mirror of https://github.com/YosysHQ/yosys.git
967 lines
36 KiB
Verilog
967 lines
36 KiB
Verilog
//----------------------------------------------------------------------------
|
|
// Copyright (C) 2009 , Olivier Girard
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions
|
|
// are met:
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
// * Neither the name of the authors nor the names of its contributors
|
|
// may be used to endorse or promote products derived from this software
|
|
// without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
|
|
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
// THE POSSIBILITY OF SUCH DAMAGE
|
|
//
|
|
//----------------------------------------------------------------------------
|
|
//
|
|
// *File Name: omsp_frontend.v
|
|
//
|
|
// *Module Description:
|
|
// openMSP430 Instruction fetch and decode unit
|
|
//
|
|
// *Author(s):
|
|
// - Olivier Girard, olgirard@gmail.com
|
|
//
|
|
//----------------------------------------------------------------------------
|
|
// $Rev: 134 $
|
|
// $LastChangedBy: olivier.girard $
|
|
// $LastChangedDate: 2012-03-22 21:31:06 +0100 (Thu, 22 Mar 2012) $
|
|
//----------------------------------------------------------------------------
|
|
`ifdef OMSP_NO_INCLUDE
|
|
`else
|
|
`include "openMSP430_defines.v"
|
|
`endif
|
|
|
|
module omsp_frontend (
|
|
|
|
// OUTPUTs
|
|
dbg_halt_st, // Halt/Run status from CPU
|
|
decode_noirq, // Frontend decode instruction
|
|
e_state, // Execution state
|
|
exec_done, // Execution completed
|
|
inst_ad, // Decoded Inst: destination addressing mode
|
|
inst_as, // Decoded Inst: source addressing mode
|
|
inst_alu, // ALU control signals
|
|
inst_bw, // Decoded Inst: byte width
|
|
inst_dest, // Decoded Inst: destination (one hot)
|
|
inst_dext, // Decoded Inst: destination extended instruction word
|
|
inst_irq_rst, // Decoded Inst: Reset interrupt
|
|
inst_jmp, // Decoded Inst: Conditional jump
|
|
inst_mov, // Decoded Inst: mov instruction
|
|
inst_sext, // Decoded Inst: source extended instruction word
|
|
inst_so, // Decoded Inst: Single-operand arithmetic
|
|
inst_src, // Decoded Inst: source (one hot)
|
|
inst_type, // Decoded Instruction type
|
|
irq_acc, // Interrupt request accepted (one-hot signal)
|
|
mab, // Frontend Memory address bus
|
|
mb_en, // Frontend Memory bus enable
|
|
mclk_enable, // Main System Clock enable
|
|
mclk_wkup, // Main System Clock wake-up (asynchronous)
|
|
nmi_acc, // Non-Maskable interrupt request accepted
|
|
pc, // Program counter
|
|
pc_nxt, // Next PC value (for CALL & IRQ)
|
|
|
|
// INPUTs
|
|
cpu_en_s, // Enable CPU code execution (synchronous)
|
|
cpuoff, // Turns off the CPU
|
|
dbg_halt_cmd, // Halt CPU command
|
|
dbg_reg_sel, // Debug selected register for rd/wr access
|
|
fe_pmem_wait, // Frontend wait for Instruction fetch
|
|
gie, // General interrupt enable
|
|
irq, // Maskable interrupts
|
|
mclk, // Main system clock
|
|
mdb_in, // Frontend Memory data bus input
|
|
nmi_pnd, // Non-maskable interrupt pending
|
|
nmi_wkup, // NMI Wakeup
|
|
pc_sw, // Program counter software value
|
|
pc_sw_wr, // Program counter software write
|
|
puc_rst, // Main system reset
|
|
scan_enable, // Scan enable (active during scan shifting)
|
|
wdt_irq, // Watchdog-timer interrupt
|
|
wdt_wkup, // Watchdog Wakeup
|
|
wkup // System Wake-up (asynchronous)
|
|
);
|
|
|
|
// OUTPUTs
|
|
//=========
|
|
output dbg_halt_st; // Halt/Run status from CPU
|
|
output decode_noirq; // Frontend decode instruction
|
|
output [3:0] e_state; // Execution state
|
|
output exec_done; // Execution completed
|
|
output [7:0] inst_ad; // Decoded Inst: destination addressing mode
|
|
output [7:0] inst_as; // Decoded Inst: source addressing mode
|
|
output [11:0] inst_alu; // ALU control signals
|
|
output inst_bw; // Decoded Inst: byte width
|
|
output [15:0] inst_dest; // Decoded Inst: destination (one hot)
|
|
output [15:0] inst_dext; // Decoded Inst: destination extended instruction word
|
|
