OpenFPGA/vpr7_x2p/vpr/SRC/fpga_x2p/verilog/verilog_decoders.cpp

376 lines
16 KiB
C++
Raw Normal View History

/***************************************************************************************
* This file includes functions to generate Verilog modules of decoders
***************************************************************************************/
/* TODO: merge verilog_decoder.c to this source file and rename to verilog_decoder.cpp */
#include <string>
#include "util.h"
#include "vtr_assert.h"
/* Device-level header files */
#include "decoder_library_utils.h"
#include "module_manager.h"
/* FPGA-X2P context header files */
#include "spice_types.h"
#include "fpga_x2p_naming.h"
#include "fpga_x2p_utils.h"
/* FPGA-Verilog context header files */
#include "verilog_global.h"
#include "verilog_writer_utils.h"
#include "verilog_decoders.h"
/***************************************************************************************
* Create a Verilog module for a decoder with a given output size
*
* Inputs
* | | ... |
* v v v
* +-----------+
* / \
* / Decoder \
* +-----------------+
* | | | ... | | |
* v v v v v v
* Outputs
*
* The outputs are assumes to be one-hot codes (at most only one '1' exist)
* Considering this fact, there are only num_of_outputs conditions to be encoded.
* Therefore, the number of inputs is ceil(log(num_of_outputs)/log(2))
***************************************************************************************/
static
void print_verilog_mux_local_decoder_module(std::fstream& fp,
ModuleManager& module_manager,
const DecoderLibrary& decoder_lib,
const DecoderId& decoder) {
/* Get the number of inputs */
size_t addr_size = decoder_lib.addr_size(decoder);
size_t data_size = decoder_lib.data_size(decoder);
/* Validate the FILE handler */
check_file_handler(fp);
/* TODO: create a name for the local encoder */
std::string module_name = generate_mux_local_decoder_subckt_name(addr_size, data_size);
/* Create a Verilog Module based on the circuit model, and add to module manager */
ModuleId module_id = module_manager.find_module(module_name);
VTR_ASSERT(true == module_manager.valid_module_id(module_id));
/* Add module ports */
/* Add each input port */
BasicPort addr_port(generate_mux_local_decoder_addr_port_name(), addr_size);
/* Add each output port */
BasicPort data_port(generate_mux_local_decoder_data_port_name(), data_size);
/* Data port is registered. It should be outputted as
* output reg [lsb:msb] data
*/
/* Add data_in port */
BasicPort data_inv_port(generate_mux_local_decoder_data_inv_port_name(), data_size);
VTR_ASSERT(true == decoder_lib.use_data_inv_port(decoder));
/* dump module definition + ports */
print_verilog_module_declaration(fp, module_manager, module_id);
/* Finish dumping ports */
print_verilog_comment(fp, std::string("----- BEGIN Verilog codes for Decoder convert " + std::to_string(addr_size) + "-bit addr to " + std::to_string(data_size) + "-bit data -----"));
/* Print the truth table of this decoder */
/* Internal logics */
/* Early exit: Corner case for data size = 1 the logic is very simple:
* data = addr;
* data_inv = ~data_inv
*/
if (1 == data_size) {
print_verilog_wire_connection(fp, addr_port, data_port, false);
print_verilog_wire_connection(fp, data_inv_port, data_port, true);
print_verilog_comment(fp, std::string("----- END Verilog codes for Decoder convert " + std::to_string(addr_size) + "-bit addr to " + std::to_string(data_size) + "-bit data -----"));
/* Put an end to the Verilog module */
print_verilog_module_end(fp, module_name);
return;
}
/* We use a magic number -1 as the addr=1 should be mapped to ...1
* Otherwise addr will map addr=1 to ..10
* Note that there should be a range for the shift operators
* We should narrow the encoding to be applied to a given set of data
* This will lead to that any addr which falls out of the op code of data
* will give a all-zero code
* For example:
* data is 5-bit while addr is 3-bit
* data=8'b0_0000 will be encoded to addr=3'b001;
* data=8'b0_0001 will be encoded to addr=3'b010;
* data=8'b0_0010 will be encoded to addr=3'b011;
* data=8'b0_0100 will be encoded to addr=3'b100;
* data=8'b0_1000 will be encoded to addr=3'b101;
