
t_pb_graph_node * child_pb_graph_node = & ( physical_pb_graph_node - > child_pb_graph_nodes [ physical_mode_index ] [ child ] [ inst ] ) ;
/* For each child_pb_graph_node input pins*/
add_module_pb_graph_port_interc ( module_manager , pb_module ,
memory_modules , memory_instances ,
device_annotation ,
circuit_lib ,
child_pb_graph_node ,
CIRCUIT_PB_PORT_INPUT ,
physical_mode ) ;
/* For each child_pb_graph_node clock pins*/
add_module_pb_graph_port_interc ( module_manager , pb_module ,
memory_modules , memory_instances ,
device_annotation ,
circuit_lib ,
child_pb_graph_node ,
CIRCUIT_PB_PORT_CLOCK ,
physical_mode ) ;
}
}
}
/********************************************************************
* Print Verilog modules of physical blocks inside a grid ( CLB , I / O . etc . )
* This function will traverse the graph of complex logic block ( t_pb_graph_node )
* in a recursive way , using a Depth First Search ( DFS ) algorithm .
* As such , primitive physical blocks ( LUTs , FFs , etc . ) , leaf node of the pb_graph
* will be printed out first , while the top - level will be printed out in the last
*
* Note : this function will print a unique Verilog module for each type of
* t_pb_graph_node , i . e . , t_pb_type , in the graph , in order to enable highly
* hierarchical Verilog organization as well as simplify the Verilog file sizes .
*
* Note : DFS is the right way . Do NOT use BFS .
* DFS can guarantee that all the sub - modules can be registered properly
* to its parent in module manager
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
static
void rec_build_logical_tile_modules ( ModuleManager & module_manager ,
const VprDeviceAnnotation & device_annotation ,
const CircuitLibrary & circuit_lib ,
const MuxLibrary & mux_lib ,
const e_config_protocol_type & sram_orgz_type ,
const CircuitModelId & sram_model ,
2020-02-13 16:38:26 -06:00
t_pb_graph_node * physical_pb_graph_node ,
const bool & verbose ) {
2020-02-13 16:27:16 -06:00
/* Check cur_pb_graph_node*/
VTR_ASSERT ( nullptr ! = physical_pb_graph_node ) ;
/* Get the pb_type definition related to the node */
t_pb_type * physical_pb_type = physical_pb_graph_node - > pb_type ;
/* Find the mode that physical implementation of a pb_type */
t_mode * physical_mode = device_annotation . physical_mode ( physical_pb_type ) ;
/* For non-leaf node in the pb_type graph:
* Recursively Depth - First Generate all the child pb_type at the level
*/
if ( false = = is_primitive_pb_type ( physical_pb_type ) ) {
for ( int ipb = 0 ; ipb < physical_mode - > num_pb_type_children ; + + ipb ) {
/* Go recursive to visit the children */
rec_build_logical_tile_modules ( module_manager , device_annotation ,
circuit_lib , mux_lib ,
sram_orgz_type , sram_model ,
2020-02-13 16:38:26 -06:00
& ( physical_pb_graph_node - > child_pb_graph_nodes [ physical_mode - > index ] [ ipb ] [ 0 ] ) ,
verbose ) ;
2020-02-13 16:27:16 -06:00
}
}
/* For leaf node, a primitive Verilog module will be generated */
if ( true = = is_primitive_pb_type ( physical_pb_type ) ) {
build_primitive_block_module ( module_manager , device_annotation ,
circuit_lib ,
sram_orgz_type , sram_model ,
2020-02-13 16:38:26 -06:00
physical_pb_graph_node ,
verbose ) ;
2020-02-13 16:27:16 -06:00
/* Finish for primitive node, return */
return ;
}
/* Generate the name of the Verilog module for this pb_type */
std : : string pb_module_name = generate_physical_block_module_name ( physical_pb_type ) ;
2020-02-13 16:38:26 -06:00
VTR_LOGV ( verbose ,
" Building module '%s'... " ,
pb_module_name . c_str ( ) ) ;
2020-02-13 16:27:16 -06:00
/* Register the Verilog module in module manager */
ModuleId pb_module = module_manager . add_module ( pb_module_name ) ;
VTR_ASSERT ( true = = module_manager . valid_module_id ( pb_module ) ) ;
/* Add ports to the Verilog module */
add_pb_type_ports_to_module_manager ( module_manager , pb_module , physical_pb_type ) ;
/* Vectors to record all the memory modules have been added
* They are used to add module nets of configuration bus
*/
std : : vector < ModuleId > memory_modules ;
std : : vector < size_t > memory_instances ;