output inst_irq_rst; // Decoded Inst: Reset interrupt
|
|
output [7:0] inst_jmp; // Decoded Inst: Conditional jump
|
|
output inst_mov; // Decoded Inst: mov instruction
|
|
output [15:0] inst_sext; // Decoded Inst: source extended instruction word
|
|
output [7:0] inst_so; // Decoded Inst: Single-operand arithmetic
|
|
output [15:0] inst_src; // Decoded Inst: source (one hot)
|
|
output [2:0] inst_type; // Decoded Instruction type
|
|
output [13:0] irq_acc; // Interrupt request accepted (one-hot signal)
|
|
output [15:0] mab; // Frontend Memory address bus
|
|
output mb_en; // Frontend Memory bus enable
|
|
output mclk_enable; // Main System Clock enable
|
|
output mclk_wkup; // Main System Clock wake-up (asynchronous)
|
|
output nmi_acc; // Non-Maskable interrupt request accepted
|
|
output [15:0] pc; // Program counter
|
|
output [15:0] pc_nxt; // Next PC value (for CALL & IRQ)
|
|
|
|
// INPUTs
|
|
//=========
|
|
input cpu_en_s; // Enable CPU code execution (synchronous)
|
|
input cpuoff; // Turns off the CPU
|
|
input dbg_halt_cmd; // Halt CPU command
|
|
input [3:0] dbg_reg_sel; // Debug selected register for rd/wr access
|
|
input fe_pmem_wait; // Frontend wait for Instruction fetch
|
|
input gie; // General interrupt enable
|
|
input [13:0] irq; // Maskable interrupts
|
|
input mclk; // Main system clock
|
|
input [15:0] mdb_in; // Frontend Memory data bus input
|
|
input nmi_pnd; // Non-maskable interrupt pending
|
|
input nmi_wkup; // NMI Wakeup
|
|
input [15:0] pc_sw; // Program counter software value
|
|
input pc_sw_wr; // Program counter software write
|
|
input puc_rst; // Main system reset
|
|
input scan_enable; // Scan enable (active during scan shifting)
|
|
input wdt_irq; // Watchdog-timer interrupt
|
|
input wdt_wkup; // Watchdog Wakeup
|
|
input wkup; // System Wake-up (asynchronous)
|
|
|
|
|
|
//=============================================================================
|
|
// 1) UTILITY FUNCTIONS
|
|
//=============================================================================
|
|
|
|
// 16 bits one-hot decoder
|
|
function [15:0] one_hot16;
|
|
input [3:0] binary;
|
|
begin
|
|
one_hot16 = 16'h0000;
|
|
one_hot16[binary] = 1'b1;
|
|
end
|
|
endfunction
|
|
|
|
// 8 bits one-hot decoder
|
|
function [7:0] one_hot8;
|
|
input [2:0] binary;
|
|
begin
|
|
one_hot8 = 8'h00;
|
|
one_hot8[binary] = 1'b1;
|
|
end
|
|
endfunction
|
|
|
|
|
|
//=============================================================================
|
|
// 2) PARAMETER DEFINITIONS
|
|
//=============================================================================
|
|
|
|
//
|
|
// 2.1) Instruction State machine definitons
|
|
//-------------------------------------------
|
|
|
|
parameter I_IRQ_FETCH = `I_IRQ_FETCH;
|
|
parameter I_IRQ_DONE = `I_IRQ_DONE;
|
|
parameter I_DEC = `I_DEC; // New instruction ready for decode
|
|
parameter I_EXT1 = `I_EXT1; // 1st Extension word
|
|
parameter I_EXT2 = `I_EXT2; // 2nd Extension word
|
|
parameter I_IDLE = `I_IDLE; // CPU is in IDLE mode
|
|
|
|
//
|
|
// 2.2) Execution State machine definitons
|
|
//-------------------------------------------
|
|
|
|
parameter E_IRQ_0 = `E_IRQ_0;
|
|
parameter E_IRQ_1 = `E_IRQ_1;
|
|
parameter E_IRQ_2 = `E_IRQ_2;
|
|
parameter E_IRQ_3 = `E_IRQ_3;
|
|
parameter E_IRQ_4 = `E_IRQ_4;
|
|
parameter E_SRC_AD = `E_SRC_AD;
|
|
parameter E_SRC_RD = `E_SRC_RD;
|
|
parameter E_SRC_WR = `E_SRC_WR;
|
|
parameter E_DST_AD = `E_DST_AD;
|
|
parameter E_DST_RD = `E_DST_RD;
|
|
parameter E_DST_WR = `E_DST_WR;
|
|
parameter E_EXEC = `E_EXEC;
|
|
parameter E_JUMP = `E_JUMP;
|
|
parameter E_IDLE = `E_IDLE;
|
|
|
|
|
|
//=============================================================================
|
|
// 3) FRONTEND STATE MACHINE
|
|
//=============================================================================
|
|
|
|
// The wire "conv" is used as state bits to calculate the next response
|
|
reg [2:0] i_state;
|
|
reg [2:0] i_state_nxt;
|
|
|
|
reg [1:0] inst_sz;
|
|
wire [1:0] inst_sz_nxt;
|
|
