mirror of https://github.com/YosysHQ/yosys.git
Merge remote-tracking branch 'origin/master' into xaig_dff
This commit is contained in:
commit
a46a7e8a67
|
@ -430,10 +430,14 @@ sigspec:
|
|||
free($1);
|
||||
} |
|
||||
sigspec '[' TOK_INT ']' {
|
||||
if ($3 >= $1->size() || $3 < 0)
|
||||
rtlil_frontend_ilang_yyerror("bit index out of range");
|
||||
$$ = new RTLIL::SigSpec($1->extract($3));
|
||||
delete $1;
|
||||
} |
|
||||
sigspec '[' TOK_INT ':' TOK_INT ']' {
|
||||
if ($3 >= $1->size() || $3 < 0 || $3 < $5)
|
||||
rtlil_frontend_ilang_yyerror("invalid slice");
|
||||
$$ = new RTLIL::SigSpec($1->extract($5, $3 - $5 + 1));
|
||||
delete $1;
|
||||
} |
|
||||
|
|
|
@ -2242,7 +2242,7 @@ gen_stmt:
|
|||
ast_stack.back()->children.push_back(node);
|
||||
ast_stack.push_back(node);
|
||||
} opt_arg_list ';'{
|
||||
ast_stack.pop_back();
|
||||
ast_stack.pop_back();
|
||||
};
|
||||
|
||||
gen_stmt_block:
|
||||
|
@ -2413,19 +2413,19 @@ basic_expr:
|
|||
append_attr($$, $2);
|
||||
} |
|
||||
basic_expr OP_SHL attr basic_expr {
|
||||
$$ = new AstNode(AST_SHIFT_LEFT, $1, $4);
|
||||
$$ = new AstNode(AST_SHIFT_LEFT, $1, new AstNode(AST_TO_UNSIGNED, $4));
|
||||
append_attr($$, $3);
|
||||
} |
|
||||
basic_expr OP_SHR attr basic_expr {
|
||||
$$ = new AstNode(AST_SHIFT_RIGHT, $1, $4);
|
||||
$$ = new AstNode(AST_SHIFT_RIGHT, $1, new AstNode(AST_TO_UNSIGNED, $4));
|
||||
append_attr($$, $3);
|
||||
} |
|
||||
basic_expr OP_SSHL attr basic_expr {
|
||||
$$ = new AstNode(AST_SHIFT_SLEFT, $1, $4);
|
||||
$$ = new AstNode(AST_SHIFT_SLEFT, $1, new AstNode(AST_TO_UNSIGNED, $4));
|
||||
append_attr($$, $3);
|
||||
} |
|
||||
basic_expr OP_SSHR attr basic_expr {
|
||||
$$ = new AstNode(AST_SHIFT_SRIGHT, $1, $4);
|
||||
$$ = new AstNode(AST_SHIFT_SRIGHT, $1, new AstNode(AST_TO_UNSIGNED, $4));
|
||||
append_attr($$, $3);
|
||||
} |
|
||||
basic_expr '<' attr basic_expr {
|
||||
|
|
|
@ -783,6 +783,14 @@ namespace {
|
|||
return v;
|
||||
}
|
||||
|
||||
int param_bool(RTLIL::IdString name, bool expected)
|
||||
{
|
||||
int v = param_bool(name);
|
||||
if (v != expected)
|
||||
error(__LINE__);
|
||||
return v;
|
||||
}
|
||||
|
||||
void param_bits(RTLIL::IdString name, int width)
|
||||
{
|
||||
param(name);
|
||||
|
@ -869,13 +877,23 @@ namespace {
|
|||
return;
|
||||
}
|
||||
|
||||
if (cell->type.in(ID($shl), ID($shr), ID($sshl), ID($sshr), ID($shift), ID($shiftx))) {
|
||||
if (cell->type.in(ID($shl), ID($shr), ID($sshl), ID($sshr))) {
|
||||
param_bool(ID(A_SIGNED));
|
||||
param_bool(ID(B_SIGNED), /*expected=*/false);
|
||||
port(ID::A, param(ID(A_WIDTH)));
|
||||
port(ID::B, param(ID(B_WIDTH)));
|
||||
port(ID::Y, param(ID(Y_WIDTH)));
|
||||
check_expected(/*check_matched_sign=*/false);
|
||||
return;
|
||||
}
|
||||
|
||||
if (cell->type.in(ID($shift), ID($shiftx))) {
|
||||
param_bool(ID(A_SIGNED));
|
||||
param_bool(ID(B_SIGNED));
|
||||
port(ID::A, param(ID(A_WIDTH)));
|
||||
port(ID::B, param(ID(B_WIDTH)));
|
||||
port(ID::Y, param(ID(Y_WIDTH)));
|
||||
check_expected(false);
|
||||
check_expected(/*check_matched_sign=*/false);
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -957,7 +975,7 @@ namespace {
|
|||
port(ID::A, param(ID(A_WIDTH)));
|
||||
port(ID::B, param(ID(B_WIDTH)));
|
||||
port(ID::Y, param(ID(Y_WIDTH)));
|
||||
check_expected(false);
|
||||
check_expected(/*check_matched_sign=*/false);
|
||||
return;
|
||||
}
|
||||
|
||||
|
|
|
@ -65,6 +65,11 @@ Verilog & Cell Type \\
|
|||
\label{tab:CellLib_unary}
|
||||
\end{table}
|
||||
|
||||
For the unary cells that output a logical value ({\tt \$reduce\_and}, {\tt \$reduce\_or},
|
||||
{\tt \$reduce\_xor}, {\tt \$reduce\_xnor}, {\tt \$reduce\_bool}, {\tt \$logic\_not}),
|
||||
when the \B{Y\_WIDTH} parameter is greater than 1, the output is zero-extended,
|
||||
and only the least significant bit varies.
|
||||
|
||||
Note that {\tt \$reduce\_or} and {\tt \$reduce\_bool} actually represent the same
|
||||
logic function. But the HDL frontends generate them in different situations. A
|
||||
{\tt \$reduce\_or} cell is generated when the prefix {\tt |} operator is being used. A
|
||||
|
@ -97,41 +102,6 @@ The width of the output port \B{Y}.
|
|||
|
||||
Table~\ref{tab:CellLib_binary} lists all cells for binary RTL operators.
|
||||
|
||||
\subsection{Multiplexers}
|
||||
|
||||
Multiplexers are generated by the Verilog HDL frontend for {\tt
|
||||
?:}-expressions. Multiplexers are also generated by the {\tt proc} pass to map the decision trees
|
||||
from RTLIL::Process objects to logic.
|
||||
|
||||
The simplest multiplexer cell type is {\tt \$mux}. Cells of this type have a \B{WIDTH} parameter
|
||||
and data inputs \B{A} and \B{B} and a data output \B{Y}, all of the specified width. This cell also
|
||||
has a single bit control input \B{S}. If \B{S} is 0 the value from the \B{A} input is sent to
|
||||
the output, if it is 1 the value from the \B{B} input is sent to the output. So the {\tt \$mux}
|
||||
cell implements the function \lstinline[language=Verilog]; Y = S ? B : A;.
|
||||
|
||||
The {\tt \$pmux} cell is used to multiplex between many inputs using a one-hot select signal. Cells
|
||||
of this type have a \B{WIDTH} and a \B{S\_WIDTH} parameter and inputs \B{A}, \B{B}, and \B{S} and
|
||||
an output \B{Y}. The \B{S} input is \B{S\_WIDTH} bits wide. The \B{A} input and the output are both
|
||||
\B{WIDTH} bits wide and the \B{B} input is \B{WIDTH}*\B{S\_WIDTH} bits wide. When all bits of
|
||||
\B{S} are zero, the value from \B{A} input is sent to the output. If the $n$'th bit from \B{S} is
|
||||
set, the value $n$'th \B{WIDTH} bits wide slice of the \B{B} input is sent to the output. When more
|
||||
than one bit from \B{S} is set the output is undefined. Cells of this type are used to model
|
||||
``parallel cases'' (defined by using the {\tt parallel\_case} attribute or detected by
|
||||
an optimization).
|
||||
|
||||
The {\tt \$tribuf} cell is used to implement tristate logic. Cells of this type have a \B{WIDTH}
|
||||
parameter and inputs \B{A} and \B{EN} and an output \B{Y}. The \B{A} input and \B{Y} output are
|
||||
\B{WIDTH} bits wide, and the \B{EN} input is one bit wide. When \B{EN} is 0, the output \B{Y}
|
||||
is not driven. When \B{EN} is 1, the value from \B{A} input is sent to the \B{Y} output. Therefore,
|
||||
the {\tt \$tribuf} cell implements the function \lstinline[language=Verilog]; Y = EN ? A : 'bz;.