* data=8'b1_0000 will be encoded to addr=3'b110;
* The rest of addr codes 3'b110, 3'b111 will be decoded to data=8'b0_0000;
*/
fp << "\t" << "always@(" << generate_verilog_port(VERILOG_PORT_CONKT, addr_port) << ")" << std::endl;
fp << "\t" << "case (" << generate_verilog_port(VERILOG_PORT_CONKT, addr_port) << ")" << std::endl;
/* Create a string for addr and data */
for (size_t i = 0; i < data_size; ++i) {
/* TODO: give a namespace to the itobin function */
fp << "\t\t" << generate_verilog_constant_values(my_itobin_vec(i, addr_size));
fp << " : ";
fp << generate_verilog_port_constant_values(data_port, my_ito1hot_vec(i, data_size));
fp << ";" << std::endl;
}
fp << "\t\t" << "default : ";
fp << generate_verilog_port_constant_values(data_port, my_ito1hot_vec(data_size - 1, data_size));
fp << ";" << std::endl;
fp << "\t" << "endcase" << std::endl;
print_verilog_wire_connection(fp, data_inv_port, data_port, true);
print_verilog_comment(fp, std::string("----- END Verilog codes for Decoder convert " + std::to_string(addr_size) + "-bit addr to " + std::to_string(data_size) + "-bit data -----"));
/* Put an end to the Verilog module */
print_verilog_module_end(fp, module_name);
return;
}
/***************************************************************************************
* This function will generate all the unique Verilog modules of local decoders for
* the multiplexers used in a FPGA fabric
* It will reach the goal in two steps:
* 1. Find the unique local decoders w.r.t. the number of inputs/outputs
* We will generate the subgraphs from the multiplexing graph of each multiplexers
* The number of memory bits is the number of outputs.
* From that we can infer the number of inputs of each local decoders.
* Here is an illustrative example of how local decoders are interfaced with multi-level MUXes
*
* +---------+ +---------+
* | Local | | Local |
* | Decoder | | Decoder |
* | A | | B |
* +---------+ +---------+
* | ... | | ... |
* v v v v
* +--------------+ +--------------+
* | MUX Level 0 |--->| MUX Level 1 |
* +--------------+ +--------------+
* 2. Generate local decoder Verilog modules using behavioral description.
* Note that the implementation of local decoders can be dependent on the technology
* and standard cell libraries.
* Therefore, behavioral Verilog is used and the local decoders should be synthesized
* before running the back-end flow for FPGA fabric
* See more details in the function print_verilog_mux_local_decoder() for more details
***************************************************************************************/
void print_verilog_submodule_mux_local_decoders(ModuleManager& module_manager,
const MuxLibrary& mux_lib,
const CircuitLibrary& circuit_lib,
const std::string& verilog_dir,
const std::string& submodule_dir) {
std::string verilog_fname(submodule_dir + local_encoder_verilog_file_name);
/* Create the file stream */
std::fstream fp;
fp.open(verilog_fname, std::fstream::out | std::fstream::trunc);
check_file_handler(fp);
/* Print out debugging information for if the file is not opened/created properly */
vpr_printf(TIO_MESSAGE_INFO,
"Creating Verilog netlist for local decoders for multiplexers (%s)...\n",
verilog_fname.c_str());
print_verilog_file_header(fp, "Local Decoders for Multiplexers");
print_verilog_include_defines_preproc_file(fp, verilog_dir);
/* Create a library for local encoders with different sizes */
DecoderLibrary decoder_lib;
/* Find unique local decoders for unique branches shared by the multiplexers */
for (auto mux : mux_lib.muxes()) {
/* Local decoders are need only when users specify them */
CircuitModelId mux_circuit_model = mux_lib.mux_circuit_model(mux);
/* If this MUX does not need local decoder, we skip it */
if (false == circuit_lib.mux_use_local_encoder(mux_circuit_model)) {
continue;
}
const MuxGraph& mux_graph = mux_lib.mux_graph(mux);
/* Create a mux graph for the branch circuit */
std::vector<MuxGraph> branch_mux_graphs = mux_graph.build_mux_branch_graphs();
/* Add the decoder to the decoder library */
for (auto branch_mux_graph : branch_mux_graphs) {
2019-09-10 17:56:14 -05:00
/* The decoder size depends on the number of memories of a branch MUX.
