yosys/passes/techmap/abc9.cc

1272 lines
42 KiB
C++

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
* 2019 Eddie Hung <eddie@fpgeh.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
// [[CITE]] ABC
// Berkeley Logic Synthesis and Verification Group, ABC: A System for Sequential Synthesis and Verification
// http://www.eecs.berkeley.edu/~alanmi/abc/
#if 0
// Based on &flow3 - better QoR but more experimental
#define ABC_COMMAND_LUT "&st; &ps -l; &sweep -v; &scorr; " \
"&st; &if {W}; &save; &st; &syn2; &if {W} -v; &save; &load; "\
"&st; &if -g -K 6; &dch -f; &if {W} -v; &save; &load; "\
"&st; &if -g -K 6; &synch2; &if {W} -v; &save; &load; "\
"&mfs; &ps -l"
#else
#define ABC_COMMAND_LUT "&st; &scorr; &sweep; &dc2; &st; &dch -f; &ps; &if {W} {D} -v; &mfs; &ps -l"
#endif
#define ABC_FAST_COMMAND_LUT "&st; &if {W} {D}"
#include "kernel/register.h"
#include "kernel/sigtools.h"
#include "kernel/celltypes.h"
#include "kernel/cost.h"
#include "kernel/log.h"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <cerrno>
#include <sstream>
#include <climits>
#ifndef _WIN32
# include <unistd.h>
# include <dirent.h>
#endif
#include "frontends/aiger/aigerparse.h"
#include "kernel/utils.h"
#ifdef YOSYS_LINK_ABC
extern "C" int Abc_RealMain(int argc, char *argv[]);
#endif
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
bool markgroups;
int map_autoidx;
inline std::string remap_name(RTLIL::IdString abc9_name)
{
return stringf("$abc$%d$%s", map_autoidx, abc9_name.c_str()+1);
}
void handle_loops(RTLIL::Design *design, RTLIL::Module *module)
{
Pass::call(design, "scc -set_attr abc9_scc_id {} % w:*");
// For every unique SCC found, (arbitrarily) find the first
// cell in the component, and select (and mark) all its output
// wires
pool<RTLIL::Const> ids_seen;
for (auto cell : module->cells()) {
auto it = cell->attributes.find(ID(abc9_scc_id));
if (it != cell->attributes.end()) {
auto r = ids_seen.insert(it->second);
if (r.second) {
for (auto &c : cell->connections_) {
if (c.second.is_fully_const()) continue;
if (cell->output(c.first)) {
SigBit b = c.second.as_bit();
Wire *w = b.wire;
if (w->port_input) {
// In this case, hopefully the loop break has been already created
// Get the non-prefixed wire
Wire *wo = module->wire(stringf("%s.abco", b.wire->name.c_str()));
log_assert(wo != nullptr);
log_assert(wo->port_output);
log_assert(b.offset < GetSize(wo));
c.second = RTLIL::SigBit(wo, b.offset);
}
else {
// Create a new output/input loop break
w->port_input = true;
w = module->wire(stringf("%s.abco", w->name.c_str()));
if (!w) {
w = module->addWire(stringf("%s.abco", b.wire->name.c_str()), GetSize(b.wire));
w->port_output = true;
}
else {
log_assert(w->port_input);
log_assert(b.offset < GetSize(w));
}
w->set_bool_attribute(ID(abc9_scc_break));
c.second = RTLIL::SigBit(w, b.offset);
}
}
}
}
cell->attributes.erase(it);
}
}
module->fixup_ports();
}
std::string add_echos_to_abc9_cmd(std::string str)
{
std::string new_str, token;
for (size_t i = 0; i < str.size(); i++) {
token += str[i];
if (str[i] == ';') {
while (i+1 < str.size() && str[i+1] == ' ')
i++;
new_str += "echo + " + token + " " + token + " ";
token.clear();
}
}
if (!token.empty()) {
if (!new_str.empty())
new_str += "echo + " + token + "; ";
new_str += token;
}
return new_str;
}
std::string fold_abc9_cmd(std::string str)
{
std::string token, new_str = " ";
int char_counter = 10;
for (size_t i = 0; i <= str.size(); i++) {
if (i < str.size())
token += str[i];
if (i == str.size() || str[i] == ';') {
if (char_counter + token.size() > 75)
new_str += "\n ", char_counter = 14;
new_str += token, char_counter += token.size();
token.clear();
}
}
return new_str;
}
std::string replace_tempdir(std::string text, std::string tempdir_name, bool show_tempdir)
{
if (show_tempdir)
return text;
while (1) {
size_t pos = text.find(tempdir_name);
if (pos == std::string::npos)
break;
text = text.substr(0, pos) + "<abc-temp-dir>" + text.substr(pos + GetSize(tempdir_name));
}
std::string selfdir_name = proc_self_dirname();
if (selfdir_name != "/") {
while (1) {
size_t pos = text.find(selfdir_name);
if (pos == std::string::npos)
break;
text = text.substr(0, pos) + "<yosys-exe-dir>/" + text.substr(pos + GetSize(selfdir_name));
}
}
return text;
}
struct abc9_output_filter
{
bool got_cr;
int escape_seq_state;
std::string linebuf;
std::string tempdir_name;
bool show_tempdir;
abc9_output_filter(std::string tempdir_name, bool show_tempdir) : tempdir_name(tempdir_name), show_tempdir(show_tempdir)
{
got_cr = false;
escape_seq_state = 0;
}
void next_char(char ch)
{
if (escape_seq_state == 0 && ch == '\033') {
escape_seq_state = 1;
return;
}
if (escape_seq_state == 1) {
escape_seq_state = ch == '[' ? 2 : 0;
return;
}
if (escape_seq_state == 2) {
if ((ch < '0' || '9' < ch) && ch != ';')
escape_seq_state = 0;