|
||||
|
||||
Behavioural code with cascaded {\tt if-then-else}- and {\tt case}-statements
|
||||
usually results in trees of multiplexer cells. Many passes (from various
|
||||
optimizations to FSM extraction) heavily depend on these multiplexer trees to
|
||||
understand dependencies between signals. Therefore optimizations should not
|
||||
break these multiplexer trees (e.g.~by replacing a multiplexer between a
|
||||
calculated signal and a constant zero with an {\tt \$and} gate).
|
||||
|
||||
\begin{table}[t!]
|
||||
\hfil
|
||||
\begin{tabular}[t]{ll}
|
||||
|
@ -175,6 +145,57 @@ Verilog & Cell Type \\
|
|||
\label{tab:CellLib_binary}
|
||||
\end{table}
|
||||
|
||||
The {\tt \$shl} and {\tt \$shr} cells implement logical shifts, whereas the {\tt \$sshl} and
|
||||
{\tt \$sshr} cells implement arithmetic shifts. The {\tt \$shl} and {\tt \$sshl} cells implement
|
||||
the same operation. All four of these cells interpret the second operand as unsigned, and require
|
||||
\B{B\_SIGNED} to be zero.
|
||||
|
||||
Two additional shift operator cells are available that do not directly correspond to any operator
|
||||
in Verilog, {\tt \$shift} and {\tt \$shiftx}. The {\tt \$shift} cell performs a right logical shift
|
||||
if the second operand is positive (or unsigned), and a left logical shift if it is negative.
|
||||
The {\tt \$shiftx} cell performs the same operation as the {\tt \$shift} cell, but the vacated bit
|
||||
positions are filled with undef (x) bits, and corresponds to the Verilog indexed part-select expression.
|
||||
|
||||
For the binary cells that output a logical value ({\tt \$logic\_and}, {\tt \$logic\_or},
|
||||
{\tt \$eqx}, {\tt \$nex}, {\tt \$lt}, {\tt \$le}, {\tt \$eq}, {\tt \$ne}, {\tt \$ge},
|
||||
{\tt \$gt}), when the \B{Y\_WIDTH} parameter is greater than 1, the output is zero-extended,
|
||||
and only the least significant bit varies.
|
||||
|
||||
\subsection{Multiplexers}
|
||||
|
||||
Multiplexers are generated by the Verilog HDL frontend for {\tt
|
||||
?:}-expressions. Multiplexers are also generated by the {\tt proc} pass to map the decision trees
|
||||
from RTLIL::Process objects to logic.
|
||||
|
||||
The simplest multiplexer cell type is {\tt \$mux}. Cells of this type have a \B{WIDTH} parameter
|
||||
and data inputs \B{A} and \B{B} and a data output \B{Y}, all of the specified width. This cell also
|
||||
has a single bit control input \B{S}. If \B{S} is 0 the value from the \B{A} input is sent to
|
||||
the output, if it is 1 the value from the \B{B} input is sent to the output. So the {\tt \$mux}
|
||||
cell implements the function \lstinline[language=Verilog]; Y = S ? B : A;.
|
||||
|
||||
The {\tt \$pmux} cell is used to multiplex between many inputs using a one-hot select signal. Cells
|
||||
of this type have a \B{WIDTH} and a \B{S\_WIDTH} parameter and inputs \B{A}, \B{B}, and \B{S} and
|
||||
an output \B{Y}. The \B{S} input is \B{S\_WIDTH} bits wide. The \B{A} input and the output are both
|
||||
\B{WIDTH} bits wide and the \B{B} input is \B{WIDTH}*\B{S\_WIDTH} bits wide. When all bits of
|
||||
\B{S} are zero, the value from \B{A} input is sent to the output. If the $n$'th bit from \B{S} is
|
||||
set, the value $n$'th \B{WIDTH} bits wide slice of the \B{B} input is sent to the output. When more
|
||||
than one bit from \B{S} is set the output is undefined. Cells of this type are used to model
|
||||
``parallel cases'' (defined by using the {\tt parallel\_case} attribute or detected by
|
||||
an optimization).
|
||||
|
||||
The {\tt \$tribuf} cell is used to implement tristate logic. Cells of this type have a \B{WIDTH}
|
||||
parameter and inputs \B{A} and \B{EN} and an output \B{Y}. The \B{A} input and \B{Y} output are
|
||||
\B{WIDTH} bits wide, and the \B{EN} input is one bit wide. When \B{EN} is 0, the output \B{Y}
|
||||
is not driven. When \B{EN} is 1, the value from \B{A} input is sent to the \B{Y} output. Therefore,
|
||||
the {\tt \$tribuf} cell implements the function \lstinline[language=Verilog]; Y = EN ? A : 'bz;.
|
||||
|
||||
Behavioural code with cascaded {\tt if-then-else}- and {\tt case}-statements
|
||||
usually results in trees of multiplexer cells. Many passes (from various
|
||||
optimizations to FSM extraction) heavily depend on these multiplexer trees to
|
||||
understand dependencies between signals. Therefore optimizations should not
|
||||
break these multiplexer trees (e.g.~by replacing a multiplexer between a
|
||||
calculated signal and a constant zero with an {\tt \$and} gate).
|
||||
|
||||
\subsection{Registers}
|
||||
|
||||
D-Type Flip-Flops are represented by {\tt \$dff} cells. These cells have a clock port \B{CLK},
|
||||
|
|
|
@ -89,20 +89,30 @@ void handle_loops(RTLIL::Design *design, RTLIL::Module *module)
|
|||
if (cell->output(c.first)) {
|
||||
SigBit b = c.second.as_bit();
|
||||
Wire *w = b.wire;
|
||||
log_assert(!w->port_input);
|
||||
w->port_input = true;
|
||||
w = module->wire(stringf("%s.abci", w->name.c_str()));
|
||||
if (!w) {
|
||||
w = module->addWire(stringf("%s.abci", b.wire->name.c_str()), GetSize(b.wire));
|
||||
w->port_output = true;
|
||||
if (w->port_input) {
|
||||
// In this case, hopefully the loop break has been already created
|
||||
// Get the non-prefixed wire
|
||||
Wire *wo = module->wire(stringf("%s.abco", b.wire->name.c_str()));
|
||||
log_assert(wo != nullptr);
|
||||
log_assert(wo->port_output);
|
||||
log_assert(b.offset < GetSize(wo));
|
||||
c.second = RTLIL::SigBit(wo, b.offset);
|
||||
}
|
||||
else {
|
||||
log_assert(w->port_input);
|
||||
log_assert(b.offset < GetSize(w));
|
||||
// Create a new output/input loop break
|
||||
w->port_input = true;
|
||||
w = module->wire(stringf("%s.abco", w->name.c_str()));
|
||||
if (!w) {
|
||||
w = module->addWire(stringf("%s.abco", b.wire->name.c_str()), GetSize(b.wire));
|
||||
w->port_output = true;
|
||||
}
|
||||
else {
|
||||
log_assert(w->port_input);
|
||||
log_assert(b.offset < GetSize(w));
|
||||
}
|
||||
w->set_bool_attribute(ID(abc9_scc_break));
|
||||
c.second = RTLIL::SigBit(w, b.offset);
|
||||
}
|
||||
w->set_bool_attribute(ID(abc9_scc_break));
|
||||
module->swap_names(b.wire, w);
|
||||
c.second = RTLIL::SigBit(w, b.offset);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -354,24 +364,6 @@ void abc9_module(RTLIL::Design *design, RTLIL::Module *module, std::string scrip
|
|||
design->remove(design->module(ID($__abc9__)));
|
||||
#endif
|
||||
|
||||
// Now 'unexpose' those wires by undoing
|
||||
// the expose operation -- remove them from PO/PI
|
||||
// and re-connecting them back together
|
||||
for (auto wire : module->wires()) {
|
||||
auto it = wire->attributes.find(ID(abc9_scc_break));
|
||||
if (it != wire->attributes.end()) {
|
||||
wire->attributes.erase(it);
|
||||
log_assert(wire->port_output);
|
||||
wire->port_output = false;
|
||||
RTLIL::Wire *i_wire = module->wire(wire->name.str() + ".abci");
|
||||
log_assert(i_wire);
|
||||
log_assert(i_wire->port_input);
|
||||
i_wire->port_input = false;
|
||||
module->connect(i_wire, wire);
|
||||
}
|
||||
}
|
||||
module->fixup_ports();
|
||||
|
||||
log_header(design, "Executing ABC9.\n");
|
||||
|
||||
if (!lut_costs.empty()) {
|
||||
|
@ -705,6 +697,25 @@ clone_lut:
|
|||
}
|
||||
}
|
||||
