yosys/tests/openmsp430/rtl/omsp_frontend.v

967 lines
36 KiB
Coq
Raw Normal View History

2013-01-05 04:13:26 -06:00
//----------------------------------------------------------------------------
// Copyright (C) 2009 , Olivier Girard
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of the authors nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
// THE POSSIBILITY OF SUCH DAMAGE
//
//----------------------------------------------------------------------------
//
// *File Name: omsp_frontend.v
//
// *Module Description:
// openMSP430 Instruction fetch and decode unit
//
// *Author(s):
// - Olivier Girard, olgirard@gmail.com
//
//----------------------------------------------------------------------------
// $Rev: 134 $
// $LastChangedBy: olivier.girard $
// $LastChangedDate: 2012-03-22 21:31:06 +0100 (Thu, 22 Mar 2012) $
//----------------------------------------------------------------------------
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_defines.v"
`endif
module omsp_frontend (
// OUTPUTs
dbg_halt_st, // Halt/Run status from CPU
decode_noirq, // Frontend decode instruction
e_state, // Execution state
exec_done, // Execution completed
inst_ad, // Decoded Inst: destination addressing mode
inst_as, // Decoded Inst: source addressing mode
inst_alu, // ALU control signals
inst_bw, // Decoded Inst: byte width
inst_dest, // Decoded Inst: destination (one hot)
inst_dext, // Decoded Inst: destination extended instruction word
inst_irq_rst, // Decoded Inst: Reset interrupt
inst_jmp, // Decoded Inst: Conditional jump
inst_mov, // Decoded Inst: mov instruction
inst_sext, // Decoded Inst: source extended instruction word
inst_so, // Decoded Inst: Single-operand arithmetic
inst_src, // Decoded Inst: source (one hot)
inst_type, // Decoded Instruction type
irq_acc, // Interrupt request accepted (one-hot signal)
mab, // Frontend Memory address bus
mb_en, // Frontend Memory bus enable
mclk_enable, // Main System Clock enable
mclk_wkup, // Main System Clock wake-up (asynchronous)
nmi_acc, // Non-Maskable interrupt request accepted
pc, // Program counter
pc_nxt, // Next PC value (for CALL & IRQ)
// INPUTs
cpu_en_s, // Enable CPU code execution (synchronous)
cpuoff, // Turns off the CPU
dbg_halt_cmd, // Halt CPU command
dbg_reg_sel, // Debug selected register for rd/wr access
fe_pmem_wait, // Frontend wait for Instruction fetch
gie, // General interrupt enable
irq, // Maskable interrupts
mclk, // Main system clock
mdb_in, // Frontend Memory data bus input
nmi_pnd, // Non-maskable interrupt pending
nmi_wkup, // NMI Wakeup
pc_sw, // Program counter software value
pc_sw_wr, // Program counter software write
puc_rst, // Main system reset
scan_enable, // Scan enable (active during scan shifting)
wdt_irq, // Watchdog-timer interrupt
wdt_wkup, // Watchdog Wakeup
wkup // System Wake-up (asynchronous)
);
// OUTPUTs
//=========
output dbg_halt_st; // Halt/Run status from CPU
output decode_noirq; // Frontend decode instruction
output [3:0] e_state; // Execution state
output exec_done; // Execution completed
output [7:0] inst_ad; // Decoded Inst: destination addressing mode
output [7:0] inst_as; // Decoded Inst: source addressing mode
output [11:0] inst_alu; // ALU control signals
output inst_bw; // Decoded Inst: byte width
output [15:0] inst_dest; // Decoded Inst: destination (one hot)
output [15:0] inst_dext; // Decoded Inst: destination extended instruction word
output inst_irq_rst; // Decoded Inst: Reset interrupt
output [7:0] inst_jmp; // Decoded Inst: Conditional jump
