Merge pull request #1729 from rqou/coolrunner2

coolrunner2 buffer cell insertion fixes
This commit is contained in:
N. Engelhardt 2020-03-02 12:31:05 +01:00 committed by GitHub
commit b1e248b0e6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 446 additions and 112 deletions

View File

@ -23,6 +23,93 @@
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
RTLIL::Wire *makexorbuffer(RTLIL::Module *module, SigBit inwire, const char *cellname)
{
RTLIL::Wire *outwire = nullptr;
if (inwire == SigBit(true))
{
// Constant 1
outwire = module->addWire(
module->uniquify(stringf("$xc2fix$%s_BUF1_XOR_OUT", cellname)));
auto xor_cell = module->addCell(
module->uniquify(stringf("$xc2fix$%s_BUF1_XOR", cellname)),
"\\MACROCELL_XOR");
xor_cell->setParam("\\INVERT_OUT", true);
xor_cell->setPort("\\OUT", outwire);
}
else if (inwire == SigBit(false))
{
// Constant 0
outwire = module->addWire(
module->uniquify(stringf("$xc2fix$%s_BUF0_XOR_OUT", cellname)));
auto xor_cell = module->addCell(
module->uniquify(stringf("$xc2fix$%s_BUF0_XOR", cellname)),
"\\MACROCELL_XOR");
xor_cell->setParam("\\INVERT_OUT", false);
xor_cell->setPort("\\OUT", outwire);
}
else if (inwire == SigBit(RTLIL::State::Sx))
{
// x; treat as 0
log_warning("While buffering, changing x to 0 into cell %s\n", cellname);
outwire = module->addWire(
module->uniquify(stringf("$xc2fix$%s_BUF0_XOR_OUT", cellname)));
auto xor_cell = module->addCell(
module->uniquify(stringf("$xc2fix$%s_BUF0_XOR", cellname)),
"\\MACROCELL_XOR");
xor_cell->setParam("\\INVERT_OUT", false);
xor_cell->setPort("\\OUT", outwire);
}
else
{
auto inwire_name = inwire.wire->name.c_str();
outwire = module->addWire(
module->uniquify(stringf("$xc2fix$%s_BUF_XOR_OUT", inwire_name)));
auto and_to_xor_wire = module->addWire(
module->uniquify(stringf("$xc2fix$%s_BUF_AND_OUT", inwire_name)));
auto and_cell = module->addCell(
module->uniquify(stringf("$xc2fix$%s_BUF_AND", inwire_name)),
"\\ANDTERM");
and_cell->setParam("\\TRUE_INP", 1);
and_cell->setParam("\\COMP_INP", 0);
and_cell->setPort("\\OUT", and_to_xor_wire);
and_cell->setPort("\\IN", inwire);
and_cell->setPort("\\IN_B", SigSpec());
auto xor_cell = module->addCell(
module->uniquify(stringf("$xc2fix$%s_BUF_XOR", inwire_name)),
"\\MACROCELL_XOR");
xor_cell->setParam("\\INVERT_OUT", false);
xor_cell->setPort("\\IN_PTC", and_to_xor_wire);
xor_cell->setPort("\\OUT", outwire);
}
return outwire;
}
RTLIL::Wire *makeptermbuffer(RTLIL::Module *module, SigBit inwire)
{
auto inwire_name = inwire.wire->name.c_str();
auto outwire = module->addWire(
module->uniquify(stringf("$xc2fix$%s_BUF_AND_OUT", inwire_name)));
auto and_cell = module->addCell(
module->uniquify(stringf("$xc2fix$%s_BUF_AND", inwire_name)),
"\\ANDTERM");
and_cell->setParam("\\TRUE_INP", 1);
and_cell->setParam("\\COMP_INP", 0);
and_cell->setPort("\\OUT", outwire);
and_cell->setPort("\\IN", inwire);
and_cell->setPort("\\IN_B", SigSpec());
return outwire;
}
struct Coolrunner2FixupPass : public Pass {
Coolrunner2FixupPass() : Pass("coolrunner2_fixup", "insert necessary buffer cells for CoolRunner-II architecture") { }
void help() YS_OVERRIDE
@ -78,80 +165,352 @@ struct Coolrunner2FixupPass : public Pass {
}
}
// Start by buffering FF inputs. FF inputs can only come from either
// an IO pin or from an XOR. Otherwise AND/XOR cells need to be inserted.