|
||||
// Now 'unexpose' those wires by undoing
|
||||
// the expose operation -- remove them from PO/PI
|
||||
// and re-connecting them back together
|
||||
for (auto wire : module->wires()) {
|
||||
auto it = wire->attributes.find(ID(abc9_scc_break));
|
||||
if (it != wire->attributes.end()) {
|
||||
wire->attributes.erase(it);
|
||||
log_assert(wire->port_output);
|
||||
wire->port_output = false;
|
||||
std::string name = wire->name.str();
|
||||
RTLIL::Wire *i_wire = module->wire(name.substr(0, GetSize(name) - 5));
|
||||
log_assert(i_wire);
|
||||
log_assert(i_wire->port_input);
|
||||
i_wire->port_input = false;
|
||||
module->connect(i_wire, wire);
|
||||
}
|
||||
}
|
||||
module->fixup_ports();
|
||||
|
||||
//log("ABC RESULTS: internal signals: %8d\n", int(signal_list.size()) - in_wires - out_wires);
|
||||
log("ABC RESULTS: input signals: %8d\n", in_wires);
|
||||
log("ABC RESULTS: output signals: %8d\n", out_wires);
|
||||
|
|
|
@ -87,11 +87,11 @@ struct IopadmapPass : public Pass {
|
|||
{
|
||||
log_header(design, "Executing IOPADMAP pass (mapping inputs/outputs to IO-PAD cells).\n");
|
||||
|
||||
std::string inpad_celltype, inpad_portname, inpad_portname2;
|
||||
std::string outpad_celltype, outpad_portname, outpad_portname2;
|
||||
std::string inoutpad_celltype, inoutpad_portname, inoutpad_portname2;
|
||||
std::string toutpad_celltype, toutpad_portname, toutpad_portname2, toutpad_portname3;
|
||||
std::string tinoutpad_celltype, tinoutpad_portname, tinoutpad_portname2, tinoutpad_portname3, tinoutpad_portname4;
|
||||
std::string inpad_celltype, inpad_portname_o, inpad_portname_pad;
|
||||
std::string outpad_celltype, outpad_portname_i, outpad_portname_pad;
|
||||
std::string inoutpad_celltype, inoutpad_portname_io, inoutpad_portname_pad;
|
||||
std::string toutpad_celltype, toutpad_portname_oe, toutpad_portname_i, toutpad_portname_pad;
|
||||
std::string tinoutpad_celltype, tinoutpad_portname_oe, tinoutpad_portname_o, tinoutpad_portname_i, tinoutpad_portname_pad;
|
||||
std::string widthparam, nameparam;
|
||||
pool<pair<IdString, IdString>> ignore;
|
||||
bool flag_bits = false;
|
||||
|
@ -102,35 +102,35 @@ struct IopadmapPass : public Pass {
|
|||
std::string arg = args[argidx];
|
||||
if (arg == "-inpad" && argidx+2 < args.size()) {
|
||||
inpad_celltype = args[++argidx];
|
||||
inpad_portname = args[++argidx];
|
||||
split_portname_pair(inpad_portname, inpad_portname2);
|
||||
inpad_portname_o = args[++argidx];
|
||||
split_portname_pair(inpad_portname_o, inpad_portname_pad);
|
||||
continue;
|
||||
}
|
||||
if (arg == "-outpad" && argidx+2 < args.size()) {
|
||||
outpad_celltype = args[++argidx];
|
||||
outpad_portname = args[++argidx];
|
||||
split_portname_pair(outpad_portname, outpad_portname2);
|
||||
outpad_portname_i = args[++argidx];
|
||||
split_portname_pair(outpad_portname_i, outpad_portname_pad);
|
||||
continue;
|
||||
}
|
||||
if (arg == "-inoutpad" && argidx+2 < args.size()) {
|
||||
inoutpad_celltype = args[++argidx];
|
||||
inoutpad_portname = args[++argidx];
|
||||
split_portname_pair(inoutpad_portname, inoutpad_portname2);
|
||||
inoutpad_portname_io = args[++argidx];
|
||||
split_portname_pair(inoutpad_portname_io, inoutpad_portname_pad);
|
||||
continue;
|
||||
}
|
||||
if (arg == "-toutpad" && argidx+2 < args.size()) {
|
||||
toutpad_celltype = args[++argidx];
|
||||
toutpad_portname = args[++argidx];
|
||||
split_portname_pair(toutpad_portname, toutpad_portname2);
|
||||
split_portname_pair(toutpad_portname2, toutpad_portname3);
|
||||
toutpad_portname_oe = args[++argidx];
|
||||
split_portname_pair(toutpad_portname_oe, toutpad_portname_i);
|
||||
split_portname_pair(toutpad_portname_i, toutpad_portname_pad);
|
||||
continue;
|
||||
}
|
||||
if (arg == "-tinoutpad" && argidx+2 < args.size()) {
|
||||
tinoutpad_celltype = args[++argidx];
|
||||
tinoutpad_portname = args[++argidx];
|
||||
split_portname_pair(tinoutpad_portname, tinoutpad_portname2);
|
||||
split_portname_pair(tinoutpad_portname2, tinoutpad_portname3);
|
||||
split_portname_pair(tinoutpad_portname3, tinoutpad_portname4);
|
||||
tinoutpad_portname_oe = args[++argidx];
|
||||
split_portname_pair(tinoutpad_portname_oe, tinoutpad_portname_o);
|
||||
split_portname_pair(tinoutpad_portname_o, tinoutpad_portname_i);
|
||||
split_portname_pair(tinoutpad_portname_i, tinoutpad_portname_pad);
|
||||
continue;
|
||||
}
|
||||
if (arg == "-ignore" && argidx+2 < args.size()) {
|
||||
|
@ -161,16 +161,16 @@ struct IopadmapPass : public Pass {
|
|||
}
|
||||
extra_args(args, argidx, design);
|
||||
|
||||
if (!inpad_portname2.empty())
|
||||
ignore.insert(make_pair(RTLIL::escape_id(inpad_celltype), RTLIL::escape_id(inpad_portname2)));
|
||||
if (!outpad_portname2.empty())
|
||||
ignore.insert(make_pair(RTLIL::escape_id(outpad_celltype), RTLIL::escape_id(outpad_portname2)));
|
||||
if (!inoutpad_portname2.empty())
|
||||
ignore.insert(make_pair(RTLIL::escape_id(inoutpad_celltype), RTLIL::escape_id(inoutpad_portname2)));
|
||||
if (!toutpad_portname3.empty())
|
||||
ignore.insert(make_pair(RTLIL::escape_id(toutpad_celltype), RTLIL::escape_id(toutpad_portname3)));
|
||||
if (!tinoutpad_portname4.empty())
|
||||
ignore.insert(make_pair(RTLIL::escape_id(tinoutpad_celltype), RTLIL::escape_id(tinoutpad_portname4)));
|
||||
if (!inpad_portname_pad.empty())
|
||||
ignore.insert(make_pair(RTLIL::escape_id(inpad_celltype), RTLIL::escape_id(inpad_portname_pad)));
|
||||
if (!outpad_portname_pad.empty())
|
||||
ignore.insert(make_pair(RTLIL::escape_id(outpad_celltype), RTLIL::escape_id(outpad_portname_pad)));
|
||||
if (!inoutpad_portname_pad.empty())
|
||||
ignore.insert(make_pair(RTLIL::escape_id(inoutpad_celltype), RTLIL::escape_id(inoutpad_portname_pad)));
|
||||
if (!toutpad_portname_pad.empty())
|
||||
ignore.insert(make_pair(RTLIL::escape_id(toutpad_celltype), RTLIL::escape_id(toutpad_portname_pad)));
|
||||
if (!tinoutpad_portname_pad.empty())
|
||||
ignore.insert(make_pair(RTLIL::escape_id(tinoutpad_celltype), RTLIL::escape_id(tinoutpad_portname_pad)));
|
||||
|
||||
for (auto module : design->modules())
|
||||
if (module->get_blackbox_attribute())
|
||||
|
@ -180,34 +180,25 @@ struct IopadmapPass : public Pass {
|
|||
|
||||
for (auto module : design->selected_modules())
|
||||
{
|
||||
dict<IdString, pool<int>> skip_wires;
|
||||
pool<SigBit> skip_wire_bits;
|
||||
SigMap sigmap(module);
|
||||
dict<Wire *, dict<int, pair<Cell *, IdString>>> rewrite_bits;
|
||||
|
||||
for (auto cell : module->cells())
|
||||
for (auto port : cell->connections())
|
||||
if (ignore.count(make_pair(cell->type, port.first)))
|
||||
for (auto bit : sigmap(port.second))
|
||||
for (auto bit : port.second)
|
||||
skip_wire_bits.insert(bit);
|
||||
|
||||
if (!toutpad_celltype.empty() || !tinoutpad_celltype.empty())
|
||||
{
|
||||
dict<SigBit, pair<IdString, pool<IdString>>> tbuf_bits;
|
||||
pool<pair<IdString, IdString>> norewrites;
|
||||
SigMap rewrites;
|
||||
dict<SigBit, Cell *> tbuf_bits;
|
||||
|
||||
for (auto cell : module->cells())
|
||||
if (cell->type == ID($_TBUF_)) {
|
||||
SigBit bit = sigmap(cell->getPort(ID::Y).as_bit());
|
||||
tbuf_bits[bit].first = cell->name;
|
||||
SigBit bit = cell->getPort(ID::Y).as_bit();
|
||||
tbuf_bits[bit] = cell;
|
||||
}
|
||||
