/* * yosys -- Yosys Open SYnthesis Suite * * Copyright (C) 2012 Clifford Wolf * 2019 Eddie Hung * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ // [[CITE]] ABC // Berkeley Logic Synthesis and Verification Group, ABC: A System for Sequential Synthesis and Verification // http://www.eecs.berkeley.edu/~alanmi/abc/ #if 0 // Based on &flow3 - better QoR but more experimental #define ABC_COMMAND_LUT "&st; &ps -l; &sweep -v; &scorr; " \ "&st; &if {W}; &save; &st; &syn2; &if {W} -v; &save; &load; "\ "&st; &if -g -K 6; &dch -f; &if {W} -v; &save; &load; "\ "&st; &if -g -K 6; &synch2; &if {W} -v; &save; &load; "\ "&mfs; &ps -l" #else #define ABC_COMMAND_LUT "&st; &scorr; &sweep; &dc2; &st; &dch -f; &ps; &if {W} {D} -v; &mfs; &ps -l" #endif #define ABC_FAST_COMMAND_LUT "&st; &if {W} {D}" #include "kernel/register.h" #include "kernel/sigtools.h" #include "kernel/celltypes.h" #include "kernel/cost.h" #include "kernel/log.h" #include #include #include #include #include #include #ifndef _WIN32 # include # include #endif #include "frontends/aiger/aigerparse.h" #include "kernel/utils.h" #ifdef YOSYS_LINK_ABC extern "C" int Abc_RealMain(int argc, char *argv[]); #endif USING_YOSYS_NAMESPACE PRIVATE_NAMESPACE_BEGIN bool markgroups; int map_autoidx; inline std::string remap_name(RTLIL::IdString abc9_name) { return stringf("$abc$%d$%s", map_autoidx, abc9_name.c_str()+1); } void handle_loops(RTLIL::Design *design, RTLIL::Module *module) { Pass::call(design, "scc -set_attr abc9_scc_id {} % w:*"); // For every unique SCC found, (arbitrarily) find the first // cell in the component, and select (and mark) all its output // wires pool ids_seen; for (auto cell : module->cells()) { auto it = cell->attributes.find(ID(abc9_scc_id)); if (it != cell->attributes.end()) { auto r = ids_seen.insert(it->second); if (r.second) { for (auto &c : cell->connections_) { if (c.second.is_fully_const()) continue; if (cell->output(c.first)) { SigBit b = c.second.as_bit(); Wire *w = b.wire; if (w->port_input) { // In this case, hopefully the loop break has been already created // Get the non-prefixed wire Wire *wo = module->wire(stringf("%s.abco", b.wire->name.c_str())); log_assert(wo != nullptr); log_assert(wo->port_output); log_assert(b.offset < GetSize(wo)); c.second = RTLIL::SigBit(wo, b.offset); } else { // Create a new output/input loop break w->port_input = true; w = module->wire(stringf("%s.abco", w->name.c_str())); if (!w) { w = module->addWire(stringf("%s.abco", b.wire->name.c_str()), GetSize(b.wire)); w->port_output = true; } else { log_assert(w->port_input); log_assert(b.offset < GetSize(w)); } w->set_bool_attribute(ID(abc9_scc_break)); c.second = RTLIL::SigBit(w, b.offset); } } } } cell->attributes.erase(it); } } module->fixup_ports(); } std::string add_echos_to_abc9_cmd(std::string str) { std::string new_str, token; for (size_t i = 0; i < str.size(); i++) { token += str[i]; if (str[i] == ';') { while (i+1 < str.size() && str[i+1] == ' ') i++; new_str += "echo + " + token + " " + token + " "; token.clear(); } } if (!token.empty()) { if (!new_str.empty()) new_str += "echo + " + token + "; "; new_str += token; } return new_str; } std::string fold_abc9_cmd(std::string str) { std::string token, new_str = " "; int char_counter = 10; for (size_t i = 0; i <= str.size(); i++) { if (i < str.size()) token += str[i]; if (i == str.size() || str[i] == ';') { if (char_counter + token.size() > 75) new_str += "\n ", char_counter = 14; new_str += token, char_counter += token.size(); token.clear(); } } return new_str; } std::string replace_tempdir(std::string text, std::string tempdir_name, bool show_tempdir) { if (show_tempdir) return text; while (1) { size_t pos = text.find(tempdir_name); if (pos == std::string::npos) break; text = text.substr(0, pos) + "" + text.substr(pos + GetSize(tempdir_name)); } std::string selfdir_name = proc_self_dirname(); if (selfdir_name != "/") { while (1) { size_t pos = text.find(selfdir_name); if (pos == std::string::npos) break; text = text.substr(0, pos) + "/" + text.substr(pos + GetSize(selfdir_name)); } } return text; } struct abc9_output_filter { bool got_cr; int escape_seq_state; std::string linebuf; std::string tempdir_name; bool show_tempdir; abc9_output_filter(std::string tempdir_name, bool show_tempdir) : tempdir_name(tempdir_name), show_tempdir(show_tempdir) { got_cr = false; escape_seq_state = 0; } void next_char(char ch) { if (escape_seq_state == 0 && ch == '\033') { escape_seq_state = 1; return; } if (escape_seq_state == 1) { escape_seq_state = ch == '[' ? 