output inst_mov; // Decoded Inst: mov instruction
output [15:0] inst_sext; // Decoded Inst: source extended instruction word
output [7:0] inst_so; // Decoded Inst: Single-operand arithmetic
output [15:0] inst_src; // Decoded Inst: source (one hot)
output [2:0] inst_type; // Decoded Instruction type
output [13:0] irq_acc; // Interrupt request accepted (one-hot signal)
output [15:0] mab; // Frontend Memory address bus
output mb_en; // Frontend Memory bus enable
output mclk_enable; // Main System Clock enable
output mclk_wkup; // Main System Clock wake-up (asynchronous)
output nmi_acc; // Non-Maskable interrupt request accepted
output [15:0] pc; // Program counter
output [15:0] pc_nxt; // Next PC value (for CALL & IRQ)
// INPUTs
//=========
input cpu_en_s; // Enable CPU code execution (synchronous)
input cpuoff; // Turns off the CPU
input dbg_halt_cmd; // Halt CPU command
input [3:0] dbg_reg_sel; // Debug selected register for rd/wr access
input fe_pmem_wait; // Frontend wait for Instruction fetch
input gie; // General interrupt enable
input [13:0] irq; // Maskable interrupts
input mclk; // Main system clock
input [15:0] mdb_in; // Frontend Memory data bus input
input nmi_pnd; // Non-maskable interrupt pending
input nmi_wkup; // NMI Wakeup
input [15:0] pc_sw; // Program counter software value
input pc_sw_wr; // Program counter software write
input puc_rst; // Main system reset
input scan_enable; // Scan enable (active during scan shifting)
input wdt_irq; // Watchdog-timer interrupt
input wdt_wkup; // Watchdog Wakeup
input wkup; // System Wake-up (asynchronous)
//=============================================================================
// 1) UTILITY FUNCTIONS
//=============================================================================
// 16 bits one-hot decoder
function [15:0] one_hot16;
input [3:0] binary;
begin
one_hot16 = 16'h0000;
one_hot16[binary] = 1'b1;
end
endfunction
// 8 bits one-hot decoder
function [7:0] one_hot8;
input [2:0] binary;
begin
one_hot8 = 8'h00;
one_hot8[binary] = 1'b1;
end
endfunction
//=============================================================================
// 2) PARAMETER DEFINITIONS
//=============================================================================
//
// 2.1) Instruction State machine definitons
//-------------------------------------------
parameter I_IRQ_FETCH = `I_IRQ_FETCH;
parameter I_IRQ_DONE = `I_IRQ_DONE;
parameter I_DEC = `I_DEC; // New instruction ready for decode
parameter I_EXT1 = `I_EXT1; // 1st Extension word
parameter I_EXT2 = `I_EXT2; // 2nd Extension word
parameter I_IDLE = `I_IDLE; // CPU is in IDLE mode
//
// 2.2) Execution State machine definitons
//-------------------------------------------
parameter E_IRQ_0 = `E_IRQ_0;
parameter E_IRQ_1 = `E_IRQ_1;
parameter E_IRQ_2 = `E_IRQ_2;
parameter E_IRQ_3 = `E_IRQ_3;
parameter E_IRQ_4 = `E_IRQ_4;
parameter E_SRC_AD = `E_SRC_AD;
parameter E_SRC_RD = `E_SRC_RD;
parameter E_SRC_WR = `E_SRC_WR;
parameter E_DST_AD = `E_DST_AD;
parameter E_DST_RD = `E_DST_RD;
parameter E_DST_WR = `E_DST_WR;
parameter E_EXEC = `E_EXEC;
parameter E_JUMP = `E_JUMP;
parameter E_IDLE = `E_IDLE;
//=============================================================================
// 3) FRONTEND STATE MACHINE
//=============================================================================
// The wire "conv" is used as state bits to calculate the next response
reg [2:0] i_state;
reg [2:0] i_state_nxt;
reg [1:0] inst_sz;
wire [1:0] inst_sz_nxt;
wire irq_detect;
wire [2:0] inst_type_nxt;
