This commit is contained in:
Sean Anderson 2022-05-23 21:03:10 -04:00
parent d351291ff8
commit 1d65661bd3
3 changed files with 299 additions and 0 deletions

19
rtl/io.vh Normal file
View File

@ -0,0 +1,19 @@
`ifndef IO_VH
`define IO_VH
`define PIN_INPUT_REGISTERED 6'b000000
`define PIN_INPUT_UNREGISTERED 6'b000001
`define PIN_INPUT_LATCH 6'b000010
`define PIN_INPUT_DDR 6'b000000
`define PIN_OUTPUT_NEVER 6'b000000
`define PIN_OUTPUT_ALWAYS 6'b010000
`define PIN_OUTPUT_ENABLE 6'b100000
`define PIN_OUTPUT_ENABLE_REGISTERED 6'b110000
`define PIN_OUTPUT_DDR 6'b000000
`define PIN_OUTPUT_REGISTERED 6'b000100
`define PIN_OUTPUT_UNREGISTERED 6'b001000
`define PIN_OUTPUT_REGISTERED_INVERTED 6'b001100
`endif /* IO_VH */

216
rtl/pmd.v Normal file
View File

@ -0,0 +1,216 @@
// SPDX-License-Identifier: AGPL-3.0-Only
/*
* Copyright (C) 2022 Sean Anderson <seanga2@gmail.com>
*
* This roughly follows the design of XAPP225. However, we use a 2x rate DDR
* clock instead of two clocks 90 degrees out of phase. Yosys/nextpnr cannot
* guarantee the phase relationship of any clocks, even those from the same
* PLL. Because of this, we assume that rx_clk_250 and rx_clk_125 are unrelated.
*/
`include "common.vh"
`include "io.vh"
`timescale 1ns/1ps
module pmd (
input tx_clk,
input rx_clk_250,
input rx_clk_125,
input signal_detect,
output reg tx_p, tx_n,
input rx,
/* PMD */
output reg signal_status,
input pmd_data_tx,
output reg [1:0] pmd_data_rx,
output reg [1:0] pmd_data_rx_valid
);
reg [1:0] rx_p, rx_n;
`ifdef SYNTHESIS
SB_IO #(
.PIN_TYPE(`PIN_OUTPUT_NEVER | `PIN_INPUT_REGISTERED),
.IO_STANDARD("SB_LVDS_INPUT")
) signal_detect_pin (
.PACKAGE_PIN(signal_detect),
.INPUT_rx_clk(rx_clk_125),
.D_IN_0(signal_status)
);
SB_IO #(
.PIN_TYPE(`PIN_OUTPUT_NEVER | `PIN_INPUT_DDR),
.IO_STANDARD("SB_LVDS_INPUT")
) data_rx_pin (
.PACKAGE_PIN(rx),
.INPUT_rx_clk(rx_clk_250),
.D_IN_0(rx_p[0]),
.D_IN_1(rx_n[0])
);
`else
always @(posedge rx_clk_125)
signal_status <= signal_detect;
always @(posedge rx_clk_250)
rx_p[0] <= rx;
always @(negedge rx_clk_250)
rx_n[0] <= rx;
`endif
/*
* Get things into the rx_clk_250 domain so that we sample posedge before
* negedge. Without this we can have a negedge which happens before the
* posedge.
*/
always @(posedge rx_clk_250) begin
rx_p[1] = rx_p[0];
rx_n[1] = rx_n[0];
end
reg [2:0] rx_a, rx_b, rx_c, rx_d;
/* Get everything in the rx_clk_125 domain */
always @(posedge rx_clk_125) begin
rx_a[0] <= rx_p[1];
rx_b[0] <= rx_n[1];
end
always @(negedge rx_clk_125) begin
rx_c[0] <= rx_p[1];
rx_d[0] <= rx_n[1];
end
/*
* Buffer things a bit. We wait a cycle to avoid metastability. After
* that, we need two cycles of history to detect edges.
*/
always @(posedge rx_clk_125) begin
rx_a[2:1] = rx_a[1:0];
rx_b[2:1] = rx_b[1:0];
rx_c[2:1] = rx_c[1:0];
rx_d[2:1] = rx_d[1:0];
end
localparam A = 0;
localparam B = 1;
localparam C = 2;
localparam D = 3;
reg [1:0] state, state_next;
initial state = A;
reg valid, valid_next;
initial valid = 0;
reg [1:0] pmd_data_rx_next, pmd_data_rx_valid_next;
reg [3:0] rx_r, rx_f;
always @(*) begin
rx_r = {
rx_a[1] & ~rx_a[2],
rx_b[1] & ~rx_b[2],
rx_c[1] & ~rx_c[2],
rx_d[1] & ~rx_d[2]
};
rx_f = {
~rx_a[1] & rx_a[2],
~rx_b[1] & rx_b[2],
~rx_c[1] & rx_c[2],
~rx_d[1] & rx_d[2]
};
state_next = state;
valid_next = 1;
if (rx_r == 4'b1111 || rx_f == 4'b1111)
state_next = C;
else if (rx_r == 4'b1000 || rx_f == 4'b1000)
state_next = D;
else if (rx_r == 4'b1100 || rx_f == 4'b1100)
state_next = A;
else if (rx_r == 4'b1110 || rx_f == 4'b1110)
state_next = B;
else
valid_next = valid;
if (!signal_status)
valid_next = 0;
pmd_data_rx_next[0] = rx_d[2];
pmd_data_rx_valid_next = 1;
case (state_next)
A: begin
pmd_data_rx_next[1] = rx_a[2];
if (state == D)
pmd_data_rx_valid_next = 0;
end
B: begin
pmd_data_rx_next[1] = rx_b[2];
end
C: begin
pmd_data_rx_next[1] = rx_c[2];
end
D: begin
pmd_data_rx_next[1] = rx_d[2];
if (state == A) begin
pmd_data_rx_next[1] = rx_a[2];
pmd_data_rx_valid_next = 2;
end
end
endcase
if (!valid_next)
pmd_data_rx_valid_next = 0;
end
always @(posedge rx_clk_125) begin
state <= state_next;
valid <= valid_next;
pmd_data_rx <= pmd_data_rx_next;
pmd_data_rx_valid <= pmd_data_rx_valid_next;
end
`ifdef SYNTHESIS
SB_IO #(
.PIN_TYPE(`PIN_OUTPUT_ALWAYS | `PIN_OUTPUT_REGISTERED),
.IO_STANDARD("SB_LVDS_INPUT")
) data_txp_pin (
.PACKAGE_PIN(tx_p),
.OUTPUT_rx_clk(rx_clk_125),
.D_OUT_0(pmd_data_tx)
);
SB_IO #(
.PIN_TYPE(`PIN_OUTPUT_ALWAYS | `PIN_OUTPUT_REGISTERED_INVERTED),
.IO_STANDARD("SB_LVDS_INPUT")
) data_txn_pin (
.PACKAGE_PIN(tx_n),
.OUTPUT_rx_clk(rx_clk_125),
.D_OUT_0(pmd_data_tx)
);
`else
always @(posedge tx_clk) begin
tx_p <= pmd_data_tx;
tx_n <= ~pmd_data_tx;
end
`endif
`ifndef SYNTHESIS
reg [255:0] state_text;
input [13:0] delay;
always @(*) begin
case (state)
A: state_text = "A";
B: state_text = "B";
C: state_text = "C";
D: state_text = "D";
endcase
end
`endif
`DUMP
endmodule