wire irq_detect;
|
|
wire [2:0] inst_type_nxt;
|
|
wire is_const;
|
|
reg [15:0] sconst_nxt;
|
|
reg [3:0] e_state_nxt;
|
|
|
|
// CPU on/off through the debug interface or cpu_en port
|
|
wire cpu_halt_cmd = dbg_halt_cmd | ~cpu_en_s;
|
|
|
|
// States Transitions
|
|
always @(i_state or inst_sz or inst_sz_nxt or pc_sw_wr or exec_done or
|
|
irq_detect or cpuoff or cpu_halt_cmd or e_state)
|
|
case(i_state)
|
|
I_IDLE : i_state_nxt = (irq_detect & ~cpu_halt_cmd) ? I_IRQ_FETCH :
|
|
(~cpuoff & ~cpu_halt_cmd) ? I_DEC : I_IDLE;
|
|
I_IRQ_FETCH: i_state_nxt = I_IRQ_DONE;
|
|
I_IRQ_DONE : i_state_nxt = I_DEC;
|
|
I_DEC : i_state_nxt = irq_detect ? I_IRQ_FETCH :
|
|
(cpuoff | cpu_halt_cmd) & exec_done ? I_IDLE :
|
|
cpu_halt_cmd & (e_state==E_IDLE) ? I_IDLE :
|
|
pc_sw_wr ? I_DEC :
|
|
~exec_done & ~(e_state==E_IDLE) ? I_DEC : // Wait in decode state
|
|
(inst_sz_nxt!=2'b00) ? I_EXT1 : I_DEC; // until execution is completed
|
|
I_EXT1 : i_state_nxt = pc_sw_wr ? I_DEC :
|
|
(inst_sz!=2'b01) ? I_EXT2 : I_DEC;
|
|
I_EXT2 : i_state_nxt = I_DEC;
|
|
// pragma coverage off
|
|
default : i_state_nxt = I_IRQ_FETCH;
|
|
// pragma coverage on
|
|
endcase
|
|
|
|
// State machine
|
|
always @(posedge mclk or posedge puc_rst)
|
|
if (puc_rst) i_state <= I_IRQ_FETCH;
|
|
else i_state <= i_state_nxt;
|
|
|
|
// Utility signals
|
|
wire decode_noirq = ((i_state==I_DEC) & (exec_done | (e_state==E_IDLE)));
|
|
wire decode = decode_noirq | irq_detect;
|
|
wire fetch = ~((i_state==I_DEC) & ~(exec_done | (e_state==E_IDLE))) & ~(e_state_nxt==E_IDLE);
|
|
|
|
// Debug interface cpu status
|
|
reg dbg_halt_st;
|
|
always @(posedge mclk or posedge puc_rst)
|
|
if (puc_rst) dbg_halt_st <= 1'b0;
|
|
else dbg_halt_st <= cpu_halt_cmd & (i_state_nxt==I_IDLE);
|
|
|
|
|
|
//=============================================================================
|
|
// 4) INTERRUPT HANDLING & SYSTEM WAKEUP
|
|
//=============================================================================
|
|
|
|
//
|
|
// 4.1) INTERRUPT HANDLING
|
|
//-----------------------------------------
|
|
|
|
// Detect reset interrupt
|
|
reg inst_irq_rst;
|
|
always @(posedge mclk or posedge puc_rst)
|
|
if (puc_rst) inst_irq_rst <= 1'b1;
|
|
else if (exec_done) inst_irq_rst <= 1'b0;
|
|
|
|
// Detect other interrupts
|
|
assign irq_detect = (nmi_pnd | ((|irq | wdt_irq) & gie)) & ~cpu_halt_cmd & ~dbg_halt_st & (exec_done | (i_state==I_IDLE));
|
|
|
|
`ifdef CLOCK_GATING
|
|
wire mclk_irq_num;
|
|
omsp_clock_gate clock_gate_irq_num (.gclk(mclk_irq_num),
|
|
.clk (mclk), .enable(irq_detect), .scan_enable(scan_enable));
|
|
`else
|
|
wire mclk_irq_num = mclk;
|
|
`endif
|
|
|
|
// Select interrupt vector
|
|
reg [3:0] irq_num;
|
|
always @(posedge mclk_irq_num or posedge puc_rst)
|
|
if (puc_rst) irq_num <= 4'hf;
|
|
`ifdef CLOCK_GATING
|
|
else irq_num <= nmi_pnd ? 4'he :
|
|
`else
|
|
else if (irq_detect) irq_num <= nmi_pnd ? 4'he :
|
|
`endif
|
|
irq[13] ? 4'hd :
|
|
irq[12] ? 4'hc :
|
|
irq[11] ? 4'hb :
|
|
(irq[10] | wdt_irq) ? 4'ha :
|
|
irq[9] ? 4'h9 :
|
|
irq[8] ? 4'h8 :
|
|
irq[7] ? 4'h7 :
|
|
irq[6] ? 4'h6 :
|
|
irq[5] ? 4'h5 :
|
|
irq[4] ? 4'h4 :
|
|
irq[3] ? 4'h3 :
|
|
irq[2] ? 4'h2 :
|
|
irq[1] ? 4'h1 :
|
|
irq[0] ? 4'h0 : 4'hf;
|
|
|
|
wire [15:0] irq_addr = {11'h7ff, irq_num, 1'b0};
|
|
|
|
// Interrupt request accepted
|
|
wire [15:0] irq_acc_all = one_hot16(irq_num) & {16{(i_state==I_IRQ_FETCH)}};
|
|
wire [13:0] irq_acc = irq_acc_all[13:0];
|
|
wire nmi_acc = irq_acc_all[14];
|
|
|
|
//
|
|
// 4.2) SYSTEM WAKEUP
|
|
//-----------------------------------------
|
|
`ifdef CPUOFF_EN
|
|
|
|
// Generate the main system clock enable signal
|
|
// Keep the clock running if:
|
|
wire mclk_enable = inst_irq_rst ? cpu_en_s : // - the RESET interrupt is currently executing
|
|
// and if the CPU is enabled
|
|
// otherwise if:
|
|
~((cpuoff | ~cpu_en_s) & // - the CPUOFF flag, cpu_en command, instruction
|
|
(i_state==I_IDLE) & // and execution state machines are all two
|
|
(e_state==E_IDLE)); // not idle.