return;
}
escape_seq_state = 0;
if (ch == '\r') {
got_cr = true;
return;
}
if (ch == '\n') {
log("ABC: %s\n", replace_tempdir(linebuf, tempdir_name, show_tempdir).c_str());
got_cr = false, linebuf.clear();
return;
}
if (got_cr)
got_cr = false, linebuf.clear();
linebuf += ch;
}
void next_line(const std::string &line)
{
//int pi, po;
//if (sscanf(line.c_str(), "Start-point = pi%d. End-point = po%d.", &pi, &po) == 2) {
// log("ABC: Start-point = pi%d (%s). End-point = po%d (%s).\n",
// pi, pi_map.count(pi) ? pi_map.at(pi).c_str() : "???",
// po, po_map.count(po) ? po_map.at(po).c_str() : "???");
// return;
//}
for (char ch : line)
next_char(ch);
}
};
void abc9_module(RTLIL::Design *design, RTLIL::Module *module, std::string script_file, std::string exe_file,
bool cleanup, vector<int> lut_costs, bool /*dff_mode*/, std::string /*clk_str*/,
bool /*keepff*/, std::string delay_target, std::string /*lutin_shared*/, bool fast_mode,
bool show_tempdir, std::string box_file, std::string lut_file,
std::string wire_delay, const dict<int,IdString> &box_lookup, bool nomfs
)
{
map_autoidx = autoidx++;
std::string tempdir_name = "/tmp/yosys-abc-XXXXXX";
if (!cleanup)
tempdir_name[0] = tempdir_name[4] = '_';
tempdir_name = make_temp_dir(tempdir_name);
log_header(design, "Extracting gate netlist of module `%s' to `%s/input.xaig'..\n",
module->name.c_str(), replace_tempdir(tempdir_name, tempdir_name, show_tempdir).c_str());
std::string abc9_script;
if (!lut_costs.empty()) {
abc9_script += stringf("read_lut %s/lutdefs.txt; ", tempdir_name.c_str());
if (!box_file.empty())
abc9_script += stringf("read_box -v %s; ", box_file.c_str());
}
else
if (!lut_file.empty()) {
abc9_script += stringf("read_lut %s; ", lut_file.c_str());
if (!box_file.empty())
abc9_script += stringf("read_box -v %s; ", box_file.c_str());
}
else
log_abort();
abc9_script += stringf("&read %s/input.xaig; &ps; ", tempdir_name.c_str());
if (!script_file.empty()) {
if (script_file[0] == '+') {
for (size_t i = 1; i < script_file.size(); i++)
if (script_file[i] == '\'')
abc9_script += "'\\''";
else if (script_file[i] == ',')
abc9_script += " ";
else
abc9_script += script_file[i];
} else
abc9_script += stringf("source %s", script_file.c_str());
} else if (!lut_costs.empty() || !lut_file.empty()) {
//bool all_luts_cost_same = true;
//for (int this_cost : lut_costs)
// if (this_cost != lut_costs.front())
// all_luts_cost_same = false;
abc9_script += fast_mode ? ABC_FAST_COMMAND_LUT : ABC_COMMAND_LUT;
//if (all_luts_cost_same && !fast_mode)
// abc9_script += "; lutpack {S}";
} else
log_abort();
//if (script_file.empty() && !delay_target.empty())
// for (size_t pos = abc9_script.find("dretime;"); pos != std::string::npos; pos = abc9_script.find("dretime;", pos+1))
// abc9_script = abc9_script.substr(0, pos) + "dretime; retime -o {D};" + abc9_script.substr(pos+8);
for (size_t pos = abc9_script.find("{D}"); pos != std::string::npos; pos = abc9_script.find("{D}", pos))
abc9_script = abc9_script.substr(0, pos) + delay_target + abc9_script.substr(pos+3);
//for (size_t pos = abc9_script.find("{S}"); pos != std::string::npos; pos = abc9_script.find("{S}", pos))
// abc9_script = abc9_script.substr(0, pos) + lutin_shared + abc9_script.substr(pos+3);
for (size_t pos = abc9_script.find("{W}"); pos != std::string::npos; pos = abc9_script.find("{W}", pos))
abc9_script = abc9_script.substr(0, pos) + wire_delay + abc9_script.substr(pos+3);
if (nomfs)
for (size_t pos = abc9_script.find("&mfs"); pos != std::string::npos; pos = abc9_script.find("&mfs", pos))
abc9_script = abc9_script.erase(pos, strlen("&mfs"));
abc9_script += stringf("; &write -n %s/output.aig", tempdir_name.c_str());
abc9_script = add_echos_to_abc9_cmd(abc9_script);
for (size_t i = 0; i+1 < abc9_script.size(); i++)
if (abc9_script[i] == ';' && abc9_script[i+1] == ' ')
abc9_script[i+1] = '\n';
FILE *f = fopen(stringf("%s/abc.script", tempdir_name.c_str()).c_str(), "wt");
fprintf(f, "%s\n", abc9_script.c_str());
fclose(f);
//bool count_output = false;
log_push();
//if (count_output)
{
handle_loops(design, module);
Pass::call(design, "aigmap -select");
//log("Extracted %d gates and %d wires to a netlist network with %d inputs and %d outputs.\n",
// count_gates, GetSize(signal_list), count_input, count_output);
Pass::call(design, stringf("write_xaiger -map %s/input.sym %s/input.xaig", tempdir_name.c_str(), tempdir_name.c_str()));
std::string buffer;
std::ifstream ifs;
#if 0
buffer = stringf("%s/%s", tempdir_name.c_str(), "input.xaig");
ifs.open(buffer);
if (ifs.fail())
log_error("Can't open ABC output file `%s'.\n", buffer.c_str());
buffer = stringf("%s/%s", tempdir_name.c_str(), "input.sym");
log_assert(!design->module(ID($__abc9__)));
{
AigerReader reader(design, ifs, ID($__abc9__), "" /* clk_name */, buffer.c_str() /* map_filename */, true /* wideports */);