// Find all the pterm outputs
pool<SigBit> sig_fed_by_pterm;
for (auto cell : module->selected_cells())
{
if (cell->type == "\\ANDTERM")
{
auto output = sigmap(cell->getPort("\\OUT")[0]);
sig_fed_by_pterm.insert(output);
}
}
// Find all the bufg outputs
pool<SigBit> sig_fed_by_bufg;
for (auto cell : module->selected_cells())
{
if (cell->type == "\\BUFG")
{
auto output = sigmap(cell->getPort("\\O")[0]);
sig_fed_by_bufg.insert(output);
}
}
// Find all the bufgsr outputs
pool<SigBit> sig_fed_by_bufgsr;
for (auto cell : module->selected_cells())
{
if (cell->type == "\\BUFGSR")
{
auto output = sigmap(cell->getPort("\\O")[0]);
sig_fed_by_bufgsr.insert(output);
}
}
// Find all the bufgts outputs
pool<SigBit> sig_fed_by_bufgts;
for (auto cell : module->selected_cells())
{
if (cell->type == "\\BUFGTS")
{
auto output = sigmap(cell->getPort("\\O")[0]);
sig_fed_by_bufgts.insert(output);
}
}
// This is used to fix the input -> FF -> output scenario
pool<SigBit> sig_fed_by_ibuf;
for (auto cell : module->selected_cells())
{
if (cell->type == "\\IBUF")
{
auto output = sigmap(cell->getPort("\\O")[0]);
sig_fed_by_ibuf.insert(output);
}
}
// Find all of the sinks for each output from an IBUF
dict<SigBit, std::pair<int, RTLIL::Cell *>> ibuf_fanouts;
for (auto cell : module->selected_cells())
{
for (auto &conn : cell->connections())
{
if (cell->input(conn.first))
{
for (auto wire_in : sigmap(conn.second))
{
if (sig_fed_by_ibuf[wire_in])
{
auto existing_count = ibuf_fanouts[wire_in].first;
ibuf_fanouts[wire_in] =
std::pair<int, RTLIL::Cell *>(existing_count + 1, cell);
}
}
}
}
}
dict<SigBit, RTLIL::Cell *> ibuf_out_to_packed_reg_cell;
pool<SigBit> packed_reg_out;
for (auto x : ibuf_fanouts)
{
auto ibuf_out_wire = x.first;
auto fanout_count = x.second.first;
auto maybe_ff_cell = x.second.second;
// The register can be packed with the IBUF only if it's
// actually a register and it's the only fanout. Otherwise,
// the pad-to-zia path has to be used up and the register
// can't be packed with the ibuf.
if (fanout_count == 1 && maybe_ff_cell->type.in(
"\\FDCP", "\\FDCP_N", "\\FDDCP", "\\LDCP", "\\LDCP_N",
"\\FTCP", "\\FTCP_N", "\\FTDCP", "\\FDCPE", "\\FDCPE_N", "\\FDDCPE"))
{
SigBit input;
if (maybe_ff_cell->type.in("\\FTCP", "\\FTCP_N", "\\FTDCP"))
input = sigmap(maybe_ff_cell->getPort("\\T")[0]);
else
input = sigmap(maybe_ff_cell->getPort("\\D")[0]);
SigBit output = sigmap(maybe_ff_cell->getPort("\\Q")[0]);
if (input == ibuf_out_wire)
{
log("Found IBUF %s that can be packed with FF %s (type %s)\n",
ibuf_out_wire.wire->name.c_str(),
maybe_ff_cell->name.c_str(),
maybe_ff_cell->type.c_str());
ibuf_out_to_packed_reg_cell[ibuf_out_wire] = maybe_ff_cell;
packed_reg_out.insert(output);
}
}
}
for (auto cell : module->selected_cells())
{
if (cell->type.in("\\FDCP", "\\FDCP_N", "\\FDDCP", "\\LDCP", "\\LDCP_N",
"\\FTCP", "\\FTCP_N", "\\FTDCP", "\\FDCPE", "\\FDCPE_N", "\\FDDCPE"))
{
// Buffering FF inputs. FF inputs can only come from either
// an IO pin or from an XOR. Otherwise AND/XOR cells need
// to be inserted.
SigBit input;
if (cell->type.in("\\FTCP", "\\FTCP_N", "\\FTDCP"))
input = sigmap(cell->getPort("\\T")[0]);
else
input = sigmap(cell->getPort("\\D")[0]);
if (!sig_fed_by_xor[input] && !sig_fed_by_io[input])
// If the input wasn't an XOR nor an IO, then a buffer
// definitely needs to be added.