64
tb/pmd.py Normal file
View File

@ -0,0 +1,64 @@
import random
from statistics import NormalDist
import cocotb
from cocotb.binary import BinaryValue
from cocotb.clock import Clock
from cocotb.triggers import RisingEdge, Timer
@cocotb.test(timeout_time=100, timeout_unit='us')
async def test_rx(pmd):
pmd.rx.value = BinaryValue('X')
await cocotb.start(Clock(pmd.rx_clk_125, 8, units='ns').start())
# random phase
await Timer(random.randrange(0, 8000), units='ps')
await cocotb.start(Clock(pmd.rx_clk_250, 4, units='ns').start())
ins = [random.randrange(2) for _ in range(1000)]
async def generate_bits():
# random phase
await Timer(random.randrange(0, 8000), units='ps')
pmd.signal_detect.value = 1
# Target BER is 1e9 and the maximum jitter is 1.4ns
# This is just random jitter (not DDJ or DCJ) but it'll do
delay_dist = NormalDist(8000, 1400 / NormalDist().inv_cdf(1-2e-9))
for i, delay in zip(ins, (int(delay) for delay in delay_dist.samples(len(ins)))):
pmd.rx.value = i
pmd.delay.value = delay
await Timer(delay, units='ps')
#await Timer(8100, units='ps')
pmd.signal_detect.value = 0
await cocotb.start(generate_bits())
# Wait for things to stabilize
await RisingEdge(pmd.valid)
outs = []
while pmd.signal_status.value:
await RisingEdge(pmd.rx_clk_125)
valid = pmd.pmd_data_rx_valid.value
if valid == 0:
pass
elif valid == 1:
outs.append(pmd.pmd_data_rx[1].value)
else:
outs.append(pmd.pmd_data_rx[1].value)
outs.append(pmd.pmd_data_rx[0].value)
best_corr = -1
best_off = None
for off in range(-7, 8):
corr = sum(i == o for i, o in zip(ins[off:], outs))
if corr > best_corr:
best_corr = corr
best_off = off
print(f"best offset is {best_off} correlation {best_corr/(len(ins) - best_off)}")
for idx, (i, o) in enumerate(zip(ins[best_off:], outs)):
if i != o:
print(idx)
print(*ins[idx+best_off-50:idx+best_off+50], sep='')
print(*outs[idx-50:idx+50], sep='')
assert False
# There will be a few bits at the end not recorded because signal_detect
# isn't delayed like the data signals
assert best_corr > len(ins) - best_off - 10