wire is_const;
reg [15:0] sconst_nxt;
reg [3:0] e_state_nxt;
// CPU on/off through the debug interface or cpu_en port
wire cpu_halt_cmd = dbg_halt_cmd | ~cpu_en_s;
// States Transitions
always @(i_state or inst_sz or inst_sz_nxt or pc_sw_wr or exec_done or
irq_detect or cpuoff or cpu_halt_cmd or e_state)
case(i_state)
I_IDLE : i_state_nxt = (irq_detect & ~cpu_halt_cmd) ? I_IRQ_FETCH :
(~cpuoff & ~cpu_halt_cmd) ? I_DEC : I_IDLE;
I_IRQ_FETCH: i_state_nxt = I_IRQ_DONE;
I_IRQ_DONE : i_state_nxt = I_DEC;
I_DEC : i_state_nxt = irq_detect ? I_IRQ_FETCH :
(cpuoff | cpu_halt_cmd) & exec_done ? I_IDLE :
cpu_halt_cmd & (e_state==E_IDLE) ? I_IDLE :
pc_sw_wr ? I_DEC :
~exec_done & ~(e_state==E_IDLE) ? I_DEC : // Wait in decode state
(inst_sz_nxt!=2'b00) ? I_EXT1 : I_DEC; // until execution is completed
I_EXT1 : i_state_nxt = pc_sw_wr ? I_DEC :
(inst_sz!=2'b01) ? I_EXT2 : I_DEC;
I_EXT2 : i_state_nxt = I_DEC;
// pragma coverage off
default : i_state_nxt = I_IRQ_FETCH;
// pragma coverage on
endcase
// State machine
always @(posedge mclk or posedge puc_rst)
if (puc_rst) i_state <= I_IRQ_FETCH;
else i_state <= i_state_nxt;
// Utility signals
wire decode_noirq = ((i_state==I_DEC) & (exec_done | (e_state==E_IDLE)));
wire decode = decode_noirq | irq_detect;
wire fetch = ~((i_state==I_DEC) & ~(exec_done | (e_state==E_IDLE))) & ~(e_state_nxt==E_IDLE);
// Debug interface cpu status
reg dbg_halt_st;
always @(posedge mclk or posedge puc_rst)
if (puc_rst) dbg_halt_st <= 1'b0;
else dbg_halt_st <= cpu_halt_cmd & (i_state_nxt==I_IDLE);
//=============================================================================
// 4) INTERRUPT HANDLING & SYSTEM WAKEUP
//=============================================================================
//
// 4.1) INTERRUPT HANDLING
//-----------------------------------------
// Detect reset interrupt
reg inst_irq_rst;
always @(posedge mclk or posedge puc_rst)
if (puc_rst) inst_irq_rst <= 1'b1;
else if (exec_done) inst_irq_rst <= 1'b0;
// Detect other interrupts
assign irq_detect = (nmi_pnd | ((|irq | wdt_irq) & gie)) & ~cpu_halt_cmd & ~dbg_halt_st & (exec_done | (i_state==I_IDLE));
`ifdef CLOCK_GATING
wire mclk_irq_num;
omsp_clock_gate clock_gate_irq_num (.gclk(mclk_irq_num),
.clk (mclk), .enable(irq_detect), .scan_enable(scan_enable));
`else
wire mclk_irq_num = mclk;
`endif
// Select interrupt vector
reg [3:0] irq_num;
always @(posedge mclk_irq_num or posedge puc_rst)
if (puc_rst) irq_num <= 4'hf;
`ifdef CLOCK_GATING
else irq_num <= nmi_pnd ? 4'he :
`else
else if (irq_detect) irq_num <= nmi_pnd ? 4'he :
`endif
irq[13] ? 4'hd :
irq[12] ? 4'hc :
irq[11] ? 4'hb :
(irq[10] | wdt_irq) ? 4'ha :
irq[9] ? 4'h9 :
irq[8] ? 4'h8 :
irq[7] ? 4'h7 :
irq[6] ? 4'h6 :
irq[5] ? 4'h5 :
irq[4] ? 4'h4 :
irq[3] ? 4'h3 :
irq[2] ? 4'h2 :
irq[1] ? 4'h1 :
irq[0] ? 4'h0 : 4'hf;
wire [15:0] irq_addr = {11'h7ff, irq_num, 1'b0};
// Interrupt request accepted
wire [15:0] irq_acc_all = one_hot16(irq_num) & {16{(i_state==I_IRQ_FETCH)}};
wire [13:0] irq_acc = irq_acc_all[13:0];
wire nmi_acc = irq_acc_all[14];
//
// 4.2) SYSTEM WAKEUP
//-----------------------------------------
`ifdef CPUOFF_EN
// Generate the main system clock enable signal
// Keep the clock running if:
wire mclk_enable = inst_irq_rst ? cpu_en_s : // - the RESET interrupt is currently executing
// and if the CPU is enabled
// otherwise if:
~((cpuoff | ~cpu_en_s) & // - the CPUOFF flag, cpu_en command, instruction
(i_state==I_IDLE) & // and execution state machines are all two
(e_state==E_IDLE)); // not idle.