// Otherwise, if it is an IO, only leave unbuffered
// if we're being packed with the IO.
if ((!sig_fed_by_xor[input] && !sig_fed_by_io[input]) ||
(sig_fed_by_io[input] && ibuf_out_to_packed_reg_cell[input] != cell))
{
log("Buffering input to \"%s\"\n", cell->name.c_str());
auto and_to_xor_wire = module->addWire(NEW_ID);
auto xor_to_ff_wire = module->addWire(NEW_ID);
auto and_cell = module->addCell(NEW_ID, "\\ANDTERM");
and_cell->setParam("\\TRUE_INP", 1);
and_cell->setParam("\\COMP_INP", 0);
and_cell->setPort("\\OUT", and_to_xor_wire);
and_cell->setPort("\\IN", input);
and_cell->setPort("\\IN_B", SigSpec());
auto xor_cell = module->addCell(NEW_ID, "\\MACROCELL_XOR");
xor_cell->setParam("\\INVERT_OUT", false);
xor_cell->setPort("\\IN_PTC", and_to_xor_wire);
xor_cell->setPort("\\OUT", xor_to_ff_wire);
auto xor_to_ff_wire = makexorbuffer(module, input, cell->name.c_str());
if (cell->type.in("\\FTCP", "\\FTCP_N", "\\FTDCP"))
cell->setPort("\\T", xor_to_ff_wire);
else
cell->setPort("\\D", xor_to_ff_wire);
}
// Buffering FF clocks. FF clocks can only come from either
// a pterm or a bufg. In some cases this will be handled
// in coolrunner2_sop (e.g. if clock is generated from
// AND-ing two signals) but not in all cases.
SigBit clock;
if (cell->type.in("\\LDCP", "\\LDCP_N"))
clock = sigmap(cell->getPort("\\G")[0]);
else
clock = sigmap(cell->getPort("\\C")[0]);
if (!sig_fed_by_pterm[clock] && !sig_fed_by_bufg[clock])
{
log("Buffering clock to \"%s\"\n", cell->name.c_str());
auto pterm_to_ff_wire = makeptermbuffer(module, clock);
if (cell->type.in("\\LDCP", "\\LDCP_N"))
cell->setPort("\\G", pterm_to_ff_wire);
else
cell->setPort("\\C", pterm_to_ff_wire);
}
// Buffering FF set/reset. This can only come from either
// a pterm or a bufgsr.
SigBit set;
set = sigmap(cell->getPort("\\PRE")[0]);
if (set != SigBit(false))
{
if (!sig_fed_by_pterm[set] && !sig_fed_by_bufgsr[set])
{
log("Buffering set to \"%s\"\n", cell->name.c_str());
auto pterm_to_ff_wire = makeptermbuffer(module, set);
cell->setPort("\\PRE", pterm_to_ff_wire);
}
}
SigBit reset;
reset = sigmap(cell->getPort("\\CLR")[0]);
if (reset != SigBit(false))
{
if (!sig_fed_by_pterm[reset] && !sig_fed_by_bufgsr[reset])
{
log("Buffering reset to \"%s\"\n", cell->name.c_str());
auto pterm_to_ff_wire = makeptermbuffer(module, reset);
cell->setPort("\\CLR", pterm_to_ff_wire);
}
}
// Buffering FF clock enable
// FIXME: This doesn't fully fix PTC conflicts
// FIXME: Need to ensure constant enables are optimized out
if (cell->type.in("\\FDCPE", "\\FDCPE_N", "\\FDDCPE"))
{
SigBit ce;
ce = sigmap(cell->getPort("\\CE")[0]);
if (!sig_fed_by_pterm[ce])
{
log("Buffering clock enable to \"%s\"\n", cell->name.c_str());
auto pterm_to_ff_wire = makeptermbuffer(module, ce);
cell->setPort("\\CE", pterm_to_ff_wire);
}
}
}
}
// Buffer IOBUFE inputs. This can only be fed from an XOR or FF.
for (auto cell : module->selected_cells())
{
if (cell->type == "\\IOBUFE")
{
// Buffer IOBUFE inputs. This can only be fed from an XOR or FF.