|
|
|
|
|
|
// Wakeup condition from maskable interrupts
|
|
wire mirq_wkup;
|
|
omsp_and_gate and_mirq_wkup (.y(mirq_wkup), .a(wkup | wdt_wkup), .b(gie));
|
|
|
|
// Combined asynchronous wakeup detection from nmi & irq (masked if the cpu is disabled)
|
|
omsp_and_gate and_mclk_wkup (.y(mclk_wkup), .a(nmi_wkup | mirq_wkup), .b(cpu_en_s));
|
|
|
|
`else
|
|
|
|
// In the CPUOFF feature is disabled, the wake-up and enable signals are always 1
|
|
assign mclk_wkup = 1'b1;
|
|
assign mclk_enable = 1'b1;
|
|
`endif
|
|
|
|
//=============================================================================
|
|
// 5) FETCH INSTRUCTION
|
|
//=============================================================================
|
|
|
|
//
|
|
// 5.1) PROGRAM COUNTER & MEMORY INTERFACE
|
|
//-----------------------------------------
|
|
|
|
// Program counter
|
|
reg [15:0] pc;
|
|
|
|
// Compute next PC value
|
|
wire [15:0] pc_incr = pc + {14'h0000, fetch, 1'b0};
|
|
wire [15:0] pc_nxt = pc_sw_wr ? pc_sw :
|
|
(i_state==I_IRQ_FETCH) ? irq_addr :
|
|
(i_state==I_IRQ_DONE) ? mdb_in : pc_incr;
|
|
|
|
`ifdef CLOCK_GATING
|
|
wire pc_en = fetch |
|
|
pc_sw_wr |
|
|
(i_state==I_IRQ_FETCH) |
|
|
(i_state==I_IRQ_DONE);
|
|
wire mclk_pc;
|
|
omsp_clock_gate clock_gate_pc (.gclk(mclk_pc),
|
|
.clk (mclk), .enable(pc_en), .scan_enable(scan_enable));
|
|
`else
|
|
wire mclk_pc = mclk;
|
|
`endif
|
|
|
|
always @(posedge mclk_pc or posedge puc_rst)
|
|
if (puc_rst) pc <= 16'h0000;
|
|
else pc <= pc_nxt;
|
|
|
|
// Check if ROM has been busy in order to retry ROM access
|
|
reg pmem_busy;
|
|
always @(posedge mclk or posedge puc_rst)
|
|
if (puc_rst) pmem_busy <= 1'b0;
|
|
else pmem_busy <= fe_pmem_wait;
|
|
|
|
// Memory interface
|
|
wire [15:0] mab = pc_nxt;
|
|
wire mb_en = fetch | pc_sw_wr | (i_state==I_IRQ_FETCH) | pmem_busy | (dbg_halt_st & ~cpu_halt_cmd);
|
|
|
|
|
|
//
|
|
// 5.2) INSTRUCTION REGISTER
|
|
//--------------------------------
|
|
|
|
// Instruction register
|
|
wire [15:0] ir = mdb_in;
|
|
|
|
// Detect if source extension word is required
|
|
wire is_sext = (inst_as[`IDX] | inst_as[`SYMB] | inst_as[`ABS] | inst_as[`IMM]);
|
|
|
|
// For the Symbolic addressing mode, add -2 to the extension word in order
|
|
// to make up for the PC address
|
|
wire [15:0] ext_incr = ((i_state==I_EXT1) & inst_as[`SYMB]) |
|
|
((i_state==I_EXT2) & inst_ad[`SYMB]) |
|
|
((i_state==I_EXT1) & ~inst_as[`SYMB] &
|
|
~(i_state_nxt==I_EXT2) & inst_ad[`SYMB]) ? 16'hfffe : 16'h0000;
|
|
|
|
wire [15:0] ext_nxt = ir + ext_incr;
|
|
|
|
// Store source extension word
|
|
reg [15:0] inst_sext;
|
|
|
|
`ifdef CLOCK_GATING
|
|
wire inst_sext_en = (decode & is_const) |
|
|
(decode & inst_type_nxt[`INST_JMP]) |
|
|
((i_state==I_EXT1) & is_sext);
|
|
wire mclk_inst_sext;
|
|
omsp_clock_gate clock_gate_inst_sext (.gclk(mclk_inst_sext),
|
|
.clk (mclk), .enable(inst_sext_en), .scan_enable(scan_enable));
|
|
`else
|
|
wire mclk_inst_sext = mclk;
|
|
`endif
|
|
|
|
always @(posedge mclk_inst_sext or posedge puc_rst)
|
|
if (puc_rst) inst_sext <= 16'h0000;
|
|
else if (decode & is_const) inst_sext <= sconst_nxt;
|
|
else if (decode & inst_type_nxt[`INST_JMP]) inst_sext <= {{5{ir[9]}},ir[9:0],1'b0};
|
|
`ifdef CLOCK_GATING
|
|
else inst_sext <= ext_nxt;
|
|
`else
|
|
else if ((i_state==I_EXT1) & is_sext) inst_sext <= ext_nxt;
|
|
`endif
|
|
|
|
// Source extension word is ready
|
|
wire inst_sext_rdy = (i_state==I_EXT1) & is_sext;
|
|
|
|
|
|
// Store destination extension word
|
|
reg [15:0] inst_dext;
|
|
|
|
`ifdef CLOCK_GATING
|
|
wire inst_dext_en = ((i_state==I_EXT1) & ~is_sext) |
|
|
(i_state==I_EXT2);
|
|
wire mclk_inst_dext;
|
|
omsp_clock_gate clock_gate_inst_dext (.gclk(mclk_inst_dext),
|
|
.clk (mclk), .enable(inst_dext_en), .scan_enable(scan_enable));
|
|
`else
|
|
wire mclk_inst_dext = mclk;
|
|
`endif
|
|
|
|
always @(posedge mclk_inst_dext or posedge puc_rst)
|
|
if (puc_rst) inst_dext <= 16'h0000;
|
|
else if ((i_state==I_EXT1) & ~is_sext) inst_dext <= ext_nxt;
|
|
`ifdef CLOCK_GATING
|
|
else inst_dext <= ext_nxt;
|
|
`else
|
|
else if (i_state==I_EXT2) inst_dext <= ext_nxt;
|
|
`endif
|
|
|
|
// Destination extension word is ready
|
|
wire inst_dext_rdy = (((i_state==I_EXT1) & ~is_sext) | (i_state==I_EXT2));
|
|
|
|
|
|
//=============================================================================
|
|
// 6) DECODE INSTRUCTION
|
|
//=============================================================================
|
|
|
|
`ifdef CLOCK_GATING
|
|
wire mclk_decode;