// Wakeup condition from maskable interrupts
wire mirq_wkup;
omsp_and_gate and_mirq_wkup (.y(mirq_wkup), .a(wkup | wdt_wkup), .b(gie));
// Combined asynchronous wakeup detection from nmi & irq (masked if the cpu is disabled)
omsp_and_gate and_mclk_wkup (.y(mclk_wkup), .a(nmi_wkup | mirq_wkup), .b(cpu_en_s));
`else
// In the CPUOFF feature is disabled, the wake-up and enable signals are always 1
assign mclk_wkup = 1'b1;
assign mclk_enable = 1'b1;
`endif
//=============================================================================
// 5) FETCH INSTRUCTION
//=============================================================================
//
// 5.1) PROGRAM COUNTER & MEMORY INTERFACE
//-----------------------------------------
// Program counter
reg [15:0] pc;
// Compute next PC value
wire [15:0] pc_incr = pc + {14'h0000, fetch, 1'b0};
wire [15:0] pc_nxt = pc_sw_wr ? pc_sw :
(i_state==I_IRQ_FETCH) ? irq_addr :
(i_state==I_IRQ_DONE) ? mdb_in : pc_incr;
`ifdef CLOCK_GATING
wire pc_en = fetch |
pc_sw_wr |
(i_state==I_IRQ_FETCH) |
(i_state==I_IRQ_DONE);
wire mclk_pc;
omsp_clock_gate clock_gate_pc (.gclk(mclk_pc),
.clk (mclk), .enable(pc_en), .scan_enable(scan_enable));
`else
wire mclk_pc = mclk;
`endif
always @(posedge mclk_pc or posedge puc_rst)
if (puc_rst) pc <= 16'h0000;
else pc <= pc_nxt;
// Check if ROM has been busy in order to retry ROM access
reg pmem_busy;
always @(posedge mclk or posedge puc_rst)
if (puc_rst) pmem_busy <= 1'b0;
else pmem_busy <= fe_pmem_wait;
// Memory interface
wire [15:0] mab = pc_nxt;
wire mb_en = fetch | pc_sw_wr | (i_state==I_IRQ_FETCH) | pmem_busy | (dbg_halt_st & ~cpu_halt_cmd);
//
// 5.2) INSTRUCTION REGISTER
//--------------------------------
// Instruction register
wire [15:0] ir = mdb_in;
// Detect if source extension word is required
wire is_sext = (inst_as[`IDX] | inst_as[`SYMB] | inst_as[`ABS] | inst_as[`IMM]);
// For the Symbolic addressing mode, add -2 to the extension word in order
// to make up for the PC address
wire [15:0] ext_incr = ((i_state==I_EXT1) & inst_as[`SYMB]) |
((i_state==I_EXT2) & inst_ad[`SYMB]) |
((i_state==I_EXT1) & ~inst_as[`SYMB] &
~(i_state_nxt==I_EXT2) & inst_ad[`SYMB]) ? 16'hfffe : 16'h0000;
wire [15:0] ext_nxt = ir + ext_incr;
// Store source extension word
reg [15:0] inst_sext;
`ifdef CLOCK_GATING
wire inst_sext_en = (decode & is_const) |
(decode & inst_type_nxt[`INST_JMP]) |
((i_state==I_EXT1) & is_sext);
wire mclk_inst_sext;
omsp_clock_gate clock_gate_inst_sext (.gclk(mclk_inst_sext),
.clk (mclk), .enable(inst_sext_en), .scan_enable(scan_enable));
`else
wire mclk_inst_sext = mclk;
`endif
always @(posedge mclk_inst_sext or posedge puc_rst)
if (puc_rst) inst_sext <= 16'h0000;
else if (decode & is_const) inst_sext <= sconst_nxt;
else if (decode & inst_type_nxt[`INST_JMP]) inst_sext <= {{5{ir[9]}},ir[9:0],1'b0};
`ifdef CLOCK_GATING
else inst_sext <= ext_nxt;
`else
else if ((i_state==I_EXT1) & is_sext) inst_sext <= ext_nxt;
`endif
// Source extension word is ready
wire inst_sext_rdy = (i_state==I_EXT1) & is_sext;
// Store destination extension word
reg [15:0] inst_dext;
`ifdef CLOCK_GATING
wire inst_dext_en = ((i_state==I_EXT1) & ~is_sext) |
(i_state==I_EXT2);
wire mclk_inst_dext;
omsp_clock_gate clock_gate_inst_dext (.gclk(mclk_inst_dext),
.clk (mclk), .enable(inst_dext_en), .scan_enable(scan_enable));
`else
wire mclk_inst_dext = mclk;
`endif
always @(posedge mclk_inst_dext or posedge puc_rst)
if (puc_rst) inst_dext <= 16'h0000;
else if ((i_state==I_EXT1) & ~is_sext) inst_dext <= ext_nxt;
`ifdef CLOCK_GATING
else inst_dext <= ext_nxt;
`else
else if (i_state==I_EXT2) inst_dext <= ext_nxt;
`endif
// Destination extension word is ready
wire inst_dext_rdy = (((i_state==I_EXT1) & ~is_sext) | (i_state==I_EXT2));
//=============================================================================
// 6) DECODE INSTRUCTION
//=============================================================================
`ifdef CLOCK_GATING
wire mclk_decode;
omsp_clock_gate clock_gate_decode (.gclk(mclk_decode),