/* Add all the child Verilog modules as instances */
for ( int ichild = 0 ; ichild < physical_mode - > num_pb_type_children ; + + ichild ) {
/* Get the name and module id for this child pb_type */
std : : string child_pb_module_name = generate_physical_block_module_name ( & ( physical_mode - > pb_type_children [ ichild ] ) ) ;
ModuleId child_pb_module = module_manager . find_module ( child_pb_module_name ) ;
/* We must have one valid id! */
VTR_ASSERT ( true = = module_manager . valid_module_id ( child_pb_module ) ) ;
/* Each child may exist multiple times in the hierarchy*/
for ( int inst = 0 ; inst < physical_mode - > pb_type_children [ ichild ] . num_pb ; + + inst ) {
size_t child_instance_id = module_manager . num_instance ( pb_module , child_pb_module ) ;
/* Ensure the instance of this child module is the same as placement index,
* This check is necessary because placement_index is used to identify instance id for children
* when adding local interconnection for this pb_type
*/
VTR_ASSERT ( child_instance_id = = ( size_t ) physical_pb_graph_node - > child_pb_graph_nodes [ physical_mode - > index ] [ ichild ] [ inst ] . placement_index ) ;
/* Add the memory module as a child of primitive module */
module_manager . add_child_module ( pb_module , child_pb_module ) ;
/* Set an instance name to bind to a block in bitstream generation and SDC generation! */
std : : string child_pb_instance_name = generate_physical_block_instance_name ( & ( physical_pb_type - > modes [ physical_mode - > index ] . pb_type_children [ ichild ] ) , inst ) ;
module_manager . set_child_instance_name ( pb_module , child_pb_module , child_instance_id , child_pb_instance_name ) ;
/* Identify if this sub module includes configuration bits,
* we will update the memory module and instance list
*/
if ( 0 < find_module_num_config_bits ( module_manager , child_pb_module ,
circuit_lib , sram_model ,
sram_orgz_type ) ) {
module_manager . add_configurable_child ( pb_module , child_pb_module , child_instance_id ) ;
}
}
}
/* Add modules and nets for programmable/non-programmable interconnections
* inside the Verilog module
*/
add_module_pb_graph_interc ( module_manager , pb_module ,
memory_modules , memory_instances ,
device_annotation ,
circuit_lib , physical_pb_graph_node ,
physical_mode - > index ) ;
/* Add global ports to the pb_module:
* This is a much easier job after adding sub modules ( instances ) ,
* we just need to find all the global ports from the child modules and build a list of it
*/
add_module_global_ports_from_child_modules ( module_manager , pb_module ) ;
/* Count GPIO ports from the sub-modules under this Verilog module
* This is a much easier job after adding sub modules ( instances ) ,
* we just need to find all the I / O ports from the child modules and build a list of it
*/
add_module_gpio_ports_from_child_modules ( module_manager , pb_module ) ;
/* Count shared SRAM ports from the sub-modules under this Verilog module
* This is a much easier job after adding sub modules ( instances ) ,
* we just need to find all the I / O ports from the child modules and build a list of it
*/
size_t module_num_shared_config_bits = find_module_num_shared_config_bits_from_child_modules ( module_manager , pb_module ) ;
if ( 0 < module_num_shared_config_bits ) {
add_reserved_sram_ports_to_module_manager ( module_manager , pb_module , module_num_shared_config_bits ) ;
}
/* Count SRAM ports from the sub-modules under this Verilog module
* This is a much easier job after adding sub modules ( instances ) ,
* we just need to find all the I / O ports from the child modules and build a list of it
*/
size_t module_num_config_bits = find_module_num_config_bits_from_child_modules ( module_manager , pb_module , circuit_lib , sram_model , sram_orgz_type ) ;
if ( 0 < module_num_config_bits ) {
add_sram_ports_to_module_manager ( module_manager , pb_module , circuit_lib , sram_model , sram_orgz_type , module_num_config_bits ) ;
}
/* Add module nets to connect memory cells inside
* This is a one - shot addition that covers all the memory modules in this pb module !