|
||||
for (auto cell : module->cells())
|
||||
for (auto port : cell->connections())
|
||||
for (auto bit : sigmap(port.second))
|
||||
if (tbuf_bits.count(bit))
|
||||
tbuf_bits.at(bit).second.insert(cell->name);
|
||||
|
||||
for (auto wire : module->selected_wires())
|
||||
{
|
||||
if (!wire->port_output)
|
||||
|
@ -216,16 +207,11 @@ struct IopadmapPass : public Pass {
|
|||
for (int i = 0; i < GetSize(wire); i++)
|
||||
{
|
||||
SigBit wire_bit(wire, i);
|
||||
SigBit mapped_wire_bit = sigmap(wire_bit);
|
||||
|
||||
if (tbuf_bits.count(mapped_wire_bit) == 0)
|
||||
if (tbuf_bits.count(wire_bit) == 0)
|
||||
continue;
|
||||
|
||||
if (skip_wire_bits.count(mapped_wire_bit))
|
||||
continue;
|
||||
|
||||
auto &tbuf_cache = tbuf_bits.at(mapped_wire_bit);
|
||||
Cell *tbuf_cell = module->cell(tbuf_cache.first);
|
||||
Cell *tbuf_cell = tbuf_bits.at(wire_bit);
|
||||
|
||||
if (tbuf_cell == nullptr)
|
||||
continue;
|
||||
|
@ -238,37 +224,16 @@ struct IopadmapPass : public Pass {
|
|||
log("Mapping port %s.%s[%d] using %s.\n", log_id(module), log_id(wire), i, tinoutpad_celltype.c_str());
|
||||
|
||||
Cell *cell = module->addCell(NEW_ID, RTLIL::escape_id(tinoutpad_celltype));
|
||||
Wire *owire = module->addWire(NEW_ID);
|
||||
|
||||
cell->setPort(RTLIL::escape_id(tinoutpad_portname), en_sig);
|
||||
cell->setPort(RTLIL::escape_id(tinoutpad_portname2), owire);
|
||||
cell->setPort(RTLIL::escape_id(tinoutpad_portname3), data_sig);
|
||||
cell->setPort(RTLIL::escape_id(tinoutpad_portname4), wire_bit);
|
||||
cell->setPort(RTLIL::escape_id(tinoutpad_portname_oe), en_sig);
|
||||
cell->setPort(RTLIL::escape_id(tinoutpad_portname_o), wire_bit);
|
||||
cell->setPort(RTLIL::escape_id(tinoutpad_portname_i), data_sig);
|
||||
cell->attributes[ID::keep] = RTLIL::Const(1);
|
||||
|
||||
for (auto cn : tbuf_cache.second) {
|
||||
auto c = module->cell(cn);
|
||||
if (c == nullptr)
|
||||
continue;
|
||||
for (auto port : c->connections()) {
|
||||
SigSpec sig = port.second;
|
||||
bool newsig = false;
|
||||
for (auto &bit : sig)
|
||||
if (sigmap(bit) == mapped_wire_bit) {
|
||||
bit = owire;
|
||||
newsig = true;
|
||||
}
|
||||
if (newsig)
|
||||
c->setPort(port.first, sig);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
module->remove(tbuf_cell);
|
||||
skip_wires[wire->name].insert(i);
|
||||
|
||||
norewrites.insert(make_pair(cell->name, RTLIL::escape_id(tinoutpad_portname4)));
|
||||
rewrites.add(sigmap(wire_bit), owire);
|
||||
skip_wire_bits.insert(wire_bit);
|
||||
if (!tinoutpad_portname_pad.empty())
|
||||
rewrite_bits[wire][i] = make_pair(cell, RTLIL::escape_id(tinoutpad_portname_pad));
|
||||
continue;
|
||||
}
|
||||
|
||||
|
@ -278,50 +243,19 @@ struct IopadmapPass : public Pass {
|
|||
|
||||
Cell *cell = module->addCell(NEW_ID, RTLIL::escape_id(toutpad_celltype));
|
||||
|
||||
cell->setPort(RTLIL::escape_id(toutpad_portname), en_sig);
|
||||
cell->setPort(RTLIL::escape_id(toutpad_portname2), data_sig);
|
||||
cell->setPort(RTLIL::escape_id(toutpad_portname3), wire_bit);
|
||||
cell->setPort(RTLIL::escape_id(toutpad_portname_oe), en_sig);
|
||||
cell->setPort(RTLIL::escape_id(toutpad_portname_i), data_sig);
|
||||
cell->attributes[ID::keep] = RTLIL::Const(1);
|
||||
|
||||
for (auto cn : tbuf_cache.second) {
|
||||
auto c = module->cell(cn);
|
||||
if (c == nullptr)
|
||||
continue;
|
||||
for (auto port : c->connections()) {
|
||||
SigSpec sig = port.second;
|
||||
bool newsig = false;
|
||||
for (auto &bit : sig)
|
||||
if (sigmap(bit) == mapped_wire_bit) {
|
||||
bit = data_sig;
|
||||
newsig = true;
|
||||
}
|
||||
if (newsig)
|
||||
c->setPort(port.first, sig);
|
||||
}
|
||||
}
|
||||
|
||||
module->remove(tbuf_cell);
|
||||
skip_wires[wire->name].insert(i);
|
||||
module->connect(wire_bit, data_sig);
|
||||
skip_wire_bits.insert(wire_bit);
|
||||
if (!toutpad_portname_pad.empty())
|
||||
rewrite_bits[wire][i] = make_pair(cell, RTLIL::escape_id(toutpad_portname_pad));
|
||||
continue;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (GetSize(norewrites))
|
||||
{
|
||||
for (auto cell : module->cells())
|
||||
for (auto port : cell->connections())
|
||||
{
|
||||
if (norewrites.count(make_pair(cell->name, port.first)))
|
||||
continue;
|
||||
|
||||
SigSpec orig_sig = sigmap(port.second);
|
||||
SigSpec new_sig = rewrites(orig_sig);
|
||||
|
||||
if (orig_sig != new_sig)
|
||||
cell->setPort(port.first, new_sig);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (auto wire : module->selected_wires())
|
||||
|
@ -329,17 +263,11 @@ struct IopadmapPass : public Pass {
|
|||
if (!wire->port_id)
|
||||
continue;
|
||||
|
||||
std::string celltype, portname, portname2;
|
||||
std::string celltype, portname_int, portname_pad;
|
||||
pool<int> skip_bit_indices;
|
||||
|
||||
if (skip_wires.count(wire->name)) {
|
||||
if (!flag_bits)
|
||||
continue;
|
||||
skip_bit_indices = skip_wires.at(wire->name);
|
||||
}
|
||||
|
||||
for (int i = 0; i < GetSize(wire); i++)
|
||||
if (skip_wire_bits.count(sigmap(SigBit(wire, i))))
|
||||
if (skip_wire_bits.count(SigBit(wire, i)))
|
||||
skip_bit_indices.insert(i);
|
||||
|
||||
if (GetSize(wire) == GetSize(skip_bit_indices))
|
||||
|
@ -351,8 +279,8 @@ struct IopadmapPass : public Pass {
|
|||
continue;
|
||||
}
|
||||
celltype = inpad_celltype;
|
||||
portname = inpad_portname;
|
||||
portname2 = inpad_portname2;
|
||||
portname_int = inpad_portname_o;
|
||||
portname_pad = inpad_portname_pad;
|
||||
} else
|
||||
if (!wire->port_input && wire->port_output) {
|
||||
if (outpad_celltype.empty()) {
|
||||
|
@ -360,8 +288,8 @@ struct IopadmapPass : public Pass {
|
|||
continue;
|
||||
}
|
||||
celltype = outpad_celltype;
|
||||
portname = outpad_portname;
|
||||
portname2 = outpad_portname2;
|
||||
portname_int = outpad_portname_i;
|
||||
portname_pad = outpad_portname_pad;
|
||||
} else
|
||||
if (wire->port_input && wire->port_output) {
|
||||
if (inoutpad_celltype.empty()) {
|
||||
|
@ -369,8 +297,8 @@ struct IopadmapPass : public Pass {
|
|||
continue;
|
||||
}
|
||||
celltype = inoutpad_celltype;
|
||||
portname = inoutpad_portname;
|
||||
portname2 = inoutpad_portname2;
|
||||
portname_int = inoutpad_portname_io;
|
||||
portname_pad = inoutpad_portname_pad;
|
||||
} else
|
||||
log_abort();
|
||||
|
||||
|
@ -381,29 +309,20 @@ struct IopadmapPass : public Pass {
|
|||
|
||||
log("Mapping port %s.%s using %s.\n", RTLIL::id2cstr(module->name), RTLIL::id2cstr(wire->name), celltype.c_str());
|
||||
|
||||
RTLIL::Wire *new_wire = NULL;
|
||||
if (!portname2.empty()) {
|
||||
new_wire = module->addWire(NEW_ID, wire);
|
||||
module->swap_names(new_wire, wire);
|
||||
wire->attributes.clear();
|
||||
}
|
||||
|
||||
if (flag_bits)
|
||||
{
|
||||
for (int i = 0; i < wire->width; i++)
|
||||
{
|
||||
if (skip_bit_indices.count(i)) {
|
||||
if (wire->port_output)
|
||||
module->connect(SigSpec(new_wire, i), SigSpec(wire, i));
|
||||
else
|
||||
module->connect(SigSpec(wire, i), SigSpec(new_wire, i));
|
||||
if (skip_bit_indices.count(i))
|
||||
continue;
|
||||
}
|
||||
|
||||
SigBit wire_bit(wire, i);
|
||||
|
||||
RTLIL::Cell *cell = module->addCell(NEW_ID, RTLIL::escape_id(celltype));
|
||||
cell->setPort(RTLIL::escape_id(portname), RTLIL::SigSpec(wire, i));
|
||||
if (!portname2.empty())