.clk (mclk), .enable(decode), .scan_enable(scan_enable));
`else
wire mclk_decode = mclk;
`endif
//
// 6.1) OPCODE: INSTRUCTION TYPE
//----------------------------------------
// Instructions type is encoded in a one hot fashion as following:
//
// 3'b001: Single-operand arithmetic
// 3'b010: Conditional jump
// 3'b100: Two-operand arithmetic
reg [2:0] inst_type;
assign inst_type_nxt = {(ir[15:14]!=2'b00),
(ir[15:13]==3'b001),
(ir[15:13]==3'b000)} & {3{~irq_detect}};
always @(posedge mclk_decode or posedge puc_rst)
if (puc_rst) inst_type <= 3'b000;
`ifdef CLOCK_GATING
else inst_type <= inst_type_nxt;
`else
else if (decode) inst_type <= inst_type_nxt;
`endif
//
// 6.2) OPCODE: SINGLE-OPERAND ARITHMETIC
//----------------------------------------
// Instructions are encoded in a one hot fashion as following:
//
// 8'b00000001: RRC
// 8'b00000010: SWPB
// 8'b00000100: RRA
// 8'b00001000: SXT
// 8'b00010000: PUSH
// 8'b00100000: CALL
// 8'b01000000: RETI
// 8'b10000000: IRQ
reg [7:0] inst_so;
wire [7:0] inst_so_nxt = irq_detect ? 8'h80 : (one_hot8(ir[9:7]) & {8{inst_type_nxt[`INST_SO]}});
always @(posedge mclk_decode or posedge puc_rst)
if (puc_rst) inst_so <= 8'h00;
`ifdef CLOCK_GATING
else inst_so <= inst_so_nxt;
`else
else if (decode) inst_so <= inst_so_nxt;
`endif
//
// 6.3) OPCODE: CONDITIONAL JUMP
//--------------------------------
// Instructions are encoded in a one hot fashion as following:
//
// 8'b00000001: JNE/JNZ
// 8'b00000010: JEQ/JZ
// 8'b00000100: JNC/JLO
// 8'b00001000: JC/JHS
// 8'b00010000: JN
// 8'b00100000: JGE
// 8'b01000000: JL
// 8'b10000000: JMP
reg [2:0] inst_jmp_bin;
always @(posedge mclk_decode or posedge puc_rst)
if (puc_rst) inst_jmp_bin <= 3'h0;
`ifdef CLOCK_GATING
else inst_jmp_bin <= ir[12:10];
`else
else if (decode) inst_jmp_bin <= ir[12:10];
`endif
wire [7:0] inst_jmp = one_hot8(inst_jmp_bin) & {8{inst_type[`INST_JMP]}};
//
// 6.4) OPCODE: TWO-OPERAND ARITHMETIC
//-------------------------------------
// Instructions are encoded in a one hot fashion as following:
//
// 12'b000000000001: MOV
// 12'b000000000010: ADD
// 12'b000000000100: ADDC
// 12'b000000001000: SUBC
// 12'b000000010000: SUB
// 12'b000000100000: CMP
// 12'b000001000000: DADD
// 12'b000010000000: BIT
// 12'b000100000000: BIC
// 12'b001000000000: BIS
// 12'b010000000000: XOR
// 12'b100000000000: AND
wire [15:0] inst_to_1hot = one_hot16(ir[15:12]) & {16{inst_type_nxt[`INST_TO]}};
wire [11:0] inst_to_nxt = inst_to_1hot[15:4];
reg inst_mov;
always @(posedge mclk_decode or posedge puc_rst)
if (puc_rst) inst_mov <= 1'b0;
`ifdef CLOCK_GATING
else inst_mov <= inst_to_nxt[`MOV];
`else
else if (decode) inst_mov <= inst_to_nxt[`MOV];
`endif
//
// 6.5) SOURCE AND DESTINATION REGISTERS
//---------------------------------------
// Destination register
reg [3:0] inst_dest_bin;
always @(posedge mclk_decode or posedge puc_rst)
if (puc_rst) inst_dest_bin <= 4'h0;
`ifdef CLOCK_GATING
else inst_dest_bin <= ir[3:0];
`else
else if (decode) inst_dest_bin <= ir[3:0];
`endif
wire [15:0] inst_dest = dbg_halt_st ? one_hot16(dbg_reg_sel) :
inst_type[`INST_JMP] ? 16'h0001 :
inst_so[`IRQ] |
inst_so[`PUSH] |
inst_so[`CALL] ? 16'h0002 :
one_hot16(inst_dest_bin);
// Source register
reg [3:0] inst_src_bin;
always @(posedge mclk_decode or posedge puc_rst)
if (puc_rst) inst_src_bin <= 4'h0;
`ifdef CLOCK_GATING
else inst_src_bin <= ir[11:8];
`else
else if (decode) inst_src_bin <= ir[11:8];
`endif
wire [15:0] inst_src = inst_type[`INST_TO] ? one_hot16(inst_src_bin) :
inst_so[`RETI] ? 16'h0002 :
inst_so[`IRQ] ? 16'h0001 :
inst_type[`INST_SO] ? one_hot16(inst_dest_bin) : 16'h0000;
//
// 6.6) SOURCE ADDRESSING MODES
//--------------------------------
// Source addressing modes are encoded in a one hot fashion as following:
//
// 13'b0000000000001: Register direct.
// 13'b0000000000010: Register indexed.
// 13'b0000000000100: Register indirect.
// 13'b0000000001000: Register indirect autoincrement.
// 13'b0000000010000: Symbolic (operand is in memory at address PC+x).