* Note that only when there are >=2 memories, a decoder is needed
*/
size_t decoder_data_size = branch_mux_graph.num_memory_bits();
if (0 == decoder_data_size) {
2019-09-10 17:56:14 -05:00
continue;
}
/* Try to find if the decoder already exists in the library,
* If there is no such decoder, add it to the library
*/
2019-09-10 17:56:14 -05:00
add_mux_local_decoder_to_library(decoder_lib, decoder_data_size);
}
}
/* Generate Verilog modules for the found unique local encoders */
for (const auto& decoder : decoder_lib.decoders()) {
print_verilog_mux_local_decoder_module(fp, module_manager, decoder_lib, decoder);
}
2019-09-12 21:49:02 -05:00
/* Close the file stream */
fp.close();
2019-09-10 16:34:20 -05:00
/* Add fname to the linked list when debugging is finished */
submodule_verilog_subckt_file_path_head = add_one_subckt_file_name_to_llist(submodule_verilog_subckt_file_path_head, verilog_fname.c_str());
}
2019-09-13 21:58:55 -05:00
/***************************************************************************************
* For scan-chain configuration organization:
* Generate the Verilog module of configuration module
* which connect configuration ports to SRAMs/CCFFs in a chain:
2019-09-13 21:58:55 -05:00
*
* +------+ +------+ +------+
2019-09-26 15:04:40 -05:00
* cc_in--->| CCFF |--->| CCFF |---> ... --->| CCFF |----> sc_out
2019-09-13 21:58:55 -05:00
* +------+ +------+ +------+
***************************************************************************************/
static
void print_verilog_scan_chain_config_module(ModuleManager& module_manager,
std::fstream& fp,
t_sram_orgz_info* cur_sram_orgz_info) {
/* Validate the FILE handler */
check_file_handler(fp);
/* Get the total memory bits */
int num_mem_bits = get_sram_orgz_info_num_mem_bit(cur_sram_orgz_info);
/* Create a module definition for the configuration chain */
print_verilog_comment(fp, std::string("----- BEGIN Configuration Peripheral for Scan-chain FFs -----"));
/* Create a Verilog Module based on the circuit model, and add to module manager */
ModuleId module_id = module_manager.add_module(std::string(verilog_config_peripheral_prefix));
VTR_ASSERT(ModuleId::INVALID() != module_id);
/* Add module ports */
/* Add the head of scan-chain: a 1-bit input port */
BasicPort sc_head_port(std::string(top_netlist_scan_chain_head_prefix), 1);
module_manager.add_port(module_id, sc_head_port, ModuleManager::MODULE_INPUT_PORT);
/* Add the inputs of scan-chain FFs, which are the outputs of the module */
2019-09-26 15:04:40 -05:00
BasicPort cc_input_port(std::string("chain_input"), num_mem_bits);
module_manager.add_port(module_id, cc_input_port, ModuleManager::MODULE_OUTPUT_PORT);
2019-09-13 21:58:55 -05:00
/* Add the outputs of scan-chain FFs, which are inputs of the module */
BasicPort sc_output_port(std::string("chain_output"), num_mem_bits);
module_manager.add_port(module_id, sc_output_port, ModuleManager::MODULE_INPUT_PORT);
/* dump module definition + ports */
print_verilog_module_declaration(fp, module_manager, module_id);
/* Finish dumping ports */
/* Declare the sc_output_port is a wire */
fp << generate_verilog_port(VERILOG_PORT_WIRE, sc_output_port) << ";" << std::endl;
fp << std::endl;
/* Connect scan-chain input to the first scan-chain input */
2019-09-26 15:04:40 -05:00
BasicPort sc_first_input_port(cc_input_port.get_name(), 1);
2019-09-13 21:58:55 -05:00