|
||||
cell->setPort(RTLIL::escape_id(portname2), RTLIL::SigSpec(new_wire, i));
|
||||
cell->setPort(RTLIL::escape_id(portname_int), wire_bit);
|
||||
|
||||
if (!portname_pad.empty())
|
||||
rewrite_bits[wire][i] = make_pair(cell, RTLIL::escape_id(portname_pad));
|
||||
if (!widthparam.empty())
|
||||
cell->parameters[RTLIL::escape_id(widthparam)] = RTLIL::Const(1);
|
||||
if (!nameparam.empty())
|
||||
|
@ -414,9 +333,15 @@ struct IopadmapPass : public Pass {
|
|||
else
|
||||
{
|
||||
RTLIL::Cell *cell = module->addCell(NEW_ID, RTLIL::escape_id(celltype));
|
||||
cell->setPort(RTLIL::escape_id(portname), RTLIL::SigSpec(wire));
|
||||
if (!portname2.empty())
|
||||
cell->setPort(RTLIL::escape_id(portname2), RTLIL::SigSpec(new_wire));
|
||||
cell->setPort(RTLIL::escape_id(portname_int), RTLIL::SigSpec(wire));
|
||||
|
||||
if (!portname_pad.empty()) {
|
||||
RTLIL::Wire *new_wire = NULL;
|
||||
new_wire = module->addWire(NEW_ID, wire);
|
||||
module->swap_names(new_wire, wire);
|
||||
wire->attributes.clear();
|
||||
cell->setPort(RTLIL::escape_id(portname_pad), RTLIL::SigSpec(new_wire));
|
||||
}
|
||||
if (!widthparam.empty())
|
||||
cell->parameters[RTLIL::escape_id(widthparam)] = RTLIL::Const(wire->width);
|
||||
if (!nameparam.empty())
|
||||
|
@ -424,6 +349,32 @@ struct IopadmapPass : public Pass {
|
|||
cell->attributes[ID::keep] = RTLIL::Const(1);
|
||||
}
|
||||
|
||||
if (!rewrite_bits.count(wire)) {
|
||||
wire->port_id = 0;
|
||||
wire->port_input = false;
|
||||
wire->port_output = false;
|
||||
}
|
||||
}
|
||||
|
||||
for (auto &it : rewrite_bits) {
|
||||
RTLIL::Wire *wire = it.first;
|
||||
RTLIL::Wire *new_wire = module->addWire(NEW_ID, wire);
|
||||
module->swap_names(new_wire, wire);
|
||||
wire->attributes.clear();
|
||||
for (int i = 0; i < wire->width; i++)
|
||||
{
|
||||
SigBit wire_bit(wire, i);
|
||||
if (!it.second.count(i)) {
|
||||
if (wire->port_output)
|
||||
module->connect(SigSpec(new_wire, i), SigSpec(wire, i));
|
||||
else
|
||||
module->connect(SigSpec(wire, i), SigSpec(new_wire, i));
|
||||
} else {
|
||||
auto &new_conn = it.second.at(i);
|
||||
new_conn.first->setPort(new_conn.second, RTLIL::SigSpec(new_wire, i));
|
||||
}
|
||||
}
|
||||
|
||||
wire->port_id = 0;
|
||||
wire->port_input = false;
|
||||
wire->port_output = false;
|
||||
|
|
|
@ -1,133 +1,282 @@
|
|||
`default_nettype none
|
||||
//All DFF* have INIT, but the hardware is always initialised to the reset
|
||||
//value regardless. The parameter is ignored.
|
||||
|
||||
// DFFN D Flip-Flop with Negative-Edge Clock
|
||||
module \$_DFF_N_ (input D, C, output Q); DFFN _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C)); endmodule
|
||||
// DFF D Flip-Flop
|
||||
module \$_DFF_P_ (input D, C, output Q); DFF _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C)); endmodule
|
||||
// DFFN D Flip-Flop with Negative-Edge Clock
|
||||
module \$_DFF_N_ #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, output Q);
|
||||
generate
|
||||
if (_TECHMAP_WIREINIT_Q_ === 1'b1)
|
||||
DFFNS _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .SET(1'b0));
|
||||
else
|
||||
DFFN _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C));
|
||||
endgenerate
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = 1;
|
||||
endmodule
|
||||
|
||||
// DFFE D Flip-Flop with Clock Enable
|
||||
module \$_DFFE_PP_ (input D, C, E, output Q); DFFE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CE(E)); endmodule
|
||||
module \$_DFFE_PN_ (input D, C, E, output Q); DFFE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CE(!E)); endmodule
|
||||
// DFF D Flip-Flop
|
||||
module \$_DFF_P_ #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, output Q);
|
||||
generate
|
||||
if (_TECHMAP_WIREINIT_Q_ === 1'b1)
|
||||
DFFS _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .SET(1'b0));
|
||||
else
|
||||
DFF _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C));
|
||||
endgenerate
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = 1;
|
||||
endmodule
|
||||
|
||||
// DFFNE D Flip-Flop with Negative-Edge Clock and Clock Enable
|
||||
module \$_DFFE_NP_ (input D, C, E, output Q); DFFNE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CE(E)); endmodule
|
||||
module \$_DFFE_NN_ (input D, C, E, output Q); DFFNE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CE(!E)); endmodule
|
||||
// DFFE D Flip-Flop with Clock Enable
|
||||
module \$_DFFE_PP_ #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, E, output Q);
|
||||
generate
|
||||
if (_TECHMAP_WIREINIT_Q_ === 1'b1)
|
||||
DFFSE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CE(E), .SET(1'b0));
|
||||
else
|
||||
DFFE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CE(E));
|
||||
endgenerate
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = 1;
|
||||
endmodule
|
||||
|
||||
// DFFR D Flip-Flop with Synchronous Reset
|
||||
module \$__DFFS_PN0_ (input D, C, R, output Q); DFFR _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .RESET(!R)); endmodule
|
||||
module \$__DFFS_PP0_ (input D, C, R, output Q); DFFR _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .RESET(R)); endmodule
|
||||
module \$_DFFE_PN_ #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, E, output Q);
|
||||
generate
|
||||
if (_TECHMAP_WIREINIT_Q_ === 1'b1)
|
||||
DFFSE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CE(!E), .SET(1'b0));
|
||||
else
|
||||
DFFE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CE(!E));
|
||||
endgenerate
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = 1;
|
||||
endmodule
|
||||
|
||||
// DFFNR D Flip-Flop with Negative-Edge Clock and Synchronous Reset
|
||||
module \$__DFFS_NN0_ (input D, C, R, output Q); DFFNR _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .RESET(!R)); endmodule
|
||||
module \$__DFFS_NP0_ (input D, C, R, output Q); DFFNR _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .RESET(R)); endmodule
|
||||
// DFFNE D Flip-Flop with Negative-Edge Clock and Clock Enable
|
||||
module \$_DFFE_NP_ #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, E, output Q);
|
||||
generate
|
||||
if (_TECHMAP_WIREINIT_Q_ === 1'b1)
|
||||
DFFNSE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CE(E), .SET(1'b0));
|
||||
else
|
||||
DFFNE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CE(E));
|
||||
endgenerate
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = 1;
|
||||
endmodule
|
||||
|
||||
// DFFRE D Flip-Flop with Clock Enable and Synchronous Reset
|
||||
module \$__DFFSE_PN0 (input D, C, R, E, output Q); DFFRE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .RESET(!R), .CE(E)); endmodule
|
||||
module \$__DFFSE_PP0 (input D, C, R, E, output Q); DFFRE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .RESET(R), .CE(E)); endmodule
|
||||
module \$_DFFE_NN_ #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, E, output Q);
|
||||
generate
|
||||
if (_TECHMAP_WIREINIT_Q_ === 1'b1)
|
||||
DFFNSE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CE(!E), .SET(1'b0));
|
||||
else
|
||||
DFFNE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CE(!E));
|
||||
endgenerate
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = 1;
|
||||
endmodule
|
||||
|
||||
// DFFNRE D Flip-Flop with Negative-Edge Clock,Clock Enable, and Synchronous Reset