// 13'b0000000100000: Immediate (operand is next word in the instruction stream).
// 13'b0000001000000: Absolute (operand is in memory at address x).
// 13'b0000010000000: Constant 4.
// 13'b0000100000000: Constant 8.
// 13'b0001000000000: Constant 0.
// 13'b0010000000000: Constant 1.
// 13'b0100000000000: Constant 2.
// 13'b1000000000000: Constant -1.
reg [12:0] inst_as_nxt;
wire [3:0] src_reg = inst_type_nxt[`INST_SO] ? ir[3:0] : ir[11:8];
always @(src_reg or ir or inst_type_nxt)
begin
if (inst_type_nxt[`INST_JMP])
inst_as_nxt = 13'b0000000000001;
else if (src_reg==4'h3) // Addressing mode using R3
case (ir[5:4])
2'b11 : inst_as_nxt = 13'b1000000000000;
2'b10 : inst_as_nxt = 13'b0100000000000;
2'b01 : inst_as_nxt = 13'b0010000000000;
default: inst_as_nxt = 13'b0001000000000;
endcase
else if (src_reg==4'h2) // Addressing mode using R2
case (ir[5:4])
2'b11 : inst_as_nxt = 13'b0000100000000;
2'b10 : inst_as_nxt = 13'b0000010000000;
2'b01 : inst_as_nxt = 13'b0000001000000;
default: inst_as_nxt = 13'b0000000000001;
endcase
else if (src_reg==4'h0) // Addressing mode using R0
case (ir[5:4])
2'b11 : inst_as_nxt = 13'b0000000100000;
2'b10 : inst_as_nxt = 13'b0000000000100;
2'b01 : inst_as_nxt = 13'b0000000010000;
default: inst_as_nxt = 13'b0000000000001;
endcase
else // General Addressing mode
case (ir[5:4])
2'b11 : inst_as_nxt = 13'b0000000001000;
2'b10 : inst_as_nxt = 13'b0000000000100;
2'b01 : inst_as_nxt = 13'b0000000000010;
default: inst_as_nxt = 13'b0000000000001;
endcase
end
assign is_const = |inst_as_nxt[12:7];
reg [7:0] inst_as;
always @(posedge mclk_decode or posedge puc_rst)
if (puc_rst) inst_as <= 8'h00;
`ifdef CLOCK_GATING
else inst_as <= {is_const, inst_as_nxt[6:0]};
`else
else if (decode) inst_as <= {is_const, inst_as_nxt[6:0]};
`endif
// 13'b0000010000000: Constant 4.
// 13'b0000100000000: Constant 8.
// 13'b0001000000000: Constant 0.
// 13'b0010000000000: Constant 1.
// 13'b0100000000000: Constant 2.
// 13'b1000000000000: Constant -1.
always @(inst_as_nxt)
begin
if (inst_as_nxt[7]) sconst_nxt = 16'h0004;
else if (inst_as_nxt[8]) sconst_nxt = 16'h0008;
else if (inst_as_nxt[9]) sconst_nxt = 16'h0000;
else if (inst_as_nxt[10]) sconst_nxt = 16'h0001;
else if (inst_as_nxt[11]) sconst_nxt = 16'h0002;
else if (inst_as_nxt[12]) sconst_nxt = 16'hffff;
else sconst_nxt = 16'h0000;
end
//
// 6.7) DESTINATION ADDRESSING MODES
//-----------------------------------
// Destination addressing modes are encoded in a one hot fashion as following:
//
// 8'b00000001: Register direct.
// 8'b00000010: Register indexed.
// 8'b00010000: Symbolic (operand is in memory at address PC+x).
// 8'b01000000: Absolute (operand is in memory at address x).