reader.parse_xaiger(box_lookup);
}
ifs.close();
Pass::call_on_module(design, design->module(ID($__abc9__)), stringf("write_verilog -noexpr -norename -selected"));
design->remove(design->module(ID($__abc9__)));
#endif
log_header(design, "Executing ABC9.\n");
if (!lut_costs.empty()) {
buffer = stringf("%s/lutdefs.txt", tempdir_name.c_str());
f = fopen(buffer.c_str(), "wt");
if (f == NULL)
log_error("Opening %s for writing failed: %s\n", buffer.c_str(), strerror(errno));
for (int i = 0; i < GetSize(lut_costs); i++)
fprintf(f, "%d %d.00 1.00\n", i+1, lut_costs.at(i));
fclose(f);
}
buffer = stringf("%s -s -f %s/abc.script 2>&1", exe_file.c_str(), tempdir_name.c_str());
log("Running ABC command: %s\n", replace_tempdir(buffer, tempdir_name, show_tempdir).c_str());
#ifndef YOSYS_LINK_ABC
abc9_output_filter filt(tempdir_name, show_tempdir);
int ret = run_command(buffer, std::bind(&abc9_output_filter::next_line, filt, std::placeholders::_1));
#else
// These needs to be mutable, supposedly due to getopt
char *abc9_argv[5];
string tmp_script_name = stringf("%s/abc.script", tempdir_name.c_str());
abc9_argv[0] = strdup(exe_file.c_str());
abc9_argv[1] = strdup("-s");
abc9_argv[2] = strdup("-f");
abc9_argv[3] = strdup(tmp_script_name.c_str());
abc9_argv[4] = 0;
int ret = Abc_RealMain(4, abc9_argv);
free(abc9_argv[0]);
free(abc9_argv[1]);
free(abc9_argv[2]);
free(abc9_argv[3]);
#endif
if (ret != 0)
log_error("ABC: execution of command \"%s\" failed: return code %d.\n", buffer.c_str(), ret);
buffer = stringf("%s/%s", tempdir_name.c_str(), "output.aig");
ifs.open(buffer, std::ifstream::binary);
if (ifs.fail())
log_error("Can't open ABC output file `%s'.\n", buffer.c_str());
buffer = stringf("%s/%s", tempdir_name.c_str(), "input.sym");
log_assert(!design->module(ID($__abc9__)));
AigerReader reader(design, ifs, ID($__abc9__), "" /* clk_name */, buffer.c_str() /* map_filename */, true /* wideports */);
reader.parse_xaiger(box_lookup);
ifs.close();
#if 0
Pass::call_on_module(design, design->module(ID($__abc9__)), stringf("write_verilog -noexpr -norename -selected"));
#endif
log_header(design, "Re-integrating ABC9 results.\n");
RTLIL::Module *mapped_mod = design->module(ID($__abc9__));
if (mapped_mod == NULL)
log_error("ABC output file does not contain a module `$__abc9__'.\n");
for (auto &it : mapped_mod->wires_) {
RTLIL::Wire *w = it.second;
RTLIL::Wire *remap_wire = module->addWire(remap_name(w->name), GetSize(w));
if (markgroups) remap_wire->attributes[ID(abcgroup)] = map_autoidx;
}
dict<IdString, bool> abc9_box;
vector<RTLIL::Cell*> boxes;
for (auto cell : module->selected_cells()) {
if (cell->type.in(ID($_AND_), ID($_NOT_), ID($__ABC9_FF_))) {
module->remove(cell);
continue;
}
auto jt = abc9_box.find(cell->type);
if (jt == abc9_box.end()) {
RTLIL::Module* box_module = design->module(cell->type);
jt = abc9_box.insert(std::make_pair(cell->type, box_module && box_module->attributes.count(ID(abc9_box_id)))).first;
}
if (jt->second)
boxes.emplace_back(cell);
}
dict<SigBit, pool<IdString>> bit_drivers, bit_users;
TopoSort<IdString, RTLIL::sort_by_id_str> toposort;
dict<RTLIL::Cell*,RTLIL::Cell*> not2drivers;
dict<SigBit, std::vector<RTLIL::Cell*>> bit2sinks;
std::map<IdString, int> cell_stats;
for (auto mapped_cell : mapped_mod->cells())
{
toposort.node(mapped_cell->name);
RTLIL::Cell *cell = nullptr;
if (mapped_cell->type == ID($_NOT_)) {
RTLIL::SigBit a_bit = mapped_cell->getPort(ID::A);
RTLIL::SigBit y_bit = mapped_cell->getPort(ID::Y);
bit_users[a_bit].insert(mapped_cell->name);
bit_drivers[y_bit].insert(mapped_cell->name);
if (!a_bit.wire) {
mapped_cell->setPort(ID::Y, module->addWire(NEW_ID));
RTLIL::Wire *wire = module->wire(remap_name(y_bit.wire->name));
log_assert(wire);
module->connect(RTLIL::SigBit(wire, y_bit.offset), State::S1);
}
else if (!lut_costs.empty() || !lut_file.empty()) {
RTLIL::Cell* driver_lut = nullptr;
// ABC can return NOT gates that drive POs
if (!a_bit.wire->port_input) {
// If it's not a NOT gate that that comes from a PI directly,
// find the driver LUT and clone that to guarantee that we won't
// increase the max logic depth
// (TODO: Optimise by not cloning unless will increase depth)
RTLIL::IdString driver_name;
if (GetSize(a_bit.wire) == 1)
driver_name = stringf("%s$lut", a_bit.wire->name.c_str());
else
driver_name = stringf("%s[%d]$lut", a_bit.wire->name.c_str(), a_bit.offset);
driver_lut = mapped_mod->cell(driver_name);
}
if (!driver_lut) {
// If a driver couldn't be found (could be from PI or box CI)
// then implement using a LUT
cell = module->addLut(remap_name(stringf("%s$lut", mapped_cell->name.c_str())),
RTLIL::SigBit(module->wires_.at(remap_name(a_bit.wire->name)), a_bit.offset),
RTLIL::SigBit(module->wires_.at(remap_name(y_bit.wire->name)), y_bit.offset),