|
|
omsp_clock_gate clock_gate_decode (.gclk(mclk_decode),
|
|
.clk (mclk), .enable(decode), .scan_enable(scan_enable));
|
|
`else
|
|
wire mclk_decode = mclk;
|
|
`endif
|
|
|
|
//
|
|
// 6.1) OPCODE: INSTRUCTION TYPE
|
|
//----------------------------------------
|
|
// Instructions type is encoded in a one hot fashion as following:
|
|
//
|
|
// 3'b001: Single-operand arithmetic
|
|
// 3'b010: Conditional jump
|
|
// 3'b100: Two-operand arithmetic
|
|
|
|
reg [2:0] inst_type;
|
|
assign inst_type_nxt = {(ir[15:14]!=2'b00),
|
|
(ir[15:13]==3'b001),
|
|
(ir[15:13]==3'b000)} & {3{~irq_detect}};
|
|
|
|
always @(posedge mclk_decode or posedge puc_rst)
|
|
if (puc_rst) inst_type <= 3'b000;
|
|
`ifdef CLOCK_GATING
|
|
else inst_type <= inst_type_nxt;
|
|
`else
|
|
else if (decode) inst_type <= inst_type_nxt;
|
|
`endif
|
|
|
|
//
|
|
// 6.2) OPCODE: SINGLE-OPERAND ARITHMETIC
|
|
//----------------------------------------
|
|
// Instructions are encoded in a one hot fashion as following:
|
|
//
|
|
// 8'b00000001: RRC
|
|
// 8'b00000010: SWPB
|
|
// 8'b00000100: RRA
|
|
// 8'b00001000: SXT
|
|
// 8'b00010000: PUSH
|
|
// 8'b00100000: CALL
|
|
// 8'b01000000: RETI
|
|
// 8'b10000000: IRQ
|
|
|
|
reg [7:0] inst_so;
|
|
wire [7:0] inst_so_nxt = irq_detect ? 8'h80 : (one_hot8(ir[9:7]) & {8{inst_type_nxt[`INST_SO]}});
|
|
|
|
always @(posedge mclk_decode or posedge puc_rst)
|
|
if (puc_rst) inst_so <= 8'h00;
|
|
`ifdef CLOCK_GATING
|
|
else inst_so <= inst_so_nxt;
|
|
`else
|
|
else if (decode) inst_so <= inst_so_nxt;
|
|
`endif
|
|
|
|
//
|
|
// 6.3) OPCODE: CONDITIONAL JUMP
|
|
//--------------------------------
|
|
// Instructions are encoded in a one hot fashion as following:
|
|
//
|
|
// 8'b00000001: JNE/JNZ
|
|
// 8'b00000010: JEQ/JZ
|
|
// 8'b00000100: JNC/JLO
|
|
// 8'b00001000: JC/JHS
|
|
// 8'b00010000: JN
|
|
// 8'b00100000: JGE
|
|
// 8'b01000000: JL
|
|
// 8'b10000000: JMP
|
|
|
|
reg [2:0] inst_jmp_bin;
|
|
always @(posedge mclk_decode or posedge puc_rst)
|
|
if (puc_rst) inst_jmp_bin <= 3'h0;
|
|
`ifdef CLOCK_GATING
|
|
else inst_jmp_bin <= ir[12:10];
|
|
`else
|
|
else if (decode) inst_jmp_bin <= ir[12:10];
|
|
`endif
|
|
|
|
wire [7:0] inst_jmp = one_hot8(inst_jmp_bin) & {8{inst_type[`INST_JMP]}};
|
|
|
|
|
|
//
|
|
// 6.4) OPCODE: TWO-OPERAND ARITHMETIC
|
|
//-------------------------------------
|
|
// Instructions are encoded in a one hot fashion as following:
|
|
//
|
|
// 12'b000000000001: MOV
|
|
// 12'b000000000010: ADD
|
|
// 12'b000000000100: ADDC
|
|
// 12'b000000001000: SUBC
|
|
// 12'b000000010000: SUB
|
|
// 12'b000000100000: CMP
|
|
// 12'b000001000000: DADD
|
|
// 12'b000010000000: BIT
|
|
// 12'b000100000000: BIC
|
|
// 12'b001000000000: BIS
|
|
// 12'b010000000000: XOR
|
|
// 12'b100000000000: AND
|
|
|
|
wire [15:0] inst_to_1hot = one_hot16(ir[15:12]) & {16{inst_type_nxt[`INST_TO]}};
|
|
wire [11:0] inst_to_nxt = inst_to_1hot[15:4];
|
|
|
|
reg inst_mov;
|
|
always @(posedge mclk_decode or posedge puc_rst)
|
|
if (puc_rst) inst_mov <= 1'b0;
|
|
`ifdef CLOCK_GATING
|
|
else inst_mov <= inst_to_nxt[`MOV];
|
|
`else
|
|
else if (decode) inst_mov <= inst_to_nxt[`MOV];
|
|
`endif
|
|
|
|
|
|
//
|
|
// 6.5) SOURCE AND DESTINATION REGISTERS
|
|
//---------------------------------------
|
|
|
|
// Destination register
|
|
reg [3:0] inst_dest_bin;
|
|
always @(posedge mclk_decode or posedge puc_rst)
|
|
if (puc_rst) inst_dest_bin <= 4'h0;
|
|
`ifdef CLOCK_GATING
|
|
else inst_dest_bin <= ir[3:0];
|
|
`else
|
|
else if (decode) inst_dest_bin <= ir[3:0];
|
|
`endif
|
|
|
|
wire [15:0] inst_dest = dbg_halt_st ? one_hot16(dbg_reg_sel) :
|
|
inst_type[`INST_JMP] ? 16'h0001 :
|
|
inst_so[`IRQ] |
|
|
inst_so[`PUSH] |
|
|
inst_so[`CALL] ? 16'h0002 :
|
|
one_hot16(inst_dest_bin);
|
|
|
|
|
|
// Source register
|
|
reg [3:0] inst_src_bin;
|
|
always @(posedge mclk_decode or posedge puc_rst)
|
|
if (puc_rst) inst_src_bin <= 4'h0;
|
|
`ifdef CLOCK_GATING
|
|
else inst_src_bin <= ir[11:8];
|
|
`else
|
|
else if (decode) inst_src_bin <= ir[11:8];
|
|
`endif
|
|
|
|
wire [15:0] inst_src = inst_type[`INST_TO] ? one_hot16(inst_src_bin) :
|
|
inst_so[`RETI] ? 16'h0002 :
|
|
inst_so[`IRQ] ? 16'h0001 :
|
|
inst_type[`INST_SO] ? one_hot16(inst_dest_bin) : 16'h0000;
|
|
|
|
|
|
//
|
|
// 6.6) SOURCE ADDRESSING MODES
|
|
//--------------------------------
|
|
// Source addressing modes are encoded in a one hot fashion as following:
|
|
//
|
|
// 13'b0000000000001: Register direct.
|
|
// 13'b0000000000010: Register indexed.