reg [7:0] inst_ad_nxt;
wire [3:0] dest_reg = ir[3:0];
always @(dest_reg or ir or inst_type_nxt)
begin
if (~inst_type_nxt[`INST_TO])
inst_ad_nxt = 8'b00000000;
else if (dest_reg==4'h2) // Addressing mode using R2
case (ir[7])
1'b1 : inst_ad_nxt = 8'b01000000;
default: inst_ad_nxt = 8'b00000001;
endcase
else if (dest_reg==4'h0) // Addressing mode using R0
case (ir[7])
1'b1 : inst_ad_nxt = 8'b00010000;
default: inst_ad_nxt = 8'b00000001;
endcase
else // General Addressing mode
case (ir[7])
1'b1 : inst_ad_nxt = 8'b00000010;
default: inst_ad_nxt = 8'b00000001;
endcase
end
reg [7:0] inst_ad;
always @(posedge mclk_decode or posedge puc_rst)
if (puc_rst) inst_ad <= 8'h00;
`ifdef CLOCK_GATING
else inst_ad <= inst_ad_nxt;
`else
else if (decode) inst_ad <= inst_ad_nxt;
`endif
//
// 6.8) REMAINING INSTRUCTION DECODING
//-------------------------------------
// Operation size
reg inst_bw;
always @(posedge mclk or posedge puc_rst)
if (puc_rst) inst_bw <= 1'b0;
else if (decode) inst_bw <= ir[6] & ~inst_type_nxt[`INST_JMP] & ~irq_detect & ~cpu_halt_cmd;
// Extended instruction size
assign inst_sz_nxt = {1'b0, (inst_as_nxt[`IDX] | inst_as_nxt[`SYMB] | inst_as_nxt[`ABS] | inst_as_nxt[`IMM])} +
{1'b0, ((inst_ad_nxt[`IDX] | inst_ad_nxt[`SYMB] | inst_ad_nxt[`ABS]) & ~inst_type_nxt[`INST_SO])};
always @(posedge mclk_decode or posedge puc_rst)
if (puc_rst) inst_sz <= 2'b00;
`ifdef CLOCK_GATING
else inst_sz <= inst_sz_nxt;
`else
else if (decode) inst_sz <= inst_sz_nxt;
`endif
//=============================================================================
// 7) EXECUTION-UNIT STATE MACHINE
//=============================================================================
// State machine registers
reg [3:0] e_state;
// State machine control signals
//--------------------------------
wire src_acalc_pre = inst_as_nxt[`IDX] | inst_as_nxt[`SYMB] | inst_as_nxt[`ABS];
wire src_rd_pre = inst_as_nxt[`INDIR] | inst_as_nxt[`INDIR_I] | inst_as_nxt[`IMM] | inst_so_nxt[`RETI];
wire dst_acalc_pre = inst_ad_nxt[`IDX] | inst_ad_nxt[`SYMB] | inst_ad_nxt[`ABS];
wire dst_acalc = inst_ad[`IDX] | inst_ad[`SYMB] | inst_ad[`ABS];
wire dst_rd_pre = inst_ad_nxt[`IDX] | inst_so_nxt[`PUSH] | inst_so_nxt[`CALL] | inst_so_nxt[`RETI];
wire dst_rd = inst_ad[`IDX] | inst_so[`PUSH] | inst_so[`CALL] | inst_so[`RETI];
wire inst_branch = (inst_ad_nxt[`DIR] & (ir[3:0]==4'h0)) | inst_type_nxt[`INST_JMP] | inst_so_nxt[`RETI];
reg exec_jmp;
always @(posedge mclk or posedge puc_rst)
if (puc_rst) exec_jmp <= 1'b0;
else if (inst_branch & decode) exec_jmp <= 1'b1;
else if (e_state==E_JUMP) exec_jmp <= 1'b0;
reg exec_dst_wr;
always @(posedge mclk or posedge puc_rst)
if (puc_rst) exec_dst_wr <= 1'b0;
else if (e_state==E_DST_RD) exec_dst_wr <= 1'b1;
else if (e_state==E_DST_WR) exec_dst_wr <= 1'b0;
reg exec_src_wr;
always @(posedge mclk or posedge puc_rst)
if (puc_rst) exec_src_wr <= 1'b0;
else if (inst_type[`INST_SO] & (e_state==E_SRC_RD)) exec_src_wr <= 1'b1;
else if ((e_state==E_SRC_WR) || (e_state==E_DST_WR)) exec_src_wr <= 1'b0;
reg exec_dext_rdy;
always @(posedge mclk or posedge puc_rst)
if (puc_rst) exec_dext_rdy <= 1'b0;
else if (e_state==E_DST_RD) exec_dext_rdy <= 1'b0;
else if (inst_dext_rdy) exec_dext_rdy <= 1'b1;
// Execution first state
wire [3:0] e_first_state = ~dbg_halt_st & inst_so_nxt[`IRQ] ? E_IRQ_0 :
cpu_halt_cmd | (i_state==I_IDLE) ? E_IDLE :
cpuoff ? E_IDLE :
src_acalc_pre ? E_SRC_AD :
src_rd_pre ? E_SRC_RD :
dst_acalc_pre ? E_DST_AD :
dst_rd_pre ? E_DST_RD : E_EXEC;
// State machine
//--------------------------------
// States Transitions
