2022-05-23 20:03:10 -05:00
|
|
|
import random
|
|
|
|
from statistics import NormalDist
|
|
|
|
|
|
|
|
import cocotb
|
|
|
|
from cocotb.binary import BinaryValue
|
|
|
|
from cocotb.clock import Clock
|
|
|
|
from cocotb.triggers import RisingEdge, Timer
|
|
|
|
|
|
|
|
@cocotb.test(timeout_time=100, timeout_unit='us')
|
|
|
|
async def test_rx(pmd):
|
2022-08-06 14:47:39 -05:00
|
|
|
pmd.signal_detect.value = 0
|
|
|
|
await Timer(1)
|
2022-05-23 20:03:10 -05:00
|
|
|
await cocotb.start(Clock(pmd.rx_clk_125, 8, units='ns').start())
|
|
|
|
# random phase
|
|
|
|
await Timer(random.randrange(0, 8000), units='ps')
|
|
|
|
await cocotb.start(Clock(pmd.rx_clk_250, 4, units='ns').start())
|
|
|
|
|
|
|
|
ins = [random.randrange(2) for _ in range(1000)]
|
|
|
|
async def generate_bits():
|
|
|
|
# random phase
|
|
|
|
await Timer(random.randrange(0, 8000), units='ps')
|
|
|
|
pmd.signal_detect.value = 1
|
|
|
|
# Target BER is 1e9 and the maximum jitter is 1.4ns
|
|
|
|
# This is just random jitter (not DDJ or DCJ) but it'll do
|
|
|
|
delay_dist = NormalDist(8000, 1400 / NormalDist().inv_cdf(1-2e-9))
|
|
|
|
for i, delay in zip(ins, (int(delay) for delay in delay_dist.samples(len(ins)))):
|
|
|
|
pmd.rx.value = i
|
|
|
|
pmd.delay.value = delay
|
|
|
|
await Timer(delay, units='ps')
|
|
|
|
#await Timer(8100, units='ps')
|
|
|
|
pmd.signal_detect.value = 0
|
|
|
|
await cocotb.start(generate_bits())
|
|
|
|
|
|
|
|
# Wait for things to stabilize
|
|
|
|
await RisingEdge(pmd.valid)
|
|
|
|
outs = []
|
|
|
|
while pmd.signal_status.value:
|
|
|
|
await RisingEdge(pmd.rx_clk_125)
|
|
|
|
valid = pmd.pmd_data_rx_valid.value
|
|
|
|
if valid == 0:
|
|
|
|
pass
|
|
|
|
elif valid == 1:
|
|
|
|
outs.append(pmd.pmd_data_rx[1].value)
|
|
|
|
else:
|
|
|
|
outs.append(pmd.pmd_data_rx[1].value)
|
|
|
|
outs.append(pmd.pmd_data_rx[0].value)
|
|
|
|
|
|
|
|
best_corr = -1
|
|
|
|
best_off = None
|
|
|
|
for off in range(-7, 8):
|
|
|
|
corr = sum(i == o for i, o in zip(ins[off:], outs))
|
|
|
|
if corr > best_corr:
|
|
|
|
best_corr = corr
|
|
|
|
best_off = off
|
|
|
|
|
|
|
|
print(f"best offset is {best_off} correlation {best_corr/(len(ins) - best_off)}")
|
|
|
|
for idx, (i, o) in enumerate(zip(ins[best_off:], outs)):
|
|
|
|
if i != o:
|
|
|
|
print(idx)
|
|
|
|
print(*ins[idx+best_off-50:idx+best_off+50], sep='')
|
|
|
|
print(*outs[idx-50:idx+50], sep='')
|
|
|
|
assert False
|
|
|
|
# There will be a few bits at the end not recorded because signal_detect
|
|
|
|
# isn't delayed like the data signals
|
|
|
|
assert best_corr > len(ins) - best_off - 10
|