|
|
// 13'b0000000000100: Register indirect.
|
|
// 13'b0000000001000: Register indirect autoincrement.
|
|
// 13'b0000000010000: Symbolic (operand is in memory at address PC+x).
|
|
// 13'b0000000100000: Immediate (operand is next word in the instruction stream).
|
|
// 13'b0000001000000: Absolute (operand is in memory at address x).
|
|
// 13'b0000010000000: Constant 4.
|
|
// 13'b0000100000000: Constant 8.
|
|
// 13'b0001000000000: Constant 0.
|
|
// 13'b0010000000000: Constant 1.
|
|
// 13'b0100000000000: Constant 2.
|
|
// 13'b1000000000000: Constant -1.
|
|
|
|
reg [12:0] inst_as_nxt;
|
|
|
|
wire [3:0] src_reg = inst_type_nxt[`INST_SO] ? ir[3:0] : ir[11:8];
|
|
|
|
always @(src_reg or ir or inst_type_nxt)
|
|
begin
|
|
if (inst_type_nxt[`INST_JMP])
|
|
inst_as_nxt = 13'b0000000000001;
|
|
else if (src_reg==4'h3) // Addressing mode using R3
|
|
case (ir[5:4])
|
|
2'b11 : inst_as_nxt = 13'b1000000000000;
|
|
2'b10 : inst_as_nxt = 13'b0100000000000;
|
|
2'b01 : inst_as_nxt = 13'b0010000000000;
|
|
default: inst_as_nxt = 13'b0001000000000;
|
|
endcase
|
|
else if (src_reg==4'h2) // Addressing mode using R2
|
|
case (ir[5:4])
|
|
2'b11 : inst_as_nxt = 13'b0000100000000;
|
|
2'b10 : inst_as_nxt = 13'b0000010000000;
|
|
2'b01 : inst_as_nxt = 13'b0000001000000;
|
|
default: inst_as_nxt = 13'b0000000000001;
|
|
endcase
|
|
else if (src_reg==4'h0) // Addressing mode using R0
|
|
case (ir[5:4])
|
|
2'b11 : inst_as_nxt = 13'b0000000100000;
|
|
2'b10 : inst_as_nxt = 13'b0000000000100;
|
|
2'b01 : inst_as_nxt = 13'b0000000010000;
|
|
default: inst_as_nxt = 13'b0000000000001;
|
|
endcase
|
|
else // General Addressing mode
|
|
case (ir[5:4])
|
|
2'b11 : inst_as_nxt = 13'b0000000001000;
|
|
2'b10 : inst_as_nxt = 13'b0000000000100;
|
|
2'b01 : inst_as_nxt = 13'b0000000000010;
|
|
default: inst_as_nxt = 13'b0000000000001;
|
|
endcase
|
|
end
|
|
assign is_const = |inst_as_nxt[12:7];
|
|
|
|
reg [7:0] inst_as;
|
|
always @(posedge mclk_decode or posedge puc_rst)
|
|
if (puc_rst) inst_as <= 8'h00;
|
|
`ifdef CLOCK_GATING
|
|
else inst_as <= {is_const, inst_as_nxt[6:0]};
|
|
`else
|
|
else if (decode) inst_as <= {is_const, inst_as_nxt[6:0]};
|
|
`endif
|
|
|
|
|
|
// 13'b0000010000000: Constant 4.
|
|
// 13'b0000100000000: Constant 8.
|
|
// 13'b0001000000000: Constant 0.
|
|
// 13'b0010000000000: Constant 1.
|
|
// 13'b0100000000000: Constant 2.
|
|
// 13'b1000000000000: Constant -1.
|
|
always @(inst_as_nxt)
|
|
begin
|
|
if (inst_as_nxt[7]) sconst_nxt = 16'h0004;
|
|
else if (inst_as_nxt[8]) sconst_nxt = 16'h0008;
|
|
else if (inst_as_nxt[9]) sconst_nxt = 16'h0000;
|
|
else if (inst_as_nxt[10]) sconst_nxt = 16'h0001;
|
|
else if (inst_as_nxt[11]) sconst_nxt = 16'h0002;
|
|
else if (inst_as_nxt[12]) sconst_nxt = 16'hffff;
|
|
else sconst_nxt = 16'h0000;
|
|
end
|
|
|
|
|
|
//
|
|
// 6.7) DESTINATION ADDRESSING MODES
|
|
//-----------------------------------
|
|
// Destination addressing modes are encoded in a one hot fashion as following:
|
|
//
|
|
// 8'b00000001: Register direct.
|
|
// 8'b00000010: Register indexed.
|
|
// 8'b00010000: Symbolic (operand is in memory at address PC+x).
|
|
// 8'b01000000: Absolute (operand is in memory at address x).