print_verilog_wire_connection(fp, sc_first_input_port, sc_head_port, false);
/* Connect the head of current ccff to the tail of previous ccff*/
2019-09-26 15:04:40 -05:00
BasicPort chain_output_port(cc_input_port.get_name(), 1, num_mem_bits - 1);
2019-09-13 21:58:55 -05:00
BasicPort chain_input_port(sc_output_port.get_name(), 0, num_mem_bits - 2);
print_verilog_wire_connection(fp, chain_output_port, chain_input_port, false);
print_verilog_comment(fp, std::string("----- END Configuration Peripheral for Scan-chain FFs -----"));
/* Put an end to the Verilog module */
print_verilog_module_end(fp, module_manager.module_name(module_id));
return;
}
/***************************************************************************************
* Generate the configuration peripheral circuits for the top-level Verilog netlist
* This function will create Verilog modules depending on the configuration scheme:
* 1. Scan-chain:
* It will create a module which connects the Scan-Chain Flip-Flops (CCFFs)
2019-09-13 21:58:55 -05:00
* as a chain:
*
* +------+ +------+ +------+
2019-09-26 15:04:40 -05:00
* cc_in--->| CCFF |--->| CCFF |---> ... --->| CCFF |----> sc_out
2019-09-13 21:58:55 -05:00
* +------+ +------+ +------+
*
* 2. Memory bank:
* It will create a BL decoder and a WL decoder which will configure the SRAMs
* as a memory bank
*
* +------------------------+
* | WL Decoder |
* +------------------------+
* | | | ... | |
* v v v v v
* +---------+ +------------------------+
* | |--->| |
* | | | |
* | BL |--->| |
* | Decoder | .. | FPGA Core logic |
* | | .. | |
* | |--->| |
* +---------+ +------------------------+
***************************************************************************************/
void print_verilog_config_peripherals(ModuleManager& module_manager,
t_sram_orgz_info* cur_sram_orgz_info,
const std::string& verilog_dir,
const std::string& submodule_dir) {
std::string verilog_fname(submodule_dir + config_peripheral_verilog_file_name);
verilog_fname += ".bak";
/* Create the file stream */
std::fstream fp;
fp.open(verilog_fname, std::fstream::out | std::fstream::trunc);
check_file_handler(fp);
/* Print out debugging information for if the file is not opened/created properly */
vpr_printf(TIO_MESSAGE_INFO,
"Creating Verilog netlist for configuration peripherals (%s)...\n",
verilog_fname.c_str());
print_verilog_file_header(fp, "Configuration Peripheral Circuits");
print_verilog_include_defines_preproc_file(fp, verilog_dir);
/* Create a library for decoders */
DecoderLibrary decoder_lib;
switch(cur_sram_orgz_info->type) {
case SPICE_SRAM_STANDALONE:
break;
case SPICE_SRAM_SCAN_CHAIN:
print_verilog_scan_chain_config_module(module_manager, fp, cur_sram_orgz_info);
break;
case SPICE_SRAM_MEMORY_BANK:
/* TODO: Finish refactoring this part after the sram_orgz_info ! */
/*
dump_verilog_decoder(fp, cur_sram_orgz_info);
dump_verilog_membank_config_module(fp, cur_sram_orgz_info);
*/
break;
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s,[LINE%d])Invalid type of SRAM organization in Verilog Generator!\n",
__FILE__, __LINE__);
exit(1);
}
/* Close the file stream */
fp.close();
/* Add fname to the linked list when debugging is finished */
/* TODO: uncomment this when it is ready to be plugged-in
submodule_verilog_subckt_file_path_head = add_one_subckt_file_name_to_llist(submodule_verilog_subckt_file_path_head, verilog_fname.c_str());
*/
return;
}