RTLIL::Const::from_string("01"));
bit2sinks[cell->getPort(ID::A)].push_back(cell);
cell_stats[ID($lut)]++;
}
else
not2drivers[mapped_cell] = driver_lut;
continue;
}
else
log_abort();
if (cell && markgroups) cell->attributes[ID(abcgroup)] = map_autoidx;
continue;
}
cell_stats[mapped_cell->type]++;
RTLIL::Cell *existing_cell = nullptr;
if (mapped_cell->type.in(ID($lut), ID($__ABC9_FF_))) {
if (mapped_cell->type == ID($lut) &&
GetSize(mapped_cell->getPort(ID::A)) == 1 &&
mapped_cell->getParam(ID(LUT)) == RTLIL::Const::from_string("01")) {
SigSpec my_a = module->wires_.at(remap_name(mapped_cell->getPort(ID::A).as_wire()->name));
SigSpec my_y = module->wires_.at(remap_name(mapped_cell->getPort(ID::Y).as_wire()->name));
module->connect(my_y, my_a);
if (markgroups) mapped_cell->attributes[ID(abcgroup)] = map_autoidx;
log_abort();
continue;
}
cell = module->addCell(remap_name(mapped_cell->name), mapped_cell->type);
}
else {
existing_cell = module->cell(mapped_cell->name);
log_assert(existing_cell);
cell = module->addCell(remap_name(mapped_cell->name), mapped_cell->type);
}
if (markgroups) cell->attributes[ID(abcgroup)] = map_autoidx;
if (existing_cell) {
cell->parameters = existing_cell->parameters;
cell->attributes = existing_cell->attributes;
}
else {
cell->parameters = mapped_cell->parameters;
cell->attributes = mapped_cell->attributes;
}
RTLIL::Module* box_module = design->module(mapped_cell->type);
auto abc9_flop = box_module && box_module->attributes.count("\\abc9_flop");
for (auto &conn : mapped_cell->connections()) {
RTLIL::SigSpec newsig;
for (auto c : conn.second.chunks()) {
if (c.width == 0)
continue;
//log_assert(c.width == 1);
if (c.wire)
c.wire = module->wires_.at(remap_name(c.wire->name));
newsig.append(c);
}
cell->setPort(conn.first, newsig);
if (!abc9_flop) {
if (cell->input(conn.first)) {
for (auto i : newsig)
bit2sinks[i].push_back(cell);
for (auto i : conn.second)
bit_users[i].insert(mapped_cell->name);
}
if (cell->output(conn.first))
for (auto i : conn.second)
bit_drivers[i].insert(mapped_cell->name);
}
}
}
for (auto existing_cell : boxes) {
Cell *cell = module->cell(remap_name(existing_cell->name));
if (cell) {
for (auto &conn : existing_cell->connections()) {
if (!conn.second.is_wire())
continue;
Wire *wire = conn.second.as_wire();
if (!wire->get_bool_attribute(ID(abc9_padding)))
continue;
cell->unsetPort(conn.first);
log_debug("Dropping padded port connection for %s (%s) .%s (%s )\n", log_id(cell), cell->type.c_str(), log_id(conn.first), log_signal(conn.second));
}
module->swap_names(cell, existing_cell);
}
module->remove(existing_cell);
}
// Copy connections (and rename) from mapped_mod to module
for (auto conn : mapped_mod->connections()) {
if (!conn.first.is_fully_const()) {
auto chunks = conn.first.chunks();
for (auto &c : chunks)
c.wire = module->wires_.at(remap_name(c.wire->name));
conn.first = std::move(chunks);
}
if (!conn.second.is_fully_const()) {
auto chunks = conn.second.chunks();
for (auto &c : chunks)
if (c.wire)
c.wire = module->wires_.at(remap_name(c.wire->name));
conn.second = std::move(chunks);
}
module->connect(conn);
}
for (auto &it : cell_stats)
log("ABC RESULTS: %15s cells: %8d\n", it.first.c_str(), it.second);
int in_wires = 0, out_wires = 0;
// Stitch in mapped_mod's inputs/outputs into module
for (auto port : mapped_mod->ports) {
RTLIL::Wire *w = mapped_mod->wire(port);
RTLIL::Wire *wire = module->wire(port);
log_assert(wire);
RTLIL::Wire *remap_wire = module->wire(remap_name(port));
RTLIL::SigSpec signal = RTLIL::SigSpec(wire, 0, GetSize(remap_wire));
log_assert(GetSize(signal) >= GetSize(remap_wire));
RTLIL::SigSig conn;
if (w->port_output) {
conn.first = signal;
conn.second = remap_wire;
out_wires++;
module->connect(conn);
}
else if (w->port_input) {
conn.first = remap_wire;
conn.second = signal;
in_wires++;
module->connect(conn);
}
}
for (auto &it : bit_users)
if (bit_drivers.count(it.first))
for (auto driver_cell : bit_drivers.at(it.first))
for (auto user_cell : it.second)
toposort.edge(driver_cell, user_cell);
bool no_loops YS_ATTRIBUTE(unused) = toposort.sort();
log_assert(no_loops);
for (auto ii = toposort.sorted.rbegin(); ii != toposort.sorted.rend(); ii++) {
RTLIL::Cell *not_cell = mapped_mod->cell(*ii);
log_assert(not_cell);
if (not_cell->type != ID($_NOT_))
continue;
auto it = not2drivers.find(not_cell);
if (it == not2drivers.end())
continue;
RTLIL::Cell *driver_lut = it->second;
RTLIL::SigBit a_bit = not_cell->getPort(ID::A);
RTLIL::SigBit y_bit = not_cell->getPort(ID::Y);
RTLIL::Const driver_mask;
a_bit.wire = module->wires_.at(remap_name(a_bit.wire->name));
y_bit.wire = module->wires_.at(remap_name(y_bit.wire->name));
auto jt = bit2sinks.find(a_bit);
if (jt == bit2sinks.end())
goto clone_lut;
for (auto sink_cell : jt->second)
if (sink_cell->type != ID($lut))