|
|
|
|
reg [7:0] inst_ad_nxt;
|
|
|
|
wire [3:0] dest_reg = ir[3:0];
|
|
|
|
always @(dest_reg or ir or inst_type_nxt)
|
|
begin
|
|
if (~inst_type_nxt[`INST_TO])
|
|
inst_ad_nxt = 8'b00000000;
|
|
else if (dest_reg==4'h2) // Addressing mode using R2
|
|
case (ir[7])
|
|
1'b1 : inst_ad_nxt = 8'b01000000;
|
|
default: inst_ad_nxt = 8'b00000001;
|
|
endcase
|
|
else if (dest_reg==4'h0) // Addressing mode using R0
|
|
case (ir[7])
|
|
1'b1 : inst_ad_nxt = 8'b00010000;
|
|
default: inst_ad_nxt = 8'b00000001;
|
|
endcase
|
|
else // General Addressing mode
|
|
case (ir[7])
|
|
1'b1 : inst_ad_nxt = 8'b00000010;
|
|
default: inst_ad_nxt = 8'b00000001;
|
|
endcase
|
|
end
|
|
|
|
reg [7:0] inst_ad;
|
|
always @(posedge mclk_decode or posedge puc_rst)
|
|
if (puc_rst) inst_ad <= 8'h00;
|
|
`ifdef CLOCK_GATING
|
|
else inst_ad <= inst_ad_nxt;
|
|
`else
|
|
else if (decode) inst_ad <= inst_ad_nxt;
|
|
`endif
|
|
|
|
|
|
//
|
|
// 6.8) REMAINING INSTRUCTION DECODING
|
|
//-------------------------------------
|
|
|
|
// Operation size
|
|
reg inst_bw;
|
|
always @(posedge mclk or posedge puc_rst)
|
|
if (puc_rst) inst_bw <= 1'b0;
|
|
else if (decode) inst_bw <= ir[6] & ~inst_type_nxt[`INST_JMP] & ~irq_detect & ~cpu_halt_cmd;
|
|
|
|
// Extended instruction size
|
|
assign inst_sz_nxt = {1'b0, (inst_as_nxt[`IDX] | inst_as_nxt[`SYMB] | inst_as_nxt[`ABS] | inst_as_nxt[`IMM])} +
|
|
{1'b0, ((inst_ad_nxt[`IDX] | inst_ad_nxt[`SYMB] | inst_ad_nxt[`ABS]) & ~inst_type_nxt[`INST_SO])};
|
|
always @(posedge mclk_decode or posedge puc_rst)
|
|
if (puc_rst) inst_sz <= 2'b00;
|
|
`ifdef CLOCK_GATING
|
|
else inst_sz <= inst_sz_nxt;
|
|
`else
|
|
else if (decode) inst_sz <= inst_sz_nxt;
|
|
`endif
|
|
|
|
|
|
//=============================================================================
|
|
// 7) EXECUTION-UNIT STATE MACHINE
|
|
//=============================================================================
|
|
|
|
// State machine registers
|
|
reg [3:0] e_state;
|
|
|
|
|
|
// State machine control signals
|
|
//--------------------------------
|
|
|
|
wire src_acalc_pre = inst_as_nxt[`IDX] | inst_as_nxt[`SYMB] | inst_as_nxt[`ABS];
|
|
wire src_rd_pre = inst_as_nxt[`INDIR] | inst_as_nxt[`INDIR_I] | inst_as_nxt[`IMM] | inst_so_nxt[`RETI];
|
|
wire dst_acalc_pre = inst_ad_nxt[`IDX] | inst_ad_nxt[`SYMB] | inst_ad_nxt[`ABS];
|
|
wire dst_acalc = inst_ad[`IDX] | inst_ad[`SYMB] | inst_ad[`ABS];
|
|
wire dst_rd_pre = inst_ad_nxt[`IDX] | inst_so_nxt[`PUSH] | inst_so_nxt[`CALL] | inst_so_nxt[`RETI];
|
|
wire dst_rd = inst_ad[`IDX] | inst_so[`PUSH] | inst_so[`CALL] | inst_so[`RETI];
|
|
|
|
wire inst_branch = (inst_ad_nxt[`DIR] & (ir[3:0]==4'h0)) | inst_type_nxt[`INST_JMP] | inst_so_nxt[`RETI];
|
|
|
|
reg exec_jmp;
|
|
always @(posedge mclk or posedge puc_rst)
|
|
if (puc_rst) exec_jmp <= 1'b0;
|
|
else if (inst_branch & decode) exec_jmp <= 1'b1;
|
|
else if (e_state==E_JUMP) exec_jmp <= 1'b0;
|
|
|
|
reg exec_dst_wr;
|
|
always @(posedge mclk or posedge puc_rst)
|
|
if (puc_rst) exec_dst_wr <= 1'b0;
|
|
else if (e_state==E_DST_RD) exec_dst_wr <= 1'b1;
|
|
else if (e_state==E_DST_WR) exec_dst_wr <= 1'b0;
|
|
|
|
reg exec_src_wr;
|
|
always @(posedge mclk or posedge puc_rst)
|
|
if (puc_rst) exec_src_wr <= 1'b0;
|
|
else if (inst_type[`INST_SO] & (e_state==E_SRC_RD)) exec_src_wr <= 1'b1;
|
|
else if ((e_state==E_SRC_WR) || (e_state==E_DST_WR)) exec_src_wr <= 1'b0;
|
|
|
|
reg exec_dext_rdy;
|
|
always @(posedge mclk or posedge puc_rst)
|
|
if (puc_rst) exec_dext_rdy <= 1'b0;
|
|
else if (e_state==E_DST_RD) exec_dext_rdy <= 1'b0;
|
|
else if (inst_dext_rdy) exec_dext_rdy <= 1'b1;
|
|
|
|
// Execution first state
|
|
wire [3:0] e_first_state = ~dbg_halt_st & inst_so_nxt[`IRQ] ? E_IRQ_0 :
|
|
cpu_halt_cmd | (i_state==I_IDLE) ? E_IDLE :
|
|
cpuoff ? E_IDLE :
|
|
src_acalc_pre ? E_SRC_AD :
|
|
src_rd_pre ? E_SRC_RD :
|
|
dst_acalc_pre ? E_DST_AD :
|
|
dst_rd_pre ? E_DST_RD : E_EXEC;
|
|
|
|
|
|
// State machine
|
|
//--------------------------------
|
|
|
|
// States Transitions
|
|
always @(e_state or dst_acalc or dst_rd or inst_sext_rdy or