*/
2020-03-08 15:58:56 -05:00
if ( 0 < module_manager . configurable_children ( pb_module ) . size ( ) ) {
2020-02-13 16:27:16 -06:00
add_module_nets_memory_config_bus ( module_manager , pb_module ,
sram_orgz_type , circuit_lib . design_tech_type ( sram_model ) ) ;
}
2020-02-13 16:38:26 -06:00
VTR_LOGV ( verbose , " Done \n " ) ;
2020-02-13 16:27:16 -06:00
}
/*****************************************************************************
* This function will create a Verilog file and print out a Verilog netlist
* for a type of physical block
*
* For IO blocks :
* The param ' border_side ' is required , which is specify which side of fabric
* the I / O block locates at .
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
static
void build_physical_tile_module ( ModuleManager & module_manager ,
const CircuitLibrary & circuit_lib ,
const e_config_protocol_type & sram_orgz_type ,
const CircuitModelId & sram_model ,
t_physical_tile_type_ptr phy_block_type ,
const e_side & border_side ,
2020-02-13 16:38:26 -06:00
const bool & duplicate_grid_pin ,
const bool & verbose ) {
2020-02-13 16:27:16 -06:00
/* Check code: if this is an IO block, the border side MUST be valid */
if ( true = = is_io_type ( phy_block_type ) ) {
VTR_ASSERT ( NUM_SIDES ! = border_side ) ;
}
/* Create a Module for the top-level physical block, and add to module manager */
std : : string grid_module_name = generate_grid_block_module_name ( std : : string ( GRID_MODULE_NAME_PREFIX ) ,
std : : string ( phy_block_type - > name ) ,
is_io_type ( phy_block_type ) ,
border_side ) ;
2020-02-13 16:38:26 -06:00
VTR_LOGV ( verbose ,
" Building physical tile '%s'... " ,
grid_module_name . c_str ( ) ) ;
2020-02-13 16:27:16 -06:00
ModuleId grid_module = module_manager . add_module ( grid_module_name ) ;
VTR_ASSERT ( true = = module_manager . valid_module_id ( grid_module ) ) ;
2020-02-24 17:09:29 -06:00
/* Now each physical tile may have a number of logical blocks
* OpenFPGA only considers the physical implementation of the tiles .
* So , we do not allow multiple equivalent sites to be defined
* under a physical tile type .
* If you need different equivalent sites , you can always define
* it as a mode under a < pb_type >
2020-02-13 16:27:16 -06:00
*/
for ( int iz = 0 ; iz < phy_block_type - > capacity ; + + iz ) {
2020-02-24 17:09:29 -06:00
VTR_ASSERT ( 1 = = phy_block_type - > equivalent_sites . size ( ) ) ;
2020-02-13 16:27:16 -06:00
for ( t_logical_block_type_ptr lb_type : phy_block_type - > equivalent_sites ) {
/* Bypass empty pb_graph */
if ( nullptr = = lb_type - > pb_graph_head ) {
continue ;
}
std : : string pb_module_name = generate_physical_block_module_name ( lb_type - > pb_graph_head - > pb_type ) ;
ModuleId pb_module = module_manager . find_module ( pb_module_name ) ;
VTR_ASSERT ( true = = module_manager . valid_module_id ( pb_module ) ) ;
/* Add all the sub modules */
size_t pb_instance_id = module_manager . num_instance ( grid_module , pb_module ) ;
module_manager . add_child_module ( grid_module , pb_module ) ;
/* Give the child module with a unique instance name */
std : : string instance_name = generate_physical_block_instance_name ( lb_type - > pb_graph_head - > pb_type , iz ) ;
/* Set an instance name to bind to a block in bitstream generation */
module_manager . set_child_instance_name ( grid_module , pb_module , pb_instance_id , instance_name ) ;
/* Identify if this sub module includes configuration bits,
* we will update the memory module and instance list
*/
if ( 0 < find_module_num_config_bits ( module_manager , pb_module ,
circuit_lib , sram_model ,
sram_orgz_type ) ) {
module_manager . add_configurable_child ( grid_module , pb_module , pb_instance_id ) ;
}
}
}
/* Add grid ports(pins) to the module */