always @(e_state or dst_acalc or dst_rd or inst_sext_rdy or
inst_dext_rdy or exec_dext_rdy or exec_jmp or exec_dst_wr or
e_first_state or exec_src_wr)
case(e_state)
E_IDLE : e_state_nxt = e_first_state;
E_IRQ_0 : e_state_nxt = E_IRQ_1;
E_IRQ_1 : e_state_nxt = E_IRQ_2;
E_IRQ_2 : e_state_nxt = E_IRQ_3;
E_IRQ_3 : e_state_nxt = E_IRQ_4;
E_IRQ_4 : e_state_nxt = E_EXEC;
E_SRC_AD : e_state_nxt = inst_sext_rdy ? E_SRC_RD : E_SRC_AD;
E_SRC_RD : e_state_nxt = dst_acalc ? E_DST_AD :
dst_rd ? E_DST_RD : E_EXEC;
E_DST_AD : e_state_nxt = (inst_dext_rdy |
exec_dext_rdy) ? E_DST_RD : E_DST_AD;
E_DST_RD : e_state_nxt = E_EXEC;
E_EXEC : e_state_nxt = exec_dst_wr ? E_DST_WR :
exec_jmp ? E_JUMP :
exec_src_wr ? E_SRC_WR : e_first_state;
E_JUMP : e_state_nxt = e_first_state;
E_DST_WR : e_state_nxt = exec_jmp ? E_JUMP : e_first_state;
E_SRC_WR : e_state_nxt = e_first_state;
// pragma coverage off
default : e_state_nxt = E_IRQ_0;
// pragma coverage on
endcase
// State machine
always @(posedge mclk or posedge puc_rst)
if (puc_rst) e_state <= E_IRQ_1;
else e_state <= e_state_nxt;
// Frontend State machine control signals
//----------------------------------------
wire exec_done = exec_jmp ? (e_state==E_JUMP) :
exec_dst_wr ? (e_state==E_DST_WR) :
exec_src_wr ? (e_state==E_SRC_WR) : (e_state==E_EXEC);
//=============================================================================
// 8) EXECUTION-UNIT STATE CONTROL
//=============================================================================
//
// 8.1) ALU CONTROL SIGNALS
//-------------------------------------
//
// 12'b000000000001: Enable ALU source inverter
// 12'b000000000010: Enable Incrementer
// 12'b000000000100: Enable Incrementer on carry bit
// 12'b000000001000: Select Adder
// 12'b000000010000: Select AND
// 12'b000000100000: Select OR
// 12'b000001000000: Select XOR
// 12'b000010000000: Select DADD
// 12'b000100000000: Update N, Z & C (C=~Z)
// 12'b001000000000: Update all status bits
// 12'b010000000000: Update status bit for XOR instruction
// 12'b100000000000: Don't write to destination
reg [11:0] inst_alu;
wire alu_src_inv = inst_to_nxt[`SUB] | inst_to_nxt[`SUBC] |
inst_to_nxt[`CMP] | inst_to_nxt[`BIC] ;
wire alu_inc = inst_to_nxt[`SUB] | inst_to_nxt[`CMP];
wire alu_inc_c = inst_to_nxt[`ADDC] | inst_to_nxt[`DADD] |
inst_to_nxt[`SUBC];
wire alu_add = inst_to_nxt[`ADD] | inst_to_nxt[`ADDC] |
inst_to_nxt[`SUB] | inst_to_nxt[`SUBC] |
inst_to_nxt[`CMP] | inst_type_nxt[`INST_JMP] |
inst_so_nxt[`RETI];
wire alu_and = inst_to_nxt[`AND] | inst_to_nxt[`BIC] |
inst_to_nxt[`BIT];
wire alu_or = inst_to_nxt[`BIS];
wire alu_xor = inst_to_nxt[`XOR];
wire alu_dadd = inst_to_nxt[`DADD];
wire alu_stat_7 = inst_to_nxt[`BIT] | inst_to_nxt[`AND] |
inst_so_nxt[`SXT];
wire alu_stat_f = inst_to_nxt[`ADD] | inst_to_nxt[`ADDC] |
inst_to_nxt[`SUB] | inst_to_nxt[`SUBC] |
inst_to_nxt[`CMP] | inst_to_nxt[`DADD] |
inst_to_nxt[`BIT] | inst_to_nxt[`XOR] |
inst_to_nxt[`AND] |
inst_so_nxt[`RRC] | inst_so_nxt[`RRA] |
inst_so_nxt[`SXT];
wire alu_shift = inst_so_nxt[`RRC] | inst_so_nxt[`RRA];
wire exec_no_wr = inst_to_nxt[`CMP] | inst_to_nxt[`BIT];
wire [11:0] inst_alu_nxt = {exec_no_wr,
alu_shift,
alu_stat_f,
alu_stat_7,
alu_dadd,
alu_xor,
alu_or,
alu_and,
alu_add,
alu_inc_c,
alu_inc,
alu_src_inv};
always @(posedge mclk_decode or posedge puc_rst)
if (puc_rst) inst_alu <= 12'h000;
`ifdef CLOCK_GATING
else inst_alu <= inst_alu_nxt;
`else
else if (decode) inst_alu <= inst_alu_nxt;
`endif
endmodule // omsp_frontend
`ifdef OMSP_NO_INCLUDE
`else
`include "openMSP430_undefines.v"
`endif