SigBit input = sigmap(cell->getPort("\\I")[0]);
// Special case: constant 0 and 1 are handled by xc2par
if (input == SigBit(true) || input == SigBit(false)) {
log("Not buffering constant IO to \"%s\"\n", cell->name.c_str());
continue;
}
if (!sig_fed_by_xor[input] && !sig_fed_by_ff[input])
if ((!sig_fed_by_xor[input] && !sig_fed_by_ff[input]) ||
packed_reg_out[input])
{
log("Buffering input to \"%s\"\n", cell->name.c_str());
auto and_to_xor_wire = module->addWire(NEW_ID);
auto xor_to_io_wire = module->addWire(NEW_ID);
auto and_cell = module->addCell(NEW_ID, "\\ANDTERM");
and_cell->setParam("\\TRUE_INP", 1);
and_cell->setParam("\\COMP_INP", 0);
and_cell->setPort("\\OUT", and_to_xor_wire);
and_cell->setPort("\\IN", input);
and_cell->setPort("\\IN_B", SigSpec());
auto xor_cell = module->addCell(NEW_ID, "\\MACROCELL_XOR");
xor_cell->setParam("\\INVERT_OUT", false);
xor_cell->setPort("\\IN_PTC", and_to_xor_wire);
xor_cell->setPort("\\OUT", xor_to_io_wire);
auto xor_to_io_wire = makexorbuffer(module, input, cell->name.c_str());
cell->setPort("\\I", xor_to_io_wire);
}
// Buffer IOBUFE enables. This can only be fed from a pterm
// or a bufgts.
if (cell->hasPort("\\E"))
{
SigBit oe;
oe = sigmap(cell->getPort("\\E")[0]);
if (!sig_fed_by_pterm[oe] && !sig_fed_by_bufgts[oe])
{
log("Buffering output enable to \"%s\"\n", cell->name.c_str());
auto pterm_to_oe_wire = makeptermbuffer(module, oe);
cell->setPort("\\E", pterm_to_oe_wire);
}
}
}
}
// Now we have to fix up some cases where shared logic can
// cause XORs to have multiple fanouts to something other than
// pterms (which is not ok)
// Find all the XOR outputs
dict<SigBit, RTLIL::Cell *> xor_out_to_xor_cell;
for (auto cell : module->selected_cells())
{
if (cell->type == "\\MACROCELL_XOR")
{
auto output = sigmap(cell->getPort("\\OUT")[0]);
xor_out_to_xor_cell[output] = cell;
}
}
// Find all of the sinks for each output from an XOR
pool<SigBit> xor_fanout_once;
for (auto cell : module->selected_cells())
{
if (cell->type == "\\ANDTERM")
continue;
for (auto &conn : cell->connections())
{
if (cell->input(conn.first))
{
for (auto wire_in : sigmap(conn.second))
{
auto xor_cell = xor_out_to_xor_cell[wire_in];
if (xor_cell)
{
if (xor_fanout_once[wire_in])
{
log("Additional fanout found for %s into %s (type %s), duplicating\n",
xor_cell->name.c_str(),
cell->name.c_str(),
cell->type.c_str());
auto new_xor_cell = module->addCell(
module->uniquify(xor_cell->name), xor_cell);
auto new_wire = module->addWire(
module->uniquify(wire_in.wire->name));
new_xor_cell->setPort("\\OUT", new_wire);
cell->setPort(conn.first, new_wire);
}
xor_fanout_once.insert(wire_in);
}
}
}
}
}
// Do the same fanout fixing for OR terms. By doing this
// after doing XORs, both pieces will be duplicated when necessary.