if ( false = = duplicate_grid_pin ) {
/* Default way to add these ports by following the definition in pb_types */
add_grid_module_pb_type_ports ( module_manager , grid_module ,
phy_block_type , border_side ) ;
/* Add module nets to connect the pb_type ports to sub modules */
for ( t_logical_block_type_ptr lb_type : phy_block_type - > equivalent_sites ) {
/* Bypass empty pb_graph */
if ( nullptr = = lb_type - > pb_graph_head ) {
continue ;
}
std : : string pb_module_name = generate_physical_block_module_name ( lb_type - > pb_graph_head - > pb_type ) ;
ModuleId pb_module = module_manager . find_module ( pb_module_name ) ;
VTR_ASSERT ( true = = module_manager . valid_module_id ( pb_module ) ) ;
for ( const size_t & child_instance : module_manager . child_module_instances ( grid_module , pb_module ) ) {
add_grid_module_nets_connect_pb_type_ports ( module_manager , grid_module ,
pb_module , child_instance ,
phy_block_type , border_side ) ;
}
}
} else {
VTR_ASSERT_SAFE ( true = = duplicate_grid_pin ) ;
/* Add these ports with duplication */
add_grid_module_duplicated_pb_type_ports ( module_manager , grid_module ,
phy_block_type , border_side ) ;
/* Add module nets to connect the duplicated pb_type ports to sub modules */
for ( t_logical_block_type_ptr lb_type : phy_block_type - > equivalent_sites ) {
/* Bypass empty pb_graph */
if ( nullptr = = lb_type - > pb_graph_head ) {
continue ;
}
std : : string pb_module_name = generate_physical_block_module_name ( lb_type - > pb_graph_head - > pb_type ) ;
ModuleId pb_module = module_manager . find_module ( pb_module_name ) ;
VTR_ASSERT ( true = = module_manager . valid_module_id ( pb_module ) ) ;
for ( const size_t & child_instance : module_manager . child_module_instances ( grid_module , pb_module ) ) {
add_grid_module_nets_connect_duplicated_pb_type_ports ( module_manager , grid_module ,
pb_module , child_instance ,
phy_block_type , border_side ) ;
}
}
}
/* Add global ports to the pb_module:
* This is a much easier job after adding sub modules ( instances ) ,
* we just need to find all the global ports from the child modules and build a list of it
*/
add_module_global_ports_from_child_modules ( module_manager , grid_module ) ;
/* Count GPIO ports from the sub-modules under this Verilog module
* This is a much easier job after adding sub modules ( instances ) ,
* we just need to find all the I / O ports from the child modules and build a list of it
*/
add_module_gpio_ports_from_child_modules ( module_manager , grid_module ) ;
/* Count shared SRAM ports from the sub-modules under this Verilog module
* This is a much easier job after adding sub modules ( instances ) ,
* we just need to find all the I / O ports from the child modules and build a list of it
*/
size_t module_num_shared_config_bits = find_module_num_shared_config_bits_from_child_modules ( module_manager , grid_module ) ;
if ( 0 < module_num_shared_config_bits ) {
add_reserved_sram_ports_to_module_manager ( module_manager , grid_module , module_num_shared_config_bits ) ;
}
/* Count SRAM ports from the sub-modules under this Verilog module
* This is a much easier job after adding sub modules ( instances ) ,
* we just need to find all the I / O ports from the child modules and build a list of it
*/
size_t module_num_config_bits = find_module_num_config_bits_from_child_modules ( module_manager , grid_module , circuit_lib , sram_model , sram_orgz_type ) ;
if ( 0 < module_num_config_bits ) {
add_sram_ports_to_module_manager ( module_manager , grid_module , circuit_lib , sram_model , sram_orgz_type , module_num_config_bits ) ;
}
/* Add module nets to connect memory cells inside
* This is a one - shot addition that covers all the memory modules in this pb module !