2 : 0; return; } if (escape_seq_state == 2) { if ((ch < '0' || '9' < ch) && ch != ';') escape_seq_state = 0; return; } escape_seq_state = 0; if (ch == '\r') { got_cr = true; return; } if (ch == '\n') { log("ABC: %s\n", replace_tempdir(linebuf, tempdir_name, show_tempdir).c_str()); got_cr = false, linebuf.clear(); return; } if (got_cr) got_cr = false, linebuf.clear(); linebuf += ch; } void next_line(const std::string &line) { //int pi, po; //if (sscanf(line.c_str(), "Start-point = pi%d. End-point = po%d.", &pi, &po) == 2) { // log("ABC: Start-point = pi%d (%s). End-point = po%d (%s).\n", // pi, pi_map.count(pi) ? pi_map.at(pi).c_str() : "???", // po, po_map.count(po) ? po_map.at(po).c_str() : "???"); // return; //} for (char ch : line) next_char(ch); } }; void abc9_module(RTLIL::Design *design, RTLIL::Module *module, std::string script_file, std::string exe_file, bool cleanup, vector lut_costs, bool /*dff_mode*/, std::string /*clk_str*/, bool /*keepff*/, std::string delay_target, std::string /*lutin_shared*/, bool fast_mode, bool show_tempdir, std::string box_file, std::string lut_file, std::string wire_delay, const dict &box_lookup, bool nomfs ) { map_autoidx = autoidx++; std::string tempdir_name = "/tmp/yosys-abc-XXXXXX"; if (!cleanup) tempdir_name[0] = tempdir_name[4] = '_'; tempdir_name = make_temp_dir(tempdir_name); log_header(design, "Extracting gate netlist of module `%s' to `%s/input.xaig'..\n", module->name.c_str(), replace_tempdir(tempdir_name, tempdir_name, show_tempdir).c_str()); std::string abc9_script; if (!lut_costs.empty()) { abc9_script += stringf("read_lut %s/lutdefs.txt; ", tempdir_name.c_str()); if (!box_file.empty()) abc9_script += stringf("read_box -v %s; ", box_file.c_str()); } else if (!lut_file.empty()) { abc9_script += stringf("read_lut %s; ", lut_file.c_str()); if (!box_file.empty()) abc9_script += stringf("read_box -v %s; ", box_file.c_str()); } else log_abort(); abc9_script += stringf("&read %s/input.xaig; &ps; ", tempdir_name.c_str()); if (!script_file.empty()) { if (script_file[0] == '+') { for (size_t i = 1; i < script_file.size(); i++) if (script_file[i] == '\'') abc9_script += "'\\''"; else if (script_file[i] == ',') abc9_script += " "; else abc9_script += script_file[i]; } else abc9_script += stringf("source %s", script_file.c_str()); } else if (!lut_costs.empty() || !lut_file.empty()) { //bool all_luts_cost_same = true; //for (int this_cost : lut_costs) // if (this_cost != lut_costs.front()) // all_luts_cost_same = false; abc9_script += fast_mode ? ABC_FAST_COMMAND_LUT : ABC_COMMAND_LUT; //if (all_luts_cost_same && !fast_mode) // abc9_script += "; lutpack {S}"; } else log_abort(); //if (script_file.empty() && !delay_target.empty()) // for (size_t pos = abc9_script.find("dretime;"); pos != std::string::npos; pos = abc9_script.find("dretime;", pos+1)) // abc9_script = abc9_script.substr(0, pos) + "dretime; retime -o {D};" + abc9_script.substr(pos+8); for (size_t pos = abc9_script.find("{D}"); pos != std::string::npos; pos = abc9_script.find("{D}", pos)) abc9_script = abc9_script.substr(0, pos) + delay_target + abc9_script.substr(pos+3); //for (size_t pos = abc9_script.find("{S}"); pos != std::string::npos; pos = abc9_script.find("{S}", pos)) // abc9_script = abc9_script.substr(0, pos) + lutin_shared + abc9_script.substr(pos+3); for (size_t pos = abc9_script.find("{W}"); pos != std::string::npos; pos = abc9_script.find("{W}", pos)) abc9_script = abc9_script.substr(0, pos) + wire_delay + abc9_script.substr(pos+3); if (nomfs) for (size_t pos = abc9_script.find("&mfs"); pos != std::string::npos; pos = abc9_script.find("&mfs", pos)) abc9_script = abc9_script.erase(pos, strlen("&mfs")); abc9_script += stringf("; &write -n %s/output.aig", tempdir_name.c_str()); abc9_script = add_echos_to_abc9_cmd(abc9_script); for (size_t i = 0; i+1 < abc9_script.size(); i++) if (abc9_script[i] == ';' && abc9_script[i+1] == ' ') abc9_script[i+1] = '\n'; FILE *f = fopen(stringf("%s/abc.script", tempdir_name.c_str()).c_str(), "wt"); fprintf(f, "%s\n", abc9_script.c_str()); fclose(f); //bool count_output = false; log_push(); //if (count_output) { handle_loops(design, module); Pass::call(design, "aigmap -select"); //log("Extracted %d gates and %d wires to a netlist network with %d inputs and %d outputs.\n", // count_gates, GetSize(signal_list), count_input, count_output); Pass::call(design, stringf("write_xaiger -map %s/input.sym %s/input.xaig", tempdir_name.c_str(), tempdir_name.c_str())); std::string buffer; std::ifstream ifs; #if 0 buffer = stringf("%s/%s", tempdir_name.c_str(), "input.xaig"); ifs.open(buffer); if (ifs.fail()) log_error("Can't open ABC output file `%s'.