// Find all the OR outputs
dict<SigBit, RTLIL::Cell *> or_out_to_or_cell;
for (auto cell : module->selected_cells())
{
if (cell->type == "\\ORTERM")
{
auto output = sigmap(cell->getPort("\\OUT")[0]);
or_out_to_or_cell[output] = cell;
}
}
// Find all of the sinks for each output from an OR
pool<SigBit> or_fanout_once;
for (auto cell : module->selected_cells())
{
for (auto &conn : cell->connections())
{
if (cell->input(conn.first))
{
for (auto wire_in : sigmap(conn.second))
{
auto or_cell = or_out_to_or_cell[wire_in];
if (or_cell)
{
if (or_fanout_once[wire_in])
{
log("Additional fanout found for %s into %s (type %s), duplicating\n",
or_cell->name.c_str(),
cell->name.c_str(),
cell->type.c_str());
auto new_or_cell = module->addCell(
module->uniquify(or_cell->name), or_cell);
auto new_wire = module->addWire(
module->uniquify(wire_in.wire->name));
new_or_cell->setPort("\\OUT", new_wire);
cell->setPort(conn.first, new_wire);
}
or_fanout_once.insert(wire_in);
}
}
}
}
}
}

View File

@ -94,6 +94,8 @@ struct Coolrunner2SopPass : public Pass {
auto sop_width = cell->getParam("\\WIDTH").as_int();
auto sop_table = cell->getParam("\\TABLE");
auto sop_output_wire_name = sop_output.wire->name.c_str();
// Check for a $_NOT_ at the output
bool has_invert = false;
if (not_cells.count(sop_output))
@ -108,20 +110,15 @@ struct Coolrunner2SopPass : public Pass {
}
// Check for special P-term usage
bool is_special_pterm = false;
bool special_pterm_can_invert = false;
if (special_pterms_no_inv.count(sop_output) || special_pterms_inv.count(sop_output))
{
is_special_pterm = true;
if (!special_pterms_no_inv[sop_output].size())
special_pterm_can_invert = true;
}
bool is_special_pterm =
special_pterms_no_inv.count(sop_output) || special_pterms_inv.count(sop_output);
// Construct AND cells
pool<SigBit> intermed_wires;
for (int i = 0; i < sop_depth; i++) {
// Wire for the output
auto and_out = module->addWire(NEW_ID);
auto and_out = module->addWire(
module->uniquify(stringf("$xc2sop$%s_AND%d_OUT", sop_output_wire_name, i)));
intermed_wires.insert(and_out);
// Signals for the inputs
@ -140,7 +137,9 @@ struct Coolrunner2SopPass : public Pass {
}
// Construct the cell
auto and_cell = module->addCell(NEW_ID, "\\ANDTERM");
auto and_cell = module->addCell(
module->uniquify(stringf("$xc2sop$%s_AND%d", sop_output_wire_name, i)),
"\\ANDTERM");
and_cell->setParam("\\TRUE_INP", GetSize(and_in_true));
and_cell->setParam("\\COMP_INP", GetSize(and_in_comp));
and_cell->setPort("\\OUT", and_out);
@ -151,7 +150,9 @@ struct Coolrunner2SopPass : public Pass {
if (sop_depth == 1)
{
// If there is only one term, don't construct an OR cell. Directly construct the XOR gate
auto xor_cell = module->addCell(NEW_ID, "\\MACROCELL_XOR");
auto xor_cell = module->addCell(
module->uniquify(stringf("$xc2sop$%s_XOR", sop_output_wire_name)),
"\\MACROCELL_XOR");
xor_cell->setParam("\\INVERT_OUT", has_invert);
xor_cell->setPort("\\IN_PTC", *intermed_wires.begin());
xor_cell->setPort("\\OUT", sop_output);
@ -159,88 +160,61 @@ struct Coolrunner2SopPass : public Pass {
// Special P-term handling
if (is_special_pterm)
{
if (!has_invert || special_pterm_can_invert)
// Can always connect the P-term directly if it's going
// into something invert-capable
for (auto x : special_pterms_inv[sop_output])
{
std::get<0>(x)->setPort(std::get<1>(x), *intermed_wires.begin());
// If this signal is indeed inverted, flip the cell polarity
if (has_invert)
{
auto cell = std::get<0>(x);
if (cell->type == "\\FDCP") cell->type = "\\FDCP_N";
else if (cell->type == "\\FDCP_N") cell->type = "\\FDCP";
else if (cell->type == "\\FTCP") cell->type = "\\FTCP_N";
else if (cell->type == "\\FTCP_N") cell->type = "\\FTCP";
else if (cell->type == "\\FDCPE") cell->type = "\\FDCPE_N";
else if (cell->type == "\\FDCPE_N") cell->type = "\\FDCPE";
else if (cell->type == "\\LDCP") cell->type = "\\LDCP_N";
else if (cell->type == "\\LDCP_N") cell->type = "\\LDCP";
