Aggressive wire localization and inlining is necessary for CXXRTL to
achieve high performance. However, that comes with a cost: reduced
debug information coverage. Previously, as a workaround, the `-Og`
option could have been used to guarantee complete coverage, at a cost
of a significant performance penalty.
This commit introduces debug information outlining. The main eval()
function is compiled with the user-specified optimization settings.
In tandem, an auxiliary debug_eval() function, compiled from the same
netlist, can be used to reconstruct the values of localized/inlined
signals on demand. To the extent that it is possible, debug_eval()
reuses the results of computations performed by eval(), only filling
in the missing values.
Benchmarking a representative design (Minerva SoC SRAM) shows that:
* Switching from `-O4`/`-Og` to `-O6` reduces runtime by ~40%.
* Switching from `-g1` to `-g2`, both used with `-O6`, increases
compile time by ~25%.
* Although `-g2` increases the resident size of generated modules,
this has no effect on runtime.
Because the impact of `-g2` is minimal and the benefits of having
unconditional 100% debug information coverage (and the performance
improvement as well) are major, this commit removes `-Og` and changes
the defaults to `-O6 -g2`.
We'll have our cake and eat it too!
"Elision" in this context is an unusual and not very descriptive term
whereas "inlining" is common and straightforward. Also, introducing
"inlining" makes it easier to introduce its dual under the obvious
name "outlining".
Before this commit, a cell's input was always assigned like:
p_cell.p_input = (value...);
If `p_input` is buffered (e.g. if the design is built at -O0), this
is not correct. (In practice, this breaks clocking.) Unfortunately,
the incorrect design was compiled without diagnostics because wire<>
was move-assignable and also implicitly constructible from value<>.
After this commit, cell inputs are no longer incorrectly assumed to
always be unbuffered, and wires are not assignable from values.
RTL contract violations and C++ contract violations are different:
the former depend on the netlist and will never violate memory safety
whereas the latter may. When loading a CXXRTL simulation into another
process, RTL contract violations should generally not crash it, while
C++ contract violations should.
Although it is always possible to destroy and recreate the design to
simulate a power-on reset, this has two drawbacks:
* Black boxes are also destroyed and recreated, which causes them
to reacquire their resources, which might be costly and/or erase
important state.
* Pointers into the design are invalidated and have to be acquired
again, which is costly and might be very inconvenient if they are
captured elsewhere (especially through the C API).