goto clone_lut;
// Push downstream LUTs past inverter
for (auto sink_cell : jt->second) {
SigSpec A = sink_cell->getPort(ID::A);
RTLIL::Const mask = sink_cell->getParam(ID(LUT));
int index = 0;
for (; index < GetSize(A); index++)
if (A[index] == a_bit)
break;
log_assert(index < GetSize(A));
int i = 0;
while (i < GetSize(mask)) {
for (int j = 0; j < (1 << index); j++)
std::swap(mask[i+j], mask[i+j+(1 << index)]);
i += 1 << (index+1);
}
A[index] = y_bit;
sink_cell->setPort(ID::A, A);
sink_cell->setParam(ID(LUT), mask);
}
// Since we have rewritten all sinks (which we know
// to be only LUTs) to be after the inverter, we can
// go ahead and clone the LUT with the expectation
// that the original driving LUT will become dangling
// and get cleaned away
clone_lut:
driver_mask = driver_lut->getParam(ID(LUT));
for (auto &b : driver_mask.bits) {
if (b == RTLIL::State::S0) b = RTLIL::State::S1;
else if (b == RTLIL::State::S1) b = RTLIL::State::S0;
}
auto cell = module->addLut(NEW_ID,
driver_lut->getPort(ID::A),
y_bit,
driver_mask);
for (auto &bit : cell->connections_.at(ID::A)) {
bit.wire = module->wires_.at(remap_name(bit.wire->name));
bit2sinks[bit].push_back(cell);
}
}
// Now 'unexpose' those wires by undoing
// the expose operation -- remove them from PO/PI
// and re-connecting them back together
for (auto wire : module->wires()) {
auto it = wire->attributes.find(ID(abc9_scc_break));
if (it != wire->attributes.end()) {
wire->attributes.erase(it);
log_assert(wire->port_output);
wire->port_output = false;
std::string name = wire->name.str();
RTLIL::Wire *i_wire = module->wire(name.substr(0, GetSize(name) - 5));
log_assert(i_wire);
log_assert(i_wire->port_input);
i_wire->port_input = false;
module->connect(i_wire, wire);
}
}
module->fixup_ports();
//log("ABC RESULTS: internal signals: %8d\n", int(signal_list.size()) - in_wires - out_wires);
log("ABC RESULTS: input signals: %8d\n", in_wires);
log("ABC RESULTS: output signals: %8d\n", out_wires);
design->remove(mapped_mod);
}
//else
//{
// log("Don't call ABC as there is nothing to map.\n");
//}
if (cleanup)
{
log("Removing temp directory.\n");
remove_directory(tempdir_name);
}
log_pop();
}
struct Abc9Pass : public Pass {
Abc9Pass() : Pass("abc9", "use ABC9 for technology mapping") { }
void help() YS_OVERRIDE
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" abc9 [options] [selection]\n");
log("\n");
log("This pass uses the ABC tool [1] for technology mapping of yosys's internal gate\n");
log("library to a target architecture.\n");
log("\n");
log(" -exe <command>\n");
#ifdef ABCEXTERNAL
log(" use the specified command instead of \"" ABCEXTERNAL "\" to execute ABC.\n");
#else
log(" use the specified command instead of \"<yosys-bindir>/yosys-abc\" to execute ABC.\n");
#endif
log(" This can e.g. be used to call a specific version of ABC or a wrapper.\n");
log("\n");
log(" -script <file>\n");
log(" use the specified ABC script file instead of the default script.\n");
log("\n");
log(" if <file> starts with a plus sign (+), then the rest of the filename\n");
log(" string is interpreted as the command string to be passed to ABC. The\n");
log(" leading plus sign is removed and all commas (,) in the string are\n");
log(" replaced with blanks before the string is passed to ABC.\n");
log("\n");
log(" if no -script parameter is given, the following scripts are used:\n");
log("\n");
log(" for -lut/-luts (only one LUT size):\n");
log("%s\n", fold_abc9_cmd(ABC_COMMAND_LUT /*"; lutpack {S}"*/).c_str());
log("\n");
log(" for -lut/-luts (different LUT sizes):\n");
log("%s\n", fold_abc9_cmd(ABC_COMMAND_LUT).c_str());
log("\n");
log(" -fast\n");
log(" use different default scripts that are slightly faster (at the cost\n");
log(" of output quality):\n");
log("\n");
log(" for -lut/-luts:\n");
log("%s\n", fold_abc9_cmd(ABC_FAST_COMMAND_LUT).c_str());
log("\n");
log(" -D <picoseconds>\n");
log(" set delay target. the string {D} in the default scripts above is\n");
log(" replaced by this option when used, and an empty string otherwise\n");
log(" (indicating best possible delay).\n");
// log(" This also replaces 'dretime' with 'dretime; retime -o {D}' in the\n");
// log(" default scripts above.\n");
log("\n");
// log(" -S <num>\n");
// log(" maximum number of LUT inputs shared.\n");
// log(" (replaces {S} in the default scripts above, default: -S 1)\n");
// log("\n");
log(" -lut <width>\n");
log(" generate netlist using luts of (max) the specified width.\n");
log("\n");
log(" -lut <w1>:<w2>\n");
log(" generate netlist using luts of (max) the specified width <w2>. All\n");
log(" luts with width <= <w1> have constant cost. for luts larger than <w1>\n");
log(" the area cost doubles with each additional input bit. the delay cost\n");
log(" is still constant for all lut widths.\n");
log("\n");
log(" -lut <file>\n");
log(" pass this file with lut library to ABC.\n");
log("\n");
log(" -luts <cost1>,<cost2>,<cost3>,<sizeN>:<cost4-N>,..\n");
log(" generate netlist using luts. Use the specified costs for luts with 1,\n");
log(" 2, 3, .. inputs.\n");
log("\n");
// log(" -dff\n");
// log(" also pass $_DFF_?_ and $_DFFE_??_ cells through ABC. modules with many\n");
// log(" clock domains are automatically partitioned in clock domains and each\n");
// log(" domain is passed through ABC independently.\n");
// log("\n");
// log(" -clk [!]<clock-signal-name>[,[!]<enable-signal-name>]\n");
// log(" use only the specified clock domain. this is like -dff, but only FF\n");
// log(" cells that belong to the specified clock domain are used.\n");
// log("\n");
// log(" -keepff\n");
// log(" set the \"keep\" attribute on flip-flop output wires. (and thus preserve\n");
// log(" them, for example for equivalence checking.)\n");
// log("\n");
log(" -nocleanup\n");
log(" when this option is used, the temporary files created by this pass\n");
log(" are not removed. this is useful for debugging.\n");
log("\n");
log(" -showtmp\n");
log(" print the temp dir name in log. usually this is suppressed so that the\n");
log(" command output is identical across runs.\n");
log("\n");
log(" -markgroups\n");
log(" set a 'abcgroup' attribute on all objects created by ABC. The value of\n");
log(" this attribute is a unique integer for each ABC process started. This\n");
log(" is useful for debugging the partitioning of clock domains.\n");
log("\n");
log(" -box <file>\n");
log(" pass this file with box library to ABC. Use with -lut.\n");
log("\n");
log("Note that this is a logic optimization pass within Yosys that is calling ABC\n");
log("internally. This is not going to \"run ABC on your design\". It will instead run\n");
log("ABC on logic snippets extracted from your design. You will not get any useful\n");
log("output when passing an ABC script that writes a file. Instead write your full\n");
log("design as an XAIGER file with write_xaiger and then load that into ABC externally\n");
log("if you want to use ABC to convert your design into another format.\n");
log("\n");
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("Delay targets can also be specified on a per clock basis by attaching a\n");
log("'(* abc9_period = <int> *)' attribute onto clock wires (specifically, onto wires\n");
log("that appear inside any special '$abc9_clock' wires inserted by abc9_map.v). This\n");
log("can be achieved by modifying the source directly, or through a `setattr`\n");
log("invocation. Since such attributes cannot yet be propagated through a\n");
log("hierarchical design (whether or not it has been uniquified) it is recommended\n");
log("that the design be flattened when using this feature.\n");
log("\n");
log("[1] http://www.eecs.berkeley.edu/~alanmi/abc/\n");
log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
{
log_header(design, "Executing ABC9 pass (technology mapping using ABC9).\n");
log_push();
#ifdef ABCEXTERNAL
std::string exe_file = ABCEXTERNAL;
#else
std::string exe_file = proc_self_dirname() + "yosys-abc";
#endif
std::string script_file, clk_str, box_file, lut_file;
std::string delay_target, lutin_shared = "-S 1", wire_delay;
bool fast_mode = false, /*dff_mode = false,*/ keepff = false, cleanup = true;
bool show_tempdir = false;
bool nomfs = false;
vector<int> lut_costs;
markgroups = false;
#if 0
cleanup = false;
show_tempdir = true;
#endif
#ifdef _WIN32
#ifndef ABCEXTERNAL
if (!check_file_exists(exe_file + ".exe") && check_file_exists(proc_self_dirname() + "..\\yosys-abc.exe"))
exe_file = proc_self_dirname() + "..\\yosys-abc";
#endif
#endif
size_t argidx;
char pwd [PATH_MAX];
if (!getcwd(pwd, sizeof(pwd))) {
log_cmd_error("getcwd failed: %s\n", strerror(errno));
log_abort();
}
for (argidx = 1; argidx < args.size(); argidx++) {
std::string arg = args[argidx];
if (arg == "-exe" && argidx+1 < args.size()) {
exe_file = args[++argidx];
continue;
}
if (arg == "-script" && argidx+1 < args.size()) {
script_file = args[++argidx];
rewrite_filename(script_file);
if (!script_file.empty() && !is_absolute_path(script_file) && script_file[0] != '+')
script_file = std::string(pwd) + "/" + script_file;
continue;
}
if (arg == "-D" && argidx+1 < args.size()) {
delay_target = "-D " + args[++argidx];
continue;
}
//if (arg == "-S" && argidx+1 < args.size()) {
// lutin_shared = "-S " + args[++argidx];
// continue;
//}
if (arg == "-lut" && argidx+1 < args.size()) {
string arg = args[++argidx];
size_t pos = arg.find_first_of(':');
int lut_mode = 0, lut_mode2 = 0;
if (pos != string::npos) {
lut_mode = atoi(arg.substr(0, pos).c_str());
lut_mode2 = atoi(arg.substr(pos+1).c_str());
} else {
pos = arg.find_first_of('.');
if (pos != string::npos) {
lut_file = arg;
rewrite_filename(lut_file);
if (!lut_file.empty() && !is_absolute_path(lut_file))
lut_file = std::string(pwd) + "/" + lut_file;
}
else {
lut_mode = atoi(arg.c_str());
lut_mode2 = lut_mode;
}
}
lut_costs.clear();
for (int i = 0; i < lut_mode; i++)
lut_costs.push_back(1);
for (int i = lut_mode; i < lut_mode2; i++)
lut_costs.push_back(2 << (i - lut_mode));
continue;
}
if (arg == "-luts" && argidx+1 < args.size()) {
lut_costs.clear();
for (auto &tok : split_tokens(args[++argidx], ",")) {
auto parts = split_tokens(tok, ":");
if (GetSize(parts) == 0 && !lut_costs.empty())
lut_costs.push_back(lut_costs.back());
else if (GetSize(parts) == 1)
lut_costs.push_back(atoi(parts.at(0).c_str()));
else if (GetSize(parts) == 2)
while (GetSize(lut_costs) < atoi(parts.at(0).c_str()))
lut_costs.push_back(atoi(parts.at(1).c_str()));
else
log_cmd_error("Invalid -luts syntax.\n");
}
continue;
}
if (arg == "-fast") {
fast_mode = true;
continue;
}
//if (arg == "-dff") {
// dff_mode = true;
// continue;
//}
//if (arg == "-clk" && argidx+1 < args.size()) {
// clk_str = args[++argidx];
// dff_mode = true;
// continue;
//}
//if (arg == "-keepff") {
// keepff = true;
// continue;
//}
if (arg == "-nocleanup") {
cleanup = false;
continue;
}
if (arg == "-showtmp") {
show_tempdir = true;
continue;
}
if (arg == "-markgroups") {
markgroups = true;
continue;
}
if (arg == "-box" && argidx+1 < args.size()) {
box_file = args[++argidx];
continue;
}
if (arg == "-W" && argidx+1 < args.size()) {
wire_delay = "-W " + args[++argidx];
continue;
}
if (arg == "-nomfs") {
nomfs = true;
continue;
}
break;
}
extra_args(args, argidx, design);
// ABC expects a box file for XAIG
if (box_file.empty())
box_file = "+/dummy.box";
rewrite_filename(box_file);
if (!box_file.empty() && !is_absolute_path(box_file))
box_file = std::string(pwd) + "/" + box_file;
dict<int,IdString> box_lookup;
for (auto m : design->modules()) {
auto it = m->attributes.find(ID(abc9_box_id));
if (it == m->attributes.end())
continue;
if (m->name.begins_with("$paramod"))
continue;
auto id = it->second.as_int();
auto r = box_lookup.insert(std::make_pair(id, m->name));
if (!r.second)
log_error("Module '%s' has the same abc9_box_id = %d value as '%s'.\n",
log_id(m), id, log_id(r.first->second));
log_assert(r.second);
RTLIL::Wire *carry_in = nullptr, *carry_out = nullptr;
for (auto p : m->ports) {
auto w = m->wire(p);
log_assert(w);
if (w->attributes.count(ID(abc9_carry))) {
if (w->port_input) {
if (carry_in)
log_error("Module '%s' contains more than one 'abc9_carry' input port.\n", log_id(m));
carry_in = w;
}
else if (w->port_output) {
if (carry_out)
log_error("Module '%s' contains more than one 'abc9_carry' input port.\n", log_id(m));
carry_out = w;
}
}
}
if (carry_in || carry_out) {
if (carry_in && !carry_out)
log_error("Module '%s' contains an 'abc9_carry' input port but no output port.\n", log_id(m));
if (!carry_in && carry_out)
log_error("Module '%s' contains an 'abc9_carry' output port but no input port.\n", log_id(m));
// Make carry_in the last PI, and carry_out the last PO
// since ABC requires it this way
auto &ports = m->ports;
for (auto it = ports.begin(); it != ports.end(); ) {
RTLIL::Wire* w = m->wire(*it);
log_assert(w);
if (w == carry_in || w == carry_out) {
it = ports.erase(it);
continue;
}
if (w->port_id > carry_in->port_id)
--w->port_id;
if (w->port_id > carry_out->port_id)
--w->port_id;
log_assert(w->port_input || w->port_output);
log_assert(ports[w->port_id-1] == w->name);
++it;
}
ports.push_back(carry_in->name);
carry_in->port_id = ports.size();
ports.push_back(carry_out->name);
carry_out->port_id = ports.size();
}
}
SigMap assign_map;
CellTypes ct(design);
for (auto module : design->selected_modules())
{
if (module->attributes.count(ID(abc9_box_id)))
continue;
if (module->processes.size() > 0) {
log("Skipping module %s as it contains processes.\n", log_id(module));
continue;
}
assign_map.set(module);
std::vector<RTLIL::Cell*> all_cells = module->selected_cells();
pool<RTLIL::Cell*> unassigned_cells(all_cells.begin(), all_cells.end());
pool<RTLIL::Cell*> expand_queue, next_expand_queue;
pool<RTLIL::Cell*> expand_queue_up, next_expand_queue_up;
pool<RTLIL::Cell*> expand_queue_down, next_expand_queue_down;
typedef SigSpec clkdomain_t;
std::map<clkdomain_t, pool<RTLIL::IdString>> assigned_cells;
std::map<RTLIL::Cell*, clkdomain_t> assigned_cells_reverse;
std::map<RTLIL::Cell*, pool<RTLIL::SigBit>> cell_to_bit, cell_to_bit_up, cell_to_bit_down;
std::map<RTLIL::SigBit, pool<RTLIL::Cell*>> bit_to_cell, bit_to_cell_up, bit_to_cell_down;
for (auto cell : all_cells)
for (auto &conn : cell->connections())
for (auto bit : assign_map(conn.second))
if (bit.wire != nullptr) {
cell_to_bit[cell].insert(bit);
bit_to_cell[bit].insert(cell);
if (ct.cell_input(cell->type, conn.first)) {
cell_to_bit_up[cell].insert(bit);
bit_to_cell_down[bit].insert(cell);
}
if (ct.cell_output(cell->type, conn.first)) {
cell_to_bit_down[cell].insert(bit);
bit_to_cell_up[bit].insert(cell);
}
}
for (auto cell : all_cells) {
auto inst_module = design->module(cell->type);
if (!inst_module || !inst_module->attributes.count("\\abc9_flop"))
continue;
Wire *abc9_clock_wire = module->wire(stringf("%s.$abc9_clock", cell->name.c_str()));
if (abc9_clock_wire == NULL)
log_error("'%s$abc9_clock' is not a wire present in module '%s'.\n", cell->name.c_str(), log_id(module));
SigSpec abc9_clock = assign_map(abc9_clock_wire);
unassigned_cells.erase(cell);
expand_queue_up.insert(cell);
clkdomain_t key(abc9_clock);
assigned_cells[key].insert(cell->name);
assigned_cells_reverse[cell] = key;
auto YS_ATTRIBUTE(unused) r2 = cell->attributes.insert(std::make_pair(ID(abc9_mergeability), 1));
log_assert(r2.second);
Wire *abc9_init_wire = module->wire(stringf("%s.$abc9_init", cell->name.c_str()));
if (abc9_init_wire == NULL)
log_error("'%s.$abc9_init' is not a wire present in module '%s'.\n", cell->name.c_str(), log_id(module));
log_assert(GetSize(abc9_init_wire) == 1);
SigSpec abc9_init = assign_map(abc9_init_wire);
if (!abc9_init.is_fully_const())
log_error("'%s.$abc9_init' is not a constant wire present in module '%s'.\n", cell->name.c_str(), log_id(module));
r2 = cell->attributes.insert(std::make_pair(ID(abc9_init), abc9_init.as_const()));
log_assert(r2.second);
// Also assign these special ABC9 cells to the
// same clock domain
for (auto b : cell_to_bit_down[cell])
for (auto c : bit_to_cell_down[b])
if (c->type == "$__ABC9_FF_") {
cell = c;
unassigned_cells.erase(cell);
assigned_cells[key].insert(cell->name);
assigned_cells_reverse[cell] = key;
break;
}
for (auto b : cell_to_bit_down[cell])
for (auto c : bit_to_cell_down[b])
if (c->type == "$__ABC9_ASYNC") {
cell = c;
unassigned_cells.erase(cell);
assigned_cells[key].insert(cell->name);
assigned_cells_reverse[cell] = key;
break;
}
expand_queue.insert(cell);
expand_queue_down.insert(cell);
}
while (!expand_queue_up.empty() || !expand_queue_down.empty())
{
if (!expand_queue_up.empty())
{
RTLIL::Cell *cell = *expand_queue_up.begin();
auto key = assigned_cells_reverse.at(cell);
expand_queue_up.erase(cell);
for (auto bit : cell_to_bit_up[cell])
for (auto c : bit_to_cell_up[bit])
if (unassigned_cells.count(c)) {
unassigned_cells.erase(c);
next_expand_queue_up.insert(c);
assigned_cells[key].insert(c->name);
assigned_cells_reverse[c] = key;
expand_queue.insert(c);
}
}
if (!expand_queue_down.empty())
{
RTLIL::Cell *cell = *expand_queue_down.begin();
auto key = assigned_cells_reverse.at(cell);
expand_queue_down.erase(cell);
for (auto bit : cell_to_bit_down[cell])
for (auto c : bit_to_cell_down[bit])
if (unassigned_cells.count(c)) {
unassigned_cells.erase(c);
next_expand_queue_up.insert(c);
assigned_cells[key].insert(c->name);
assigned_cells_reverse[c] = key;
expand_queue.insert(c);
}
}
if (expand_queue_up.empty() && expand_queue_down.empty()) {
expand_queue_up.swap(next_expand_queue_up);
expand_queue_down.swap(next_expand_queue_down);
}
}
while (!expand_queue.empty())
{
RTLIL::Cell *cell = *expand_queue.begin();
auto key = assigned_cells_reverse.at(cell);
expand_queue.erase(cell);
for (auto bit : cell_to_bit.at(cell)) {
for (auto c : bit_to_cell[bit])
if (unassigned_cells.count(c)) {
unassigned_cells.erase(c);
next_expand_queue.insert(c);
assigned_cells[key].insert(c->name);
assigned_cells_reverse[c] = key;
}
bit_to_cell[bit].clear();
}
if (expand_queue.empty())
expand_queue.swap(next_expand_queue);
}
clkdomain_t key;
for (auto cell : unassigned_cells) {
assigned_cells[key].insert(cell->name);
assigned_cells_reverse[cell] = key;
}
log_header(design, "Summary of detected clock domains:\n");
for (auto &it : assigned_cells)
log(" %d cells in clk=%s\n", GetSize(it.second), log_signal(it.first));
design->selection_stack.emplace_back(false);
design->selected_active_module = module->name.str();
for (auto &it : assigned_cells) {
std::string target = delay_target;
if (target.empty()) {
for (auto b : assign_map(it.first))
if (b.wire) {
auto jt = b.wire->attributes.find("\\abc9_period");
if (jt != b.wire->attributes.end()) {
target = stringf("-D %d", jt->second.as_int());
log("Target period = %s ps for clock domain %s\n", target.c_str(), log_signal(it.first));
break;
}
}
}
RTLIL::Selection& sel = design->selection_stack.back();
sel.selected_members[module->name] = std::move(it.second);
abc9_module(design, module, script_file, exe_file, cleanup, lut_costs, false, "$",
keepff, target, lutin_shared, fast_mode, show_tempdir,
box_file, lut_file, wire_delay, box_lookup, nomfs);
assign_map.set(module);
}
design->selection_stack.pop_back();
design->selected_active_module.clear();
}
log_pop();
}
} Abc9Pass;
PRIVATE_NAMESPACE_END