|
||||
module \$__DFFNSE_PN0 (input D, C, R, E, output Q); DFFNRE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .RESET(!R), .CE(E)); endmodule
|
||||
module \$__DFFNSE_PP0 (input D, C, R, E, output Q); DFFNRE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .RESET(R), .CE(E)); endmodule
|
||||
// DFFR D Flip-Flop with Synchronous Reset
|
||||
module \$__DFFS_PN0_ #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, R, output Q);
|
||||
DFFR _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .RESET(!R));
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = _TECHMAP_WIREINIT_Q_ !== 1'b1;
|
||||
endmodule
|
||||
|
||||
// DFFS D Flip-Flop with Synchronous Set
|
||||
module \$__DFFS_PN1_ (input D, C, R, output Q); DFFS _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .SET(!R)); endmodule
|
||||
module \$__DFFS_PP1_ (input D, C, R, output Q); DFFS _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .SET(R)); endmodule
|
||||
module \$__DFFS_PP0_ #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, R, output Q);
|
||||
DFFR _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .RESET(R));
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = _TECHMAP_WIREINIT_Q_ !== 1'b1;
|
||||
endmodule
|
||||
|
||||
// DFFNS D Flip-Flop with Negative-Edge Clock and Synchronous Set
|
||||
module \$__DFFS_NN1_ (input D, C, R, output Q); DFFNS _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .SET(!R)); endmodule
|
||||
module \$__DFFS_NP1_ (input D, C, R, output Q); DFFNS _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .SET(R)); endmodule
|
||||
// DFFNR D Flip-Flop with Negative-Edge Clock and Synchronous Reset
|
||||
module \$__DFFS_NN0_ #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, R, output Q);
|
||||
DFFNR _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .RESET(!R));
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = _TECHMAP_WIREINIT_Q_ !== 1'b1;
|
||||
endmodule
|
||||
module \$__DFFS_NP0_ #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, R, output Q);
|
||||
DFFNR _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .RESET(R));
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = _TECHMAP_WIREINIT_Q_ !== 1'b1;
|
||||
endmodule
|
||||
|
||||
// DFFSE D Flip-Flop with Clock Enable and Synchronous Set
|
||||
module \$__DFFSE_PN1 (input D, C, R, E, output Q); DFFSE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .SET(!R), .CE(E)); endmodule
|
||||
module \$__DFFSE_PP1 (input D, C, R, E, output Q); DFFSE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .SET(R), .CE(E)); endmodule
|
||||
// DFFRE D Flip-Flop with Clock Enable and Synchronous Reset
|
||||
module \$__DFFSE_PN0 #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, R, E, output Q);
|
||||
DFFRE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .RESET(!R), .CE(E));
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = _TECHMAP_WIREINIT_Q_ !== 1'b1;
|
||||
endmodule
|
||||
module \$__DFFSE_PP0 #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, R, E, output Q);
|
||||
DFFRE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .RESET(R), .CE(E));
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = _TECHMAP_WIREINIT_Q_ !== 1'b1;
|
||||
endmodule
|
||||
|
||||
// DFFNSE D Flip-Flop with Negative-Edge Clock,Clock Enable,and Synchronous Set
|
||||
module \$__DFFSE_NN1 (input D, C, R, E, output Q); DFFNSE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .SET(!R), .CE(E)); endmodule
|
||||
module \$__DFFSE_NP1 (input D, C, R, E, output Q); DFFNSE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .SET(R), .CE(E)); endmodule
|
||||
// DFFNRE D Flip-Flop with Negative-Edge Clock,Clock Enable, and Synchronous Reset
|
||||
module \$__DFFSE_NN0 #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, R, E, output Q);
|
||||
DFFNRE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .RESET(!R), .CE(E));
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = _TECHMAP_WIREINIT_Q_ !== 1'b1;
|
||||
endmodule
|
||||
module \$__DFFSE_NP0 #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, R, E, output Q);
|
||||
DFFNRE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .RESET(R), .CE(E));
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = _TECHMAP_WIREINIT_Q_ !== 1'b1;
|
||||
endmodule
|
||||
|
||||
// DFFP D Flip-Flop with Asynchronous Preset
|
||||
module \$_DFF_PP1_ (input D, C, R, output Q); DFFP _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .PRESET(R)); endmodule
|
||||
module \$_DFF_PN1_ (input D, C, R, output Q); DFFP _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .PRESET(!R)); endmodule
|
||||
// DFFS D Flip-Flop with Synchronous Set
|
||||
module \$__DFFS_PN1_ #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, R, output Q);
|
||||
DFFS _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .SET(!R));
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = _TECHMAP_WIREINIT_Q_ !== 1'b0;
|
||||
endmodule
|
||||
module \$__DFFS_PP1_ #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, R, output Q);
|
||||
DFFS _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .SET(R));
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = _TECHMAP_WIREINIT_Q_ !== 1'b0;
|
||||
endmodule
|
||||
|
||||
// DFFNP D Flip-Flop with Negative-Edge Clock and Asynchronous Preset
|
||||
module \$_DFF_NP1_ (input D, C, R, output Q); DFFNP _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .PRESET(R)); endmodule
|
||||
module \$_DFF_NN1_ (input D, C, R, output Q); DFFNP _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .PRESET(!R)); endmodule
|
||||
// DFFNS D Flip-Flop with Negative-Edge Clock and Synchronous Set
|
||||
module \$__DFFS_NN1_ #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, R, output Q);
|
||||
DFFNS _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .SET(!R));
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = _TECHMAP_WIREINIT_Q_ !== 1'b0;
|
||||
endmodule
|
||||
module \$__DFFS_NP1_ #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, R, output Q);
|
||||
DFFNS _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .SET(R));
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = _TECHMAP_WIREINIT_Q_ !== 1'b0;
|
||||
endmodule
|
||||
|
||||
// DFFC D Flip-Flop with Asynchronous Clear
|
||||
module \$_DFF_PP0_ (input D, C, R, output Q); DFFC _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CLEAR(R)); endmodule
|
||||
module \$_DFF_PN0_ (input D, C, R, output Q); DFFC _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CLEAR(!R)); endmodule
|
||||
// DFFSE D Flip-Flop with Clock Enable and Synchronous Set
|
||||
module \$__DFFSE_PN1 #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, R, E, output Q);
|
||||
DFFSE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .SET(!R), .CE(E));
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = _TECHMAP_WIREINIT_Q_ !== 1'b0;
|
||||
endmodule
|
||||
module \$__DFFSE_PP1 #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, R, E, output Q);
|
||||
DFFSE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .SET(R), .CE(E));
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = _TECHMAP_WIREINIT_Q_ !== 1'b0;
|
||||
endmodule
|
||||
|
||||
// DFFNC D Flip-Flop with Negative-Edge Clock and Asynchronous Clear
|
||||