*/
if ( 0 < module_manager . configurable_children ( grid_module ) . size ( ) ) {
add_module_nets_memory_config_bus ( module_manager , grid_module ,
sram_orgz_type , circuit_lib . design_tech_type ( sram_model ) ) ;
}
2020-02-13 16:38:26 -06:00
2020-02-20 21:26:20 -06:00
VTR_LOGV ( verbose , " Done \n " ) ;
2020-02-13 16:27:16 -06:00
}
/*****************************************************************************
* Create logic block modules in a compact way
* This function will achieve this goal in two step :
* - Build the modules for each logical tile which is based on pb_graph
* Note that there the pin / port does not carry any fixed physical location
* - Build the modules for each physical tile which is based on physical_tile_type_ptr
* Here , multiple logical tiles can be considered and each port / pin has a fixed
* physical location . This is where the feature of duplicate_pin_pin will be applied
* - Only one module for each I / O on each border side ( IO_TYPE )
* - Only one module for each CLB ( FILL_TYPE )
* - Only one module for each heterogeneous block
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
void build_grid_modules ( ModuleManager & module_manager ,
const DeviceContext & device_ctx ,
const VprDeviceAnnotation & device_annotation ,
const CircuitLibrary & circuit_lib ,
const MuxLibrary & mux_lib ,
const e_config_protocol_type & sram_orgz_type ,
const CircuitModelId & sram_model ,
2020-02-13 16:38:26 -06:00
const bool & duplicate_grid_pin ,
const bool & verbose ) {
2020-02-13 16:27:16 -06:00
/* Start time count */
vtr : : ScopedStartFinishTimer timer ( " Build grid modules " ) ;
/* Enumerate the types of logical tiles, and build a module for each
* Build modules for all the pb_types / pb_graph_nodes
* use a Depth - First Search Algorithm to print the sub - modules
* Note : DFS is the right way . Do NOT use BFS .
* DFS can guarantee that all the sub - modules can be registered properly
* to its parent in module manager
*/
/* Build modules starting from the top-level pb_type/pb_graph_node, and traverse the graph in a recursive way */
2020-02-13 16:38:26 -06:00
VTR_LOG ( " Building logical tiles... " ) ;
VTR_LOGV ( verbose , " \n " ) ;
2020-02-13 16:27:16 -06:00
for ( const t_logical_block_type & logical_tile : device_ctx . logical_block_types ) {
/* Bypass empty pb_graph */
if ( nullptr = = logical_tile . pb_graph_head ) {
continue ;
}
rec_build_logical_tile_modules ( module_manager , device_annotation ,
circuit_lib , mux_lib ,
sram_orgz_type , sram_model ,
2020-02-13 16:38:26 -06:00
logical_tile . pb_graph_head ,
verbose ) ;
2020-02-13 16:27:16 -06:00
}
2020-02-13 16:38:26 -06:00
VTR_LOG ( " Done \n " ) ;
2020-02-13 16:27:16 -06:00
/* Enumerate the types of physical tiles
* Use the logical tile module to build the physical tiles
*/
2020-02-13 16:38:26 -06:00
VTR_LOG ( " Building physical tiles... " ) ;
VTR_LOGV ( verbose , " \n " ) ;
2020-02-13 16:27:16 -06:00
for ( const t_physical_tile_type & physical_tile : device_ctx . physical_tile_types ) {
/* Bypass empty type or nullptr */
if ( true = = is_empty_type ( & physical_tile ) ) {
continue ;
} else if ( true = = is_io_type ( & physical_tile ) ) {
2020-03-27 17:03:42 -05:00
/* Special for I/O block:
* We will search the grids and see where the I / O blocks are located :
* - If a I / O block locates on border sides of FPGA fabric :
* i . e . , one or more from { TOP , RIGHT , BOTTOM , LEFT } ,
* we will generate one module for each border side
* - If a I / O block locates in the center of FPGA fabric :
* we will generate one module with NUM_SIDES ( same treatment as regular grids )
*/
std : : set < e_side > io_type_sides = find_physical_io_tile_located_sides ( device_ctx . grid ,
& physical_tile ) ;
for ( const e_side & io_type_side : io_type_sides ) {
2020-02-13 16:27:16 -06:00
build_physical_tile_module ( module_manager , circuit_lib ,
sram_orgz_type , sram_model ,
& physical_tile ,
2020-03-27 17:03:42 -05:00
io_type_side ,
2020-02-13 16:38:26 -06:00
duplicate_grid_pin ,
verbose ) ;
2020-02-13 16:27:16 -06:00
}
} else {
/* For CLB and heterogenenous blocks */
build_physical_tile_module ( module_manager , circuit_lib ,
sram_orgz_type , sram_model ,
& physical_tile ,
NUM_SIDES ,
2020-02-13 16:38:26 -06:00
duplicate_grid_pin ,
verbose ) ;
2020-02-13 16:27:16 -06:00
}
}
2020-02-13 16:38:26 -06:00
VTR_LOG ( " Done \n " ) ;
2020-02-13 16:27:16 -06:00
}
} /* end namespace openfpga */