else log_assert(!"Internal error! Bad cell type!");
}
}
// If it's going into something that's not invert-capable,
// connect it directly only if this signal isn't inverted
if (!has_invert)
{
// Can connect the P-term directly to the special term sinks
for (auto x : special_pterms_inv[sop_output])
std::get<0>(x)->setPort(std::get<1>(x), *intermed_wires.begin());
for (auto x : special_pterms_no_inv[sop_output])
std::get<0>(x)->setPort(std::get<1>(x), *intermed_wires.begin());
}
if (has_invert)
{
if (special_pterm_can_invert)
{
log_assert(special_pterms_no_inv[sop_output].size() == 0);
for (auto x : special_pterms_inv[sop_output])
{
auto cell = std::get<0>(x);
// Need to invert the polarity of the cell
if (cell->type == "\\FDCP") cell->type = "\\FDCP_N";
else if (cell->type == "\\FDCP_N") cell->type = "\\FDCP";
else if (cell->type == "\\FTCP") cell->type = "\\FTCP_N";
else if (cell->type == "\\FTCP_N") cell->type = "\\FTCP";
else if (cell->type == "\\FDCPE") cell->type = "\\FDCPE_N";
else if (cell->type == "\\FDCPE_N") cell->type = "\\FDCPE";
else if (cell->type == "\\LDCP") cell->type = "\\LDCP_N";
else if (cell->type == "\\LDCP_N") cell->type = "\\LDCP";
else log_assert(!"Internal error! Bad cell type!");
}
}
else
{
// Need to construct a feed-through term
auto feedthrough_out = module->addWire(NEW_ID);
auto feedthrough_cell = module->addCell(NEW_ID, "\\ANDTERM");
feedthrough_cell->setParam("\\TRUE_INP", 1);
feedthrough_cell->setParam("\\COMP_INP", 0);
feedthrough_cell->setPort("\\OUT", feedthrough_out);
feedthrough_cell->setPort("\\IN", sop_output);
feedthrough_cell->setPort("\\IN_B", SigSpec());
for (auto x : special_pterms_inv[sop_output])
std::get<0>(x)->setPort(std::get<1>(x), feedthrough_out);
for (auto x : special_pterms_no_inv[sop_output])
std::get<0>(x)->setPort(std::get<1>(x), feedthrough_out);
}
}
// Otherwise, a feedthrough P-term has to be created. Leave that to happen
// in the coolrunner2_fixup pass.
}
}
else
{
// Wire from OR to XOR
auto or_to_xor_wire = module->addWire(NEW_ID);
auto or_to_xor_wire = module->addWire(
module->uniquify(stringf("$xc2sop$%s_OR_OUT", sop_output_wire_name)));
// Construct the OR cell
auto or_cell = module->addCell(NEW_ID, "\\ORTERM");
auto or_cell = module->addCell(
module->uniquify(stringf("$xc2sop$%s_OR", sop_output_wire_name)),
"\\ORTERM");
or_cell->setParam("\\WIDTH", sop_depth);
or_cell->setPort("\\IN", intermed_wires);
or_cell->setPort("\\OUT", or_to_xor_wire);
// Construct the XOR cell
auto xor_cell = module->addCell(NEW_ID, "\\MACROCELL_XOR");
auto xor_cell = module->addCell(
module->uniquify(stringf("$xc2sop$%s_XOR", sop_output_wire_name)),
"\\MACROCELL_XOR");
xor_cell->setParam("\\INVERT_OUT", has_invert);
xor_cell->setPort("\\IN_ORTERM", or_to_xor_wire);
xor_cell->setPort("\\OUT", sop_output);
if (is_special_pterm)
{
// Need to construct a feed-through term
auto feedthrough_out = module->addWire(NEW_ID);
auto feedthrough_cell = module->addCell(NEW_ID, "\\ANDTERM");
feedthrough_cell->setParam("\\TRUE_INP", 1);
feedthrough_cell->setParam("\\COMP_INP", 0);
feedthrough_cell->setPort("\\OUT", feedthrough_out);
feedthrough_cell->setPort("\\IN", sop_output);
feedthrough_cell->setPort("\\IN_B", SigSpec());
for (auto x : special_pterms_inv[sop_output])
std::get<0>(x)->setPort(std::get<1>(x), feedthrough_out);
for (auto x : special_pterms_no_inv[sop_output])
std::get<0>(x)->setPort(std::get<1>(x), feedthrough_out);
}
}
// Finally, remove the $sop cell

View File

@ -178,6 +178,7 @@ struct SynthCoolrunner2Pass : public ScriptPass
run("dffinit -ff LDCP Q INIT");
run("dffinit -ff LDCP_N Q INIT");
run("coolrunner2_sop");
run("clean");
run("iopadmap -bits -inpad IBUF O:I -outpad IOBUFE I:IO -inoutpad IOBUFE O:IO -toutpad IOBUFE E:I:IO -tinoutpad IOBUFE E:O:I:IO");
run("attrmvcp -attr src -attr LOC t:IOBUFE n:*");
run("attrmvcp -attr src -attr LOC -driven t:IBUF n:*");