module \$_DFF_NP0_ (input D, C, R, output Q); DFFNC _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CLEAR(R)); endmodule
|
||||
module \$_DFF_NN0_ (input D, C, R, output Q); DFFNC _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CLEAR(!R)); endmodule
|
||||
// DFFNSE D Flip-Flop with Negative-Edge Clock,Clock Enable,and Synchronous Set
|
||||
module \$__DFFSE_NN1 #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, R, E, output Q);
|
||||
DFFNSE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .SET(!R), .CE(E));
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = _TECHMAP_WIREINIT_Q_ !== 1'b0;
|
||||
endmodule
|
||||
module \$__DFFSE_NP1 #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, R, E, output Q);
|
||||
DFFNSE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .SET(R), .CE(E));
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = _TECHMAP_WIREINIT_Q_ !== 1'b0;
|
||||
endmodule
|
||||
|
||||
// DFFPE D Flip-Flop with Clock Enable and Asynchronous Preset
|
||||
module \$__DFFE_PP1 (input D, C, R, E, output Q); DFFPE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .PRESET(R), .CE(E)); endmodule
|
||||
module \$__DFFE_PN1 (input D, C, R, E, output Q); DFFPE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .PRESET(!R), .CE(E)); endmodule
|
||||
// DFFP D Flip-Flop with Asynchronous Preset
|
||||
module \$_DFF_PP1_ #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, R, output Q);
|
||||
DFFP _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .PRESET(R));
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = _TECHMAP_WIREINIT_Q_ !== 1'b0;
|
||||
endmodule
|
||||
module \$_DFF_PN1_ #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, R, output Q);
|
||||
DFFP _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .PRESET(!R));
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = _TECHMAP_WIREINIT_Q_ !== 1'b0;
|
||||
endmodule
|
||||
|
||||
// DFFNPE D Flip-Flop with Negative-Edge Clock,Clock Enable, and Asynchronous Preset
|
||||
module \$__DFFE_NP1 (input D, C, R, E, output Q); DFFNPE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .PRESET(R), .CE(E)); endmodule
|
||||
module \$__DFFE_NN1 (input D, C, R, E, output Q); DFFNPE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .PRESET(!R), .CE(E)); endmodule
|
||||
// DFFNP D Flip-Flop with Negative-Edge Clock and Asynchronous Preset
|
||||
module \$_DFF_NP1_ #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, R, output Q);
|
||||
DFFNP _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .PRESET(R));
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = _TECHMAP_WIREINIT_Q_ !== 1'b0;
|
||||
endmodule
|
||||
module \$_DFF_NN1_ #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, R, output Q);
|
||||
DFFNP _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .PRESET(!R));
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = _TECHMAP_WIREINIT_Q_ !== 1'b0;
|
||||
endmodule
|
||||
|
||||
// DFFCE D Flip-Flop with Clock Enable and Asynchronous Clear
|
||||
module \$__DFFE_PP0 (input D, C, R, E, output Q); DFFCE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CLEAR(R), .CE(E)); endmodule
|
||||
module \$__DFFE_PN0 (input D, C, R, E, output Q); DFFCE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CLEAR(!R), .CE(E)); endmodule
|
||||
// DFFC D Flip-Flop with Asynchronous Clear
|
||||
module \$_DFF_PP0_ #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, R, output Q);
|
||||
DFFC _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CLEAR(R));
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = _TECHMAP_WIREINIT_Q_ !== 1'b1;
|
||||
endmodule
|
||||
module \$_DFF_PN0_ #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, R, output Q);
|
||||
DFFC _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CLEAR(!R));
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = _TECHMAP_WIREINIT_Q_ !== 1'b1;
|
||||
endmodule
|
||||
|
||||
// DFFNCE D Flip-Flop with Negative-Edge Clock,Clock Enable and Asynchronous Clear
|
||||
module \$__DFFE_NP0 (input D, C, R, E, output Q); DFFNCE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CLEAR(R), .CE(E)); endmodule
|
||||
module \$__DFFE_NN0 (input D, C, R, E, output Q); DFFNCE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CLEAR(!R), .CE(E)); endmodule
|
||||
// DFFNC D Flip-Flop with Negative-Edge Clock and Asynchronous Clear
|
||||
module \$_DFF_NP0_ #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, R, output Q);
|
||||
DFFNC _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CLEAR(R));
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = _TECHMAP_WIREINIT_Q_ !== 1'b1;
|
||||
endmodule
|
||||
module \$_DFF_NN0_ #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, R, output Q);
|
||||
DFFNC _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CLEAR(!R));
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = _TECHMAP_WIREINIT_Q_ !== 1'b1;
|
||||
endmodule
|
||||
|
||||
// DFFPE D Flip-Flop with Clock Enable and Asynchronous Preset
|
||||
module \$__DFFE_PP1 #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, R, E, output Q);
|
||||
DFFPE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .PRESET(R), .CE(E));
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = _TECHMAP_WIREINIT_Q_ !== 1'b0;
|
||||
endmodule
|
||||
module \$__DFFE_PN1 #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, R, E, output Q);
|
||||
DFFPE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .PRESET(!R), .CE(E));
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = _TECHMAP_WIREINIT_Q_ !== 1'b0;
|
||||
endmodule
|
||||
|
||||
// DFFNPE D Flip-Flop with Negative-Edge Clock,Clock Enable, and Asynchronous Preset
|
||||
module \$__DFFE_NP1 #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, R, E, output Q);
|
||||
DFFNPE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .PRESET(R), .CE(E));
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = _TECHMAP_WIREINIT_Q_ !== 1'b0;
|
||||
endmodule
|
||||
module \$__DFFE_NN1 #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, R, E, output Q);
|
||||
DFFNPE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .PRESET(!R), .CE(E));
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = _TECHMAP_WIREINIT_Q_ !== 1'b0;
|
||||
endmodule
|
||||
|
||||
// DFFCE D Flip-Flop with Clock Enable and Asynchronous Clear
|
||||
module \$__DFFE_PP0 #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, R, E, output Q);
|
||||
DFFCE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CLEAR(R), .CE(E));
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = _TECHMAP_WIREINIT_Q_ !== 1'b1;
|
||||
endmodule
|
||||
module \$__DFFE_PN0 #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, R, E, output Q);
|
||||
DFFCE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CLEAR(!R), .CE(E));
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = _TECHMAP_WIREINIT_Q_ !== 1'b1;
|
||||
endmodule
|
||||
|
||||
// DFFNCE D Flip-Flop with Negative-Edge Clock,Clock Enable and Asynchronous Clear
|
||||
module \$__DFFE_NP0 #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, R, E, output Q);
|
||||
DFFNCE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CLEAR(R), .CE(E));
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = _TECHMAP_WIREINIT_Q_ !== 1'b1;
|
||||