|
|
inst_dext_rdy or exec_dext_rdy or exec_jmp or exec_dst_wr or
|
|
e_first_state or exec_src_wr)
|
|
case(e_state)
|
|
E_IDLE : e_state_nxt = e_first_state;
|
|
E_IRQ_0 : e_state_nxt = E_IRQ_1;
|
|
E_IRQ_1 : e_state_nxt = E_IRQ_2;
|
|
E_IRQ_2 : e_state_nxt = E_IRQ_3;
|
|
E_IRQ_3 : e_state_nxt = E_IRQ_4;
|
|
E_IRQ_4 : e_state_nxt = E_EXEC;
|
|
|
|
E_SRC_AD : e_state_nxt = inst_sext_rdy ? E_SRC_RD : E_SRC_AD;
|
|
|
|
E_SRC_RD : e_state_nxt = dst_acalc ? E_DST_AD :
|
|
dst_rd ? E_DST_RD : E_EXEC;
|
|
|
|
E_DST_AD : e_state_nxt = (inst_dext_rdy |
|
|
exec_dext_rdy) ? E_DST_RD : E_DST_AD;
|
|
|
|
E_DST_RD : e_state_nxt = E_EXEC;
|
|
|
|
E_EXEC : e_state_nxt = exec_dst_wr ? E_DST_WR :
|
|
exec_jmp ? E_JUMP :
|
|
exec_src_wr ? E_SRC_WR : e_first_state;
|
|
|
|
E_JUMP : e_state_nxt = e_first_state;
|
|
E_DST_WR : e_state_nxt = exec_jmp ? E_JUMP : e_first_state;
|
|
E_SRC_WR : e_state_nxt = e_first_state;
|
|
// pragma coverage off
|
|
default : e_state_nxt = E_IRQ_0;
|
|
// pragma coverage on
|
|
endcase
|
|
|
|
// State machine
|
|
always @(posedge mclk or posedge puc_rst)
|
|
if (puc_rst) e_state <= E_IRQ_1;
|
|
else e_state <= e_state_nxt;
|
|
|
|
|
|
// Frontend State machine control signals
|
|
//----------------------------------------
|
|
|
|
wire exec_done = exec_jmp ? (e_state==E_JUMP) :
|
|
exec_dst_wr ? (e_state==E_DST_WR) :
|
|
exec_src_wr ? (e_state==E_SRC_WR) : (e_state==E_EXEC);
|
|
|
|
|
|
//=============================================================================
|
|
// 8) EXECUTION-UNIT STATE CONTROL
|
|
//=============================================================================
|
|
|
|
//
|
|
// 8.1) ALU CONTROL SIGNALS
|
|
//-------------------------------------
|
|
//
|
|
// 12'b000000000001: Enable ALU source inverter
|
|
// 12'b000000000010: Enable Incrementer
|
|
// 12'b000000000100: Enable Incrementer on carry bit
|
|
// 12'b000000001000: Select Adder
|
|
// 12'b000000010000: Select AND
|
|
// 12'b000000100000: Select OR
|
|
// 12'b000001000000: Select XOR
|
|
// 12'b000010000000: Select DADD
|
|
// 12'b000100000000: Update N, Z & C (C=~Z)
|
|
// 12'b001000000000: Update all status bits
|
|
// 12'b010000000000: Update status bit for XOR instruction
|
|
// 12'b100000000000: Don't write to destination
|
|
|
|
reg [11:0] inst_alu;
|
|
|
|
wire alu_src_inv = inst_to_nxt[`SUB] | inst_to_nxt[`SUBC] |
|
|
inst_to_nxt[`CMP] | inst_to_nxt[`BIC] ;
|
|
|
|
wire alu_inc = inst_to_nxt[`SUB] | inst_to_nxt[`CMP];
|
|
|
|
wire alu_inc_c = inst_to_nxt[`ADDC] | inst_to_nxt[`DADD] |
|
|
inst_to_nxt[`SUBC];
|
|
|
|
wire alu_add = inst_to_nxt[`ADD] | inst_to_nxt[`ADDC] |
|
|
inst_to_nxt[`SUB] | inst_to_nxt[`SUBC] |
|
|
inst_to_nxt[`CMP] | inst_type_nxt[`INST_JMP] |
|
|
inst_so_nxt[`RETI];
|
|
|
|
|
|
wire alu_and = inst_to_nxt[`AND] | inst_to_nxt[`BIC] |
|
|
inst_to_nxt[`BIT];
|
|
|
|
wire alu_or = inst_to_nxt[`BIS];
|
|
|
|
wire alu_xor = inst_to_nxt[`XOR];
|
|
|
|
wire alu_dadd = inst_to_nxt[`DADD];
|
|
|
|
wire alu_stat_7 = inst_to_nxt[`BIT] | inst_to_nxt[`AND] |
|
|
inst_so_nxt[`SXT];
|
|
|
|
wire alu_stat_f = inst_to_nxt[`ADD] | inst_to_nxt[`ADDC] |
|
|
inst_to_nxt[`SUB] | inst_to_nxt[`SUBC] |
|
|
inst_to_nxt[`CMP] | inst_to_nxt[`DADD] |
|
|
inst_to_nxt[`BIT] | inst_to_nxt[`XOR] |
|
|
inst_to_nxt[`AND] |
|
|
inst_so_nxt[`RRC] | inst_so_nxt[`RRA] |
|
|
inst_so_nxt[`SXT];
|
|
|
|
wire alu_shift = inst_so_nxt[`RRC] | inst_so_nxt[`RRA];
|
|
|
|
wire exec_no_wr = inst_to_nxt[`CMP] | inst_to_nxt[`BIT];
|
|
|
|
wire [11:0] inst_alu_nxt = {exec_no_wr,
|
|
alu_shift,
|
|
alu_stat_f,
|
|
alu_stat_7,
|
|
alu_dadd,
|
|
alu_xor,
|
|
alu_or,
|
|
alu_and,
|
|
alu_add,
|
|
alu_inc_c,
|
|
alu_inc,
|
|
alu_src_inv};
|
|
|
|
always @(posedge mclk_decode or posedge puc_rst)
|
|
if (puc_rst) inst_alu <= 12'h000;
|
|
`ifdef CLOCK_GATING
|
|
else inst_alu <= inst_alu_nxt;
|
|
`else
|
|
else if (decode) inst_alu <= inst_alu_nxt;
|
|
`endif
|
|
|
|
|
|
endmodule // omsp_frontend
|
|
|
|
`ifdef OMSP_NO_INCLUDE
|
|
`else
|
|
`include "openMSP430_undefines.v"
|
|
`endif
|