\n", buffer.c_str()); buffer = stringf("%s/%s", tempdir_name.c_str(), "input.sym"); log_assert(!design->module(ID($__abc9__))); { AigerReader reader(design, ifs, ID($__abc9__), "" /* clk_name */, buffer.c_str() /* map_filename */, true /* wideports */); reader.parse_xaiger(box_lookup); } ifs.close(); Pass::call_on_module(design, design->module(ID($__abc9__)), stringf("write_verilog -noexpr -norename -selected")); design->remove(design->module(ID($__abc9__))); #endif log_header(design, "Executing ABC9.\n"); if (!lut_costs.empty()) { buffer = stringf("%s/lutdefs.txt", tempdir_name.c_str()); f = fopen(buffer.c_str(), "wt"); if (f == NULL) log_error("Opening %s for writing failed: %s\n", buffer.c_str(), strerror(errno)); for (int i = 0; i < GetSize(lut_costs); i++) fprintf(f, "%d %d.00 1.00\n", i+1, lut_costs.at(i)); fclose(f); } buffer = stringf("%s -s -f %s/abc.script 2>&1", exe_file.c_str(), tempdir_name.c_str()); log("Running ABC command: %s\n", replace_tempdir(buffer, tempdir_name, show_tempdir).c_str()); #ifndef YOSYS_LINK_ABC abc9_output_filter filt(tempdir_name, show_tempdir); int ret = run_command(buffer, std::bind(&abc9_output_filter::next_line, filt, std::placeholders::_1)); #else // These needs to be mutable, supposedly due to getopt char *abc9_argv[5]; string tmp_script_name = stringf("%s/abc.script", tempdir_name.c_str()); abc9_argv[0] = strdup(exe_file.c_str()); abc9_argv[1] = strdup("-s"); abc9_argv[2] = strdup("-f"); abc9_argv[3] = strdup(tmp_script_name.c_str()); abc9_argv[4] = 0; int ret = Abc_RealMain(4, abc9_argv); free(abc9_argv[0]); free(abc9_argv[1]); free(abc9_argv[2]); free(abc9_argv[3]); #endif if (ret != 0) log_error("ABC: execution of command \"%s\" failed: return code %d.\n", buffer.c_str(), ret); buffer = stringf("%s/%s", tempdir_name.c_str(), "output.aig"); ifs.open(buffer, std::ifstream::binary); if (ifs.fail()) log_error("Can't open ABC output file `%s'.\n", buffer.c_str()); buffer = stringf("%s/%s", tempdir_name.c_str(), "input.sym"); log_assert(!design->module(ID($__abc9__))); AigerReader reader(design, ifs, ID($__abc9__), "" /* clk_name */, buffer.c_str() /* map_filename */, true /* wideports */); reader.parse_xaiger(box_lookup); ifs.close(); #if 0 Pass::call_on_module(design, design->module(ID($__abc9__)), stringf("write_verilog -noexpr -norename -selected")); #endif log_header(design, "Re-integrating ABC9 results.\n"); RTLIL::Module *mapped_mod = design->module(ID($__abc9__)); if (mapped_mod == NULL) log_error("ABC output file does not contain a module `$__abc9__'.\n"); for (auto &it : mapped_mod->wires_) { RTLIL::Wire *w = it.second; RTLIL::Wire *remap_wire = module->addWire(remap_name(w->name), GetSize(w)); if (markgroups) remap_wire->attributes[ID(abcgroup)] = map_autoidx; } dict abc9_box; vector boxes; for (auto cell : module->selected_cells()) { if (cell->type.in(ID($_AND_), ID($_NOT_), ID($__ABC9_FF_))) { module->remove(cell); continue; } auto jt = abc9_box.find(cell->type); if (jt == abc9_box.end()) { RTLIL::Module* box_module = design->module(cell->type); jt = abc9_box.insert(std::make_pair(cell->type, box_module && box_module->attributes.count(ID(abc9_box_id)))).first; } if (jt->second) boxes.emplace_back(cell); } dict> bit_drivers, bit_users; TopoSort toposort; dict not2drivers; dict> bit2sinks; std::map cell_stats; for (auto mapped_cell : mapped_mod->cells()) { toposort.node(mapped_cell->name); RTLIL::Cell *cell = nullptr; if (mapped_cell->type == ID($_NOT_)) { RTLIL::SigBit a_bit = mapped_cell->getPort(ID::A); RTLIL::SigBit y_bit = mapped_cell->getPort(ID::Y); bit_users[a_bit].insert(mapped_cell->name); bit_drivers[y_bit].insert(mapped_cell->name); if (!a_bit.wire) { mapped_cell->setPort(ID::Y, module->addWire(NEW_ID)); RTLIL::Wire *wire = module->wire(remap_name(y_bit.wire->name)); log_assert(wire); module->connect(RTLIL::SigBit(wire, y_bit.offset), State::S1); } else if (!lut_costs.empty() || !lut_file.empty()) { RTLIL::Cell* driver_lut = nullptr; // ABC can return NOT gates that drive POs if (!a_bit.wire->port_input) { // If it's not a NOT gate that that comes from a PI directly, // find the driver LUT and clone that to guarantee that we won't // increase the max logic depth // (TODO: Optimise by not cloning unless will increase depth) RTLIL::IdString driver_name; if (GetSize(a_bit.wire) == 1) driver_name = stringf("%s$lut", a_bit.wire->name.c_str()); else driver_name = stringf("%s[%d]$lut", a_bit.wire->name.c_str(), a_bit.offset); driver_lut = mapped_mod->cell(driver_name); } if (!driver_lut) { // If a driver couldn't be found (could be from PI or box CI) // then implement using a LUT cell = module->addLut(remap_name(stringf("%s$lut", mapped_cell->name.c_str())), RTLIL::SigBit(module->wires_.at(remap_name(a_bit.wire->name)), a_bit.offset), RTLIL::SigBit(module->wires_.at(remap_name(y_bit.wire->name)), y_bit.offset), RTLIL::Const::from_string("01")); bit2sinks[cell->getPort(ID::A)].push_back(cell); cell_stats[ID($lut)]++; } else not2drivers[mapped_cell] = driver_lut; continue; } else log_abort(); if (cell && markgroups) cell->attributes[ID(abcgroup)] = map_autoidx; continue; } cell_stats[mapped_cell->type]++; RTLIL::Cell *existing_cell = nullptr; if (mapped_cell->type.in(ID($lut), ID($__ABC9_FF_))) { if (mapped_cell->type == ID($lut) && GetSize(mapped_cell->getPort(ID::A)) == 1 && mapped_cell->getParam(ID(LUT)) == RTLIL::Const::from_string("01")) { SigSpec my_a = module->wires_.at(remap_name(mapped_cell->getPort(ID::A).as_wire()->name)); SigSpec my_y = module->wires_.at(remap_name(mapped_cell->getPort(ID::Y).as_wire()->name)); module->connect(my_y, my_a); if (markgroups) mapped_cell->attributes[ID(abcgroup)] = map_autoidx; log_abort(); continue; } cell = module->addCell(remap_name(mapped_cell->name), mapped_cell->type); } else { existing_cell = module->cell(mapped_cell->name); log_assert(existing_cell); cell = module->addCell(remap_name(mapped_cell->name), mapped_cell->type); } if (markgroups) cell->attributes[ID(abcgroup)] = map_autoidx; if (existing_cell) { cell->parameters = existing_cell->parameters; cell->attributes = existing_cell->attributes; } else { cell->parameters = mapped_cell->parameters; cell->attributes = mapped_cell->attributes; } RTLIL::Module* box_module = design->module(mapped_cell->type); auto abc9_flop = box_module && box_module->attributes.count("\\abc9_flop"); for (auto &conn : mapped_cell->connections()) { RTLIL::SigSpec newsig; for (auto c : conn.second.chunks()) { if (c.width == 0) continue; //log_assert(c.width == 1); if (c.wire) c.wire = module->wires_.at(remap_name(c.wire->name)); newsig.append(c); } cell->setPort(conn.first, newsig); if (!abc9_flop) { if (cell->input(conn.first)) { for (auto i : newsig) bit2sinks[i].push_back(cell); for (auto i : conn.second) bit_users[i].insert(mapped_cell->name); } if (cell->output(conn.first)) for (auto i : conn.second) bit_drivers[i].insert(mapped_cell->name); } } } for (auto existing_cell : boxes) { Cell *cell = module->cell(remap_name(existing_cell->name)); if (cell) { for (auto &conn : existing_cell->connections()) { if (!conn.second.is_wire()) continue; Wire *wire = conn.second.as_wire(); if (!wire->get_bool_attribute(ID(abc9_padding))) continue; cell->unsetPort(conn.first); log_debug("Dropping padded port connection for %s (%s) .%s (%s )\n", log_id(cell), cell->type.c_str(), log_id(conn.first), log_signal(conn.second)); } module->swap_names(cell, existing_cell); } module->remove(existing_cell); } // Copy connections (and rename) from mapped_mod to module for (auto conn : mapped_mod->connections()) { if (!conn.first.is_fully_const()) { auto chunks = conn.first.chunks(); for (auto &c : chunks) c.wire = module->wires_.at(remap_name(c.wire->name)); conn.first = std::move(chunks); } if (!conn.second.is_fully_const()) { auto chunks = conn.second.chunks(); for (auto &c : chunks) if (c.wire) c.wire = module->wires_.at(remap_name(c.wire->name)); conn.second = std::move(chunks); } module->connect(conn); } for (auto &it : cell_stats) log("ABC RESULTS: %15s cells: %8d\n", it.first.c_str(), it.second); int in_wires = 0, out_wires = 0; // Stitch in mapped_mod's inputs/outputs into module for (auto port : mapped_mod->ports) { RTLIL::Wire *w = mapped_mod->wire(port); RTLIL::Wire *wire = module->wire(port); log_assert(wire); RTLIL::Wire *remap_wire = module->wire(remap_name(port)); RTLIL::SigSpec signal = RTLIL::SigSpec(wire, 0, GetSize(remap_wire)); log_assert(GetSize(signal) >= GetSize(remap_wire)); RTLIL::SigSig conn; if (w->port_output) { conn.first = signal; conn.second = remap_wire; out_wires++; module->connect(conn); } else if (w->port_input) { conn.first = remap_wire; conn.second = signal; in_wires++; module->connect(conn); } } for (auto &it : bit_users) if (bit_drivers.count(it.first)) for (auto driver_cell : bit_drivers.at(it.first)) for (auto user_cell : it.second) toposort.edge(driver_cell, user_cell); bool no_loops YS_ATTRIBUTE(unused) = toposort.sort(); log_assert(no_loops); for (auto ii = toposort.sorted.rbegin(); ii != toposort.sorted.rend(); ii++) { RTLIL::Cell *not_cell = mapped_mod->cell(*ii); log_assert(not_cell); if (not_cell->type != ID($_NOT_)) continue; auto it = not2drivers.find(not_cell); if (it == not2drivers.end()) continue; RTLIL::Cell *driver_lut = it->second; RTLIL::SigBit a_bit = not_cell->getPort(ID::A); RTLIL::SigBit y_bit = not_cell->getPort(ID::Y); RTLIL::Const driver_mask; a_bit.wire = module->wires_.at(remap_name(a_bit.wire->name)); y_bit.wire = module->wires_.at(remap_name(y_bit.wire->name)); auto jt = bit2sinks.find(a_bit); if (jt == bit2sinks.end()) goto clone_lut; for (auto sink_cell : jt->second) if (sink_cell->type != ID($lut)) goto clone_lut; // Push downstream LUTs past inverter for (auto sink_cell : jt->second) { SigSpec A = sink_cell->getPort(ID::A); RTLIL::Const mask = sink_cell->getParam(ID(LUT)); int index = 0; for (; index < GetSize(A); index++) if (A[index] == a_bit) break; log_assert(index < GetSize(A)); int i = 0; while (i < GetSize(mask)) { for (int j = 0; j < (1 << index); j++) std::swap(mask[i+j], mask[i+j+(1 << index)]); i += 1 << (index+1); } A[index] = y_bit; sink_cell->setPort(ID::A, A); sink_cell->setParam(ID(LUT), mask); } // Since we have rewritten all sinks (which we know // to be only LUTs) to be after the inverter, we can // go ahead and clone the LUT with the expectation // that the original driving LUT will become dangling // and get cleaned away clone_lut: driver_mask = driver_lut->getParam(ID(LUT)); for (auto &b : driver_mask.bits) { if (b == RTLIL::State::S0) b = RTLIL::State::S1; else if (b == RTLIL::State::S1) b = RTLIL::State::S0; } auto cell = module->addLut(NEW_ID, driver_lut->getPort(ID::A), y_bit, driver_mask); for (auto &bit : cell->connections_.at(ID::A)) { bit.wire = module->wires_.at(remap_name(bit.wire->name)); bit2sinks[bit].push_back(cell); } } // Now 'unexpose' those wires by undoing // the expose operation -- remove them from PO/PI // and re-connecting them back together for (auto wire : module->wires()) { auto it = wire->attributes.find(ID(abc9_scc_break)); if (it != wire->attributes.end()) { wire->attributes.erase(it); log_assert(wire->port_output); wire->port_output = false; std::string name = wire->name.str(); RTLIL::Wire *i_wire = module->wire(name.substr(0, GetSize(name) - 5)); log_assert(i_wire); log_assert(i_wire->port_input); i_wire->port_input = false; module->connect(i_wire, wire); } } module->fixup_ports(); //log("ABC RESULTS: internal signals: %8d\n", int(signal_list.size()) - in_wires - out_wires); log("ABC RESULTS: input signals: %8d\n", in_wires); log("ABC RESULTS: output signals: %8d\n", out_wires); design->remove(mapped_mod); } //else //{ // log("Don't call ABC as there is nothing to map.\n"); //} if (cleanup) { log("Removing temp directory.\n"); remove_directory(tempdir_name); } log_pop(); } struct Abc9Pass : public Pass { Abc9Pass() : Pass("abc9", "use ABC9 for technology mapping") { } void help() YS_OVERRIDE { // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("\n"); log(" abc9 [options] [selection]\n"); log("\n"); log("This pass uses the ABC tool [1] for technology mapping of yosys's internal gate\n"); log("library to a target architecture.\n"); log("\n"); log(" -exe \n"); #ifdef ABCEXTERNAL log(" use the specified command instead of \"" ABCEXTERNAL "\" to execute ABC.\n"); #else log(" use the specified command instead of \"/yosys-abc\" to execute ABC.\n"); #endif log(" This can e.g. be used to call a specific version of ABC or a wrapper.\n"); log("\n"); log(" -script \n"); log(" use the specified ABC script file instead of the default script.\n"); log("\n"); log(" if starts with a plus sign (+), then the rest of the filename\n"); log(" string is interpreted as the command string to be passed to ABC. The\n"); log(" leading plus sign is removed and all commas (,) in the string are\n"); log(" replaced with blanks before the string is passed to ABC.\n"); log("\n"); log(" if no -script parameter is given, the following scripts are used:\n"); log("\n"); log(" for -lut/-luts (only one LUT size):\n"); log("%s\n", fold_abc9_cmd(ABC_COMMAND_LUT /*"; lutpack {S}"*/).c_str()); log("\n"); log(" for -lut/-luts (different LUT sizes):\n"); log("%s\n", fold_abc9_cmd(ABC_COMMAND_LUT).c_str()); log("\n"); log(" -fast\n"); log(" use different default scripts that are slightly faster (at the cost\n"); log(" of output quality):\n"); log("\n"); log(" for -lut/-luts:\n"); log("%s\n", fold_abc9_cmd(ABC_FAST_COMMAND_LUT).c_str()); log("\n"); log(" -D \n"); log(" set delay target. the string {D} in the default scripts above is\n"); log(" replaced by this option when used, and an empty string otherwise\n"); log(" (indicating best possible delay).\n"); // log(" This also replaces 'dretime' with 'dretime; retime -o {D}' in the\n"); // log(" default scripts above.\n"); log("\n"); // log(" -S \n"); // log(" maximum number of LUT inputs shared.\n"); // log(" (replaces {S} in the default scripts above, default: -S 1)\n"); // log("\n"); log(" -lut \n"); log(" generate netlist using luts of (max) the specified width.\n"); log("\n"); log(" -lut :\n"); log(" generate netlist using luts of (max) the specified width . All\n"); log(" luts with width <= have constant cost. for luts larger than \n"); log(" the area cost doubles with each additional input bit. the delay cost\n"); log(" is still constant for all lut widths.\n"); log("\n"); log(" -lut \n"); log(" pass this file with lut library to ABC.\n"); log("\n"); log(" -luts ,,,:,..\n"); log(" generate netlist using luts. Use the specified costs for luts with 1,\n"); log(" 2, 3, .. inputs.\n"); log("\n"); // log(" -dff\n"); // log(" also pass $_DFF_?_ and $_DFFE_??_ cells through ABC. modules with many\n"); // log(" clock domains are automatically partitioned in clock domains and each\n"); // log(" domain is passed through ABC independently.\n"); // log("\n"); // log(" -clk [!][,[!]]\n"); // log(" use only the specified clock domain. this is like -dff, but only FF\n"); // log(" cells that belong to the specified clock domain are used.\n"); // log("\n"); // log(" -keepff\n"); // log(" set the \"keep\" attribute on flip-flop output wires. (and thus preserve\n"); // log(" them, for example for equivalence checking.)\n"); // log("\n"); log(" -nocleanup\n"); log(" when this option is used, the temporary files created by this pass\n"); log(" are not removed. this is useful for debugging.\n"); log("\n"); log(" -showtmp\n"); log(" print the temp dir name in log. usually this is suppressed so that the\n"); log(" command output is identical across runs.\n"); log("\n"); log(" -markgroups\n"); log(" set a 'abcgroup' attribute on all objects created by ABC. The value of\n"); log(" this attribute is a unique integer for each ABC process started. This\n"); log(" is useful for debugging the partitioning of clock domains.\n"); log("\n"); log(" -box \n"); log(" pass this file with box library to ABC. Use with -lut.\n"); log("\n"); log("Note that this is a logic optimization pass within Yosys that is calling ABC\n"); log("internally. This is not going to \"run ABC on your design\". It will instead run\n"); log("ABC on logic snippets extracted from your design. You will not get any useful\n"); log("output when passing an ABC script that writes a file. Instead write your full\n"); log("design as an XAIGER file with write_xaiger and then load that into ABC externally\n"); log("if you want to use ABC to convert your design into another format.\n"); log("\n"); // |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---| log("Delay targets can also be specified on a per clock basis by attaching a\n"); log("'(* abc9_period = *)' attribute onto clock wires (specifically, onto wires\n"); log("that appear inside any special '$abc9_clock' wires inserted by abc9_map.v). This\n"); log("can be achieved by modifying the source directly, or through a `setattr`\n"); log("invocation. Since such attributes cannot yet be propagated through a\n"); log("hierarchical design (whether or not it has been uniquified) it is recommended\n"); log("that the design be flattened when using this feature.\n"); log("\n"); log("[1] http://www.eecs.berkeley.edu/~alanmi/abc/\n"); log("\n"); } void execute(std::vector args, RTLIL::Design *design) YS_OVERRIDE { log_header(design, "Executing ABC9 pass (technology mapping using ABC9).\n"); log_push(); #ifdef ABCEXTERNAL std::string exe_file = ABCEXTERNAL; #else std::string exe_file = proc_self_dirname() + "yosys-abc"; #endif std::string script_file, clk_str, box_file, lut_file; std::string delay_target, lutin_shared = "-S 1", wire_delay; bool fast_mode = false, /*dff_mode = false,*/ keepff = false, cleanup = true; bool show_tempdir = false; bool nomfs = false; vector lut_costs; markgroups = false; #if 0 cleanup = false; show_tempdir = true; #endif #ifdef _WIN32 #ifndef ABCEXTERNAL if (!check_file_exists(exe_file + ".exe") && check_file_exists(proc_self_dirname() + "..\\yosys-abc.exe")) exe_file = proc_self_dirname() + "..\\yosys-abc"; #endif #endif size_t argidx; char pwd [PATH_MAX]; if (!getcwd(pwd, sizeof(pwd))) { log_cmd_error("getcwd failed: %s\n", strerror(errno)); log_abort(); } for (argidx = 1; argidx < args.size(); argidx++) { std::string arg = args[argidx]; if (arg == "-exe" && argidx+1 < args.size()) { exe_file = args[++argidx]; continue; } if (arg == "-script" && argidx+1 < args.size()) { script_file = args[++argidx]; rewrite_filename(script_file); if (!script_file.empty() && !is_absolute_path(script_file) && script_file[0] != '+') script_file = std::string(pwd) + "/" + script_file; continue; } if (arg == "-D" && argidx+1 < args.size()) { delay_target = "-D " + args[++argidx]; continue; } //if (arg == "-S" && argidx+1 < args.size()) { // lutin_shared = "-S " + args[++argidx]; // continue; //} if (arg == "-lut" && argidx+1 < args.size()) { string arg = args[++argidx]; size_t pos = arg.find_first_of(':'); int lut_mode = 0, lut_mode2 = 0; if (pos != string::npos) { lut_mode = atoi(arg.substr(0, pos).c_str()); lut_mode2 = atoi(arg.substr(pos+1).c_str()); } else { pos = arg.find_first_of('.'); if (pos != string::npos) { lut_file = arg; rewrite_filename(lut_file); if (!lut_file.empty() && !is_absolute_path(lut_file)) lut_file = std::string(pwd) + "/" + lut_file; } else { lut_mode = atoi(arg.c_str()); lut_mode2 = lut_mode; } } lut_costs.clear(); for (int i = 0; i < lut_mode; i++) lut_costs.push_back(1); for (int i = lut_mode; i < lut_mode2; i++) lut_costs.push_back(2 << (i - lut_mode)); continue; } if (arg == "-luts" && argidx+1 < args.size()) { lut_costs.clear(); for (auto &tok : split_tokens(args[++argidx], ",")) { auto parts = split_tokens(tok, ":"); if (GetSize(parts) == 0 && !lut_costs.empty()) lut_costs.push_back(lut_costs.back()); else if (GetSize(parts) == 1) lut_costs.push_back(atoi(parts.at(0).c_str())); else if (GetSize(parts) == 2) while (GetSize(lut_costs) < atoi(parts.at(0).c_str())) lut_costs.push_back(atoi(parts.at(1).c_str())); else log_cmd_error("Invalid -luts syntax.\n"); } continue; } if (arg == "-fast") { fast_mode = true; continue; } //if (arg == "-dff") { // dff_mode = true; // continue; //} //if (arg == "-clk" && argidx+1 < args.size()) { // clk_str = args[++argidx]; // dff_mode = true; // continue; //} //if (arg == "-keepff") { // keepff = true; // continue; //} if (arg == "-nocleanup") { cleanup = false; continue; } if (arg == "-showtmp") { show_tempdir = true; continue; } if (arg == "-markgroups") { markgroups = true; continue; } if (arg == "-box" && argidx+1 < args.size()) { box_file = args[++argidx]; continue; } if (arg == "-W" && argidx+1 < args.size()) { wire_delay = "-W " + args[++argidx]; continue; } if (arg == "-nomfs") { nomfs = true; continue; } break; } extra_args(args, argidx, design); // ABC expects a box file for XAIG if (box_file.empty()) box_file = "+/dummy.box"; rewrite_filename(box_file); if (!box_file.empty() && !is_absolute_path(box_file)) box_file = std::string(pwd) + "/" + box_file; dict box_lookup; for (auto m : design->modules()) { auto it = m->attributes.find(ID(abc9_box_id)); if (it == m->attributes.end()) continue; if (m->name.begins_with("$paramod")) continue; auto id = it->second.as_int(); auto r = box_lookup.insert(std::make_pair(id, m->name)); if (!r.second) log_error("Module '%s' has the same abc9_box_id = %d value as '%s'.\n", log_id(m), id, log_id(r.first->second)); log_assert(r.second); RTLIL::Wire *carry_in = nullptr, *carry_out = nullptr; for (auto p : m->ports) { auto w = m->wire(p); log_assert(w); if (w->attributes.count(ID(abc9_carry))) { if (w->port_input) { if (carry_in) log_error("Module '%s' contains more than one 'abc9_carry' input port.\n", log_id(m)); carry_in = w; } else if (w->port_output) { if (carry_out) log_error("Module '%s' contains more than one 'abc9_carry' input port.\n", log_id(m)); carry_out = w; } } } if (carry_in || carry_out) { if (carry_in && !carry_out) log_error("Module '%s' contains an 'abc9_carry' input port but no output port.\n", log_id(m)); if (!carry_in && carry_out) log_error("Module '%s' contains an 'abc9_carry' output port but no input port.\n", log_id(m)); // Make carry_in the last PI, and carry_out the last PO // since ABC requires it this way auto &ports = m->ports; for (auto it = ports.begin(); it != ports.end(); ) { RTLIL::Wire* w = m->wire(*it); log_assert(w); if (w == carry_in || w == carry_out) { it = ports.erase(it); continue; } if (w->port_id > carry_in->port_id) --w->port_id; if (w->port_id > carry_out->port_id) --w->port_id; log_assert(w->port_input || w->port_output); log_assert(ports[w->port_id-1] == w->name); ++it; } ports.push_back(carry_in->name); carry_in->port_id = ports.size(); ports.push_back(carry_out->name); carry_out->port_id = ports.size(); } } SigMap assign_map; CellTypes ct(design); for (auto module : design->selected_modules()) { if (module->attributes.count(ID(abc9_box_id))) continue; if (module->processes.size() > 0) { log("Skipping module %s as it contains processes.\n", log_id(module)); continue; } assign_map.set(module); std::vector all_cells = module->selected_cells(); pool unassigned_cells(all_cells.begin(), all_cells.end()); pool expand_queue, next_expand_queue; pool expand_queue_up, next_expand_queue_up; pool expand_queue_down, next_expand_queue_down; typedef SigSpec clkdomain_t; std::map> assigned_cells; std::map assigned_cells_reverse; std::map> cell_to_bit, cell_to_bit_up, cell_to_bit_down; std::map> bit_to_cell, bit_to_cell_up, bit_to_cell_down; for (auto cell : all_cells) for (auto &conn : cell->connections()) for (auto bit : assign_map(conn.second)) if (bit.wire != nullptr) { cell_to_bit[cell].insert(bit); bit_to_cell[bit].insert(cell); if (ct.cell_input(cell->type, conn.first)) { cell_to_bit_up[cell].insert(bit); bit_to_cell_down[bit].insert(cell); } if (ct.cell_output(cell->type, conn.first)) { cell_to_bit_down[cell].insert(bit); bit_to_cell_up[bit].insert(cell); } } for (auto cell : all_cells) { auto inst_module = design->module(cell->type); if (!inst_module || !inst_module->attributes.count("\\abc9_flop")) continue; Wire *abc9_clock_wire = module->wire(stringf("%s.$abc9_clock", cell->name.c_str())); if (abc9_clock_wire == NULL) log_error("'%s$abc9_clock' is not a wire present in module '%s'.\n", cell->name.c_str(), log_id(module)); SigSpec abc9_clock = assign_map(abc9_clock_wire); unassigned_cells.erase(cell); expand_queue_up.insert(cell); clkdomain_t key(abc9_clock); assigned_cells[key].insert(cell->name); assigned_cells_reverse[cell] = key; auto YS_ATTRIBUTE(unused) r2 = cell->attributes.insert(std::make_pair(ID(abc9_mergeability), 1)); log_assert(r2.second); Wire *abc9_init_wire = module->wire(stringf("%s.$abc9_init", cell->name.c_str())); if (abc9_init_wire == NULL) log_error("'%s.$abc9_init' is not a wire present in module '%s'.\n", cell->name.c_str(), log_id(module)); log_assert(GetSize(abc9_init_wire) == 1); SigSpec abc9_init = assign_map(abc9_init_wire); if (!abc9_init.is_fully_const()) log_error("'%s.$abc9_init' is not a constant wire present in module '%s'.\n", cell->name.c_str(), log_id(module)); r2 = cell->attributes.insert(std::make_pair(ID(abc9_init), abc9_init.as_const())); log_assert(r2.second); // Also assign these special ABC9 cells to the // same clock domain for (auto b : cell_to_bit_down[cell]) for (auto c : bit_to_cell_down[b]) if (c->type == "$__ABC9_FF_") { cell = c; unassigned_cells.erase(cell); assigned_cells[key].insert(cell->name); assigned_cells_reverse[cell] = key; break; } for (auto b : cell_to_bit_down[cell]) for (auto c : bit_to_cell_down[b]) if (c->type == "$__ABC9_ASYNC") { cell = c; unassigned_cells.erase(cell); assigned_cells[key].insert(cell->name); assigned_cells_reverse[cell] = key; break; } expand_queue.insert(cell); expand_queue_down.insert(cell); } while (!expand_queue_up.empty() || !expand_queue_down.empty()) { if (!expand_queue_up.empty()) { RTLIL::Cell *cell = *expand_queue_up.begin(); auto key = assigned_cells_reverse.at(cell); expand_queue_up.erase(cell); for (auto bit : cell_to_bit_up[cell]) for (auto c : bit_to_cell_up[bit]) if (unassigned_cells.count(c)) { unassigned_cells.erase(c); next_expand_queue_up.insert(c); assigned_cells[key].insert(c->name); assigned_cells_reverse[c] = key; expand_queue.insert(c); } } if (!expand_queue_down.empty()) { RTLIL::Cell *cell = *expand_queue_down.begin(); auto key = assigned_cells_reverse.at(cell); expand_queue_down.erase(cell); for (auto bit : cell_to_bit_down[cell]) for (auto c : bit_to_cell_down[bit]) if (unassigned_cells.count(c)) { unassigned_cells.erase(c); next_expand_queue_up.insert(c); assigned_cells[key].insert(c->name); assigned_cells_reverse[c] = key; expand_queue.insert(c); } } if (expand_queue_up.empty() && expand_queue_down.empty()) { expand_queue_up.swap(next_expand_queue_up); expand_queue_down.swap(next_expand_queue_down); } } while (!expand_queue.empty()) { RTLIL::Cell *cell = *expand_queue.begin(); auto key = assigned_cells_reverse.at(cell); expand_queue.erase(cell); for (auto bit : cell_to_bit.at(cell)) { for (auto c : bit_to_cell[bit]) if (unassigned_cells.count(c)) { unassigned_cells.erase(c); next_expand_queue.insert(c); assigned_cells[key].insert(c->name); assigned_cells_reverse[c] = key; } bit_to_cell[bit].clear(); } if (expand_queue.empty()) expand_queue.swap(next_expand_queue); } clkdomain_t key; for (auto cell : unassigned_cells) { assigned_cells[key].insert(cell->name); assigned_cells_reverse[cell] = key; } log_header(design, "Summary of detected clock domains:\n"); for (auto &it : assigned_cells) log(" %d cells in clk=%s\n", GetSize(it.second), log_signal(it.first)); design->selection_stack.emplace_back(false); design->selected_active_module = module->name.str(); for (auto &it : assigned_cells) { std::string target = delay_target; if (target.empty()) { for (auto b : assign_map(it.first)) if (b.wire) { auto jt = b.wire->attributes.find("\\abc9_period"); if (jt != b.wire->attributes.end()) { target = stringf("-D %d", jt->second.as_int()); log("Target period = %s ps for clock domain %s\n", target.c_str(), log_signal(it.first)); break; } } } RTLIL::Selection& sel = design->selection_stack.back(); sel.selected_members[module->name] = std::move(it.second); abc9_module(design, module, script_file, exe_file, cleanup, lut_costs, false, "$", keepff, target, lutin_shared, fast_mode, show_tempdir, box_file, lut_file, wire_delay, box_lookup, nomfs); assign_map.set(module); } design->selection_stack.pop_back(); design->selected_active_module.clear(); } log_pop(); } } Abc9Pass; PRIVATE_NAMESPACE_END