endmodule
|
||||
module \$__DFFE_NN0 #(parameter _TECHMAP_WIREINIT_Q_ = 1'bx) (input D, C, R, E, output Q);
|
||||
DFFNCE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CLEAR(!R), .CE(E));
|
||||
wire _TECHMAP_REMOVEINIT_Q_ = _TECHMAP_WIREINIT_Q_ !== 1'b1;
|
||||
endmodule
|
||||
|
||||
|
||||
module \$lut (A, Y);
|
||||
parameter WIDTH = 0;
|
||||
parameter LUT = 0;
|
||||
parameter WIDTH = 0;
|
||||
parameter LUT = 0;
|
||||
|
||||
input [WIDTH-1:0] A;
|
||||
output Y;
|
||||
input [WIDTH-1:0] A;
|
||||
output Y;
|
||||
|
||||
generate
|
||||
if (WIDTH == 1) begin
|
||||
LUT1 #(.INIT(LUT)) _TECHMAP_REPLACE_ (.F(Y),
|
||||
.I0(A[0]));
|
||||
end else
|
||||
if (WIDTH == 2) begin
|
||||
LUT2 #(.INIT(LUT)) _TECHMAP_REPLACE_ (.F(Y),
|
||||
.I0(A[0]), .I1(A[1]));
|
||||
end else
|
||||
if (WIDTH == 3) begin
|
||||
LUT3 #(.INIT(LUT)) _TECHMAP_REPLACE_ (.F(Y),
|
||||
.I0(A[0]), .I1(A[1]), .I2(A[2]));
|
||||
end else
|
||||
if (WIDTH == 4) begin
|
||||
LUT4 #(.INIT(LUT)) _TECHMAP_REPLACE_ (.F(Y),
|
||||
.I0(A[0]), .I1(A[1]), .I2(A[2]), .I3(A[3]));
|
||||
end else
|
||||
if (WIDTH == 5) begin
|
||||
wire f0, f1;
|
||||
\$lut #(.LUT(LUT[15: 0]), .WIDTH(4)) lut0 (.A(A[3:0]), .Y(f0));
|
||||
\$lut #(.LUT(LUT[31:16]), .WIDTH(4)) lut1 (.A(A[3:0]), .Y(f1));
|
||||
MUX2_LUT5 mux5(.I0(f0), .I1(f1), .S0(A[4]), .O(Y));
|
||||
end else
|
||||
if (WIDTH == 6) begin
|
||||
wire f0, f1;
|
||||
\$lut #(.LUT(LUT[31: 0]), .WIDTH(5)) lut0 (.A(A[4:0]), .Y(f0));
|
||||
\$lut #(.LUT(LUT[63:32]), .WIDTH(5)) lut1 (.A(A[4:0]), .Y(f1));
|
||||
MUX2_LUT6 mux6(.I0(f0), .I1(f1), .S0(A[5]), .O(Y));
|
||||
end else
|
||||
if (WIDTH == 7) begin
|
||||
wire f0, f1;
|
||||
\$lut #(.LUT(LUT[63: 0]), .WIDTH(6)) lut0 (.A(A[5:0]), .Y(f0));
|
||||
\$lut #(.LUT(LUT[127:64]), .WIDTH(6)) lut1 (.A(A[5:0]), .Y(f1));
|
||||
MUX2_LUT7 mux7(.I0(f0), .I1(f1), .S0(A[6]), .O(Y));
|
||||
end else
|
||||
if (WIDTH == 8) begin
|
||||
wire f0, f1;
|
||||
\$lut #(.LUT(LUT[127: 0]), .WIDTH(7)) lut0 (.A(A[6:0]), .Y(f0));
|
||||
\$lut #(.LUT(LUT[255:128]), .WIDTH(7)) lut1 (.A(A[6:0]), .Y(f1));
|
||||
MUX2_LUT8 mux8(.I0(f0), .I1(f1), .S0(A[7]), .O(Y));
|
||||
end else begin
|
||||
wire _TECHMAP_FAIL_ = 1;
|
||||
end
|
||||
endgenerate
|
||||
generate
|
||||
if (WIDTH == 1) begin
|
||||
LUT1 #(.INIT(LUT)) _TECHMAP_REPLACE_ (.F(Y),
|
||||
.I0(A[0]));
|
||||
end else
|
||||
if (WIDTH == 2) begin
|
||||
LUT2 #(.INIT(LUT)) _TECHMAP_REPLACE_ (.F(Y),
|
||||
.I0(A[0]), .I1(A[1]));
|
||||
end else
|
||||
if (WIDTH == 3) begin
|
||||
LUT3 #(.INIT(LUT)) _TECHMAP_REPLACE_ (.F(Y),
|
||||
.I0(A[0]), .I1(A[1]), .I2(A[2]));
|
||||
end else
|
||||
if (WIDTH == 4) begin
|
||||
LUT4 #(.INIT(LUT)) _TECHMAP_REPLACE_ (.F(Y),
|
||||
.I0(A[0]), .I1(A[1]), .I2(A[2]), .I3(A[3]));
|
||||
end else
|
||||
if (WIDTH == 5) begin
|
||||
wire f0, f1;
|
||||
\$lut #(.LUT(LUT[15: 0]), .WIDTH(4)) lut0 (.A(A[3:0]), .Y(f0));
|
||||
\$lut #(.LUT(LUT[31:16]), .WIDTH(4)) lut1 (.A(A[3:0]), .Y(f1));
|
||||
MUX2_LUT5 mux5(.I0(f0), .I1(f1), .S0(A[4]), .O(Y));
|
||||
end else
|
||||
if (WIDTH == 6) begin
|
||||
wire f0, f1;
|
||||
\$lut #(.LUT(LUT[31: 0]), .WIDTH(5)) lut0 (.A(A[4:0]), .Y(f0));
|
||||
\$lut #(.LUT(LUT[63:32]), .WIDTH(5)) lut1 (.A(A[4:0]), .Y(f1));
|
||||
MUX2_LUT6 mux6(.I0(f0), .I1(f1), .S0(A[5]), .O(Y));
|
||||
end else
|
||||
if (WIDTH == 7) begin
|
||||
wire f0, f1;
|
||||
\$lut #(.LUT(LUT[63: 0]), .WIDTH(6)) lut0 (.A(A[5:0]), .Y(f0));
|
||||
\$lut #(.LUT(LUT[127:64]), .WIDTH(6)) lut1 (.A(A[5:0]), .Y(f1));
|
||||
MUX2_LUT7 mux7(.I0(f0), .I1(f1), .S0(A[6]), .O(Y));
|
||||
end else
|
||||
if (WIDTH == 8) begin
|
||||
wire f0, f1;
|
||||
\$lut #(.LUT(LUT[127: 0]), .WIDTH(7)) lut0 (.A(A[6:0]), .Y(f0));
|
||||
\$lut #(.LUT(LUT[255:128]), .WIDTH(7)) lut1 (.A(A[6:0]), .Y(f1));
|
||||
MUX2_LUT8 mux8(.I0(f0), .I1(f1), .S0(A[7]), .O(Y));
|
||||
end else begin
|
||||
wire _TECHMAP_FAIL_ = 1;
|
||||
end
|
||||
endgenerate
|
||||
endmodule
|
||||
|
|
|
@ -67,6 +67,9 @@ struct SynthGowinPass : public ScriptPass
|
|||
log(" -nowidelut\n");
|
||||
log(" do not use muxes to implement LUTs larger than LUT4s\n");
|
||||
log("\n");
|
||||
log(" -noiopads\n");
|
||||
log(" do not emit IOB at top level ports\n");
|
||||
log("\n");
|
||||
log(" -abc9\n");
|
||||
log(" use new ABC9 flow (EXPERIMENTAL)\n");
|
||||
log("\n");
|
||||
|
@ -77,7 +80,7 @@ struct SynthGowinPass : public ScriptPass
|
|||
}
|
||||
|
||||
string top_opt, vout_file;
|
||||
bool retime, nobram, nodram, flatten, nodffe, nowidelut, abc9;
|
||||
bool retime, nobram, nodram, flatten, nodffe, nowidelut, abc9, noiopads;
|
||||
|
||||
void clear_flags() YS_OVERRIDE
|
||||
{
|
||||
|
@ -90,6 +93,7 @@ struct SynthGowinPass : public ScriptPass
|
|||
nodram = false;
|
||||
nowidelut = false;
|
||||
abc9 = false;
|
||||
noiopads = false;
|
||||
}
|
||||
|
||||
void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
|
||||
|
@ -144,6 +148,10 @@ struct SynthGowinPass : public ScriptPass
|
|||
abc9 = true;
|
||||
continue;
|
||||
}
|
||||
if (args[argidx] == "-noiopads") {
|
||||
noiopads = true;
|
||||
continue;
|
||||
}
|
||||
break;
|
||||
}
|
||||
extra_args(args, argidx, design);
|
||||
|
@ -208,7 +216,7 @@ struct SynthGowinPass : public ScriptPass
|
|||
if (check_label("map_ffs"))
|
||||
{
|
||||
run("dffsr2dff");
|
||||
run("dff2dffs");
|
||||
run("dff2dffs -match-init");
|
||||
run("opt_clean");
|
||||
if (!nodffe)
|
||||
run("dff2dffe -direct-match $_DFF_* -direct-match $__DFFS_*");
|
||||
|
@ -236,8 +244,9 @@ struct SynthGowinPass : public ScriptPass
|
|||
run("techmap -map +/gowin/cells_map.v");
|
||||
run("setundef -undriven -params -zero");
|
||||
run("hilomap -singleton -hicell VCC V -locell GND G");
|
||||
run("iopadmap -bits -inpad IBUF O:I -outpad OBUF I:O "
|
||||
"-toutpad TBUF OEN:I:O -tinoutpad IOBUF OEN:O:I:IO", "(unless -noiopads)");
|
||||
if (!noiopads || help_mode)
|
||||
run("iopadmap -bits -inpad IBUF O:I -outpad OBUF I:O "
|
||||
"-toutpad TBUF OEN:I:O -tinoutpad IOBUF OEN:O:I:IO", "(unless -noiopads)");
|
||||
run("clean");
|
||||
|
||||
}
|
||||
|
|
|
@ -363,3 +363,11 @@ module \$__XILINX_MUXF78 (O, I0, I1, I2, I3, S0, S1);
|
|||
else
|
||||
MUXF8 mux8 (.I0(T0), .I1(T1), .S(S1), .O(O));
|
||||
endmodule
|
||||
|
||||
module \$__XILINX_TINOUTPAD (input I, OE, output O, inout IO);
|
||||
IOBUF _TECHMAP_REPLACE_ (.I(I), .O(O), .T(~OE), .IO(IO));
|
||||
endmodule
|
||||
|
||||
module \$__XILINX_TOUTPAD (input I, OE, output O);
|
||||
OBUFT _TECHMAP_REPLACE_ (.I(I), .O(O), .T(~OE));
|
||||
endmodule
|
||||
|
|
|
@ -479,6 +479,473 @@ module LDPE (
|
|||
else if (GE && g) Q = D;
|
||||
endmodule
|
||||
|
||||
// LUTRAM.
|
||||
|
||||
// Single port.
|
||||
|
||||
module RAM16X1S (
|
||||
output O,
|
||||
input A0, A1, A2, A3,
|
||||
input D,
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK,
|
||||
input WE
|
||||
);
|
||||
parameter [15:0] INIT = 16'h0000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
wire [3:0] a = {A3, A2, A1, A0};
|
||||
reg [15:0] mem = INIT;
|
||||
assign O = mem[a];
|
||||
wire clk = WCLK ^ IS_WCLK_INVERTED;
|
||||
always @(posedge clk) if (WE) mem[a] <= D;
|
||||
endmodule
|
||||
|
||||
module RAM16X1S_1 (
|
||||
output O,
|
||||
input A0, A1, A2, A3,
|
||||
input D,
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK,
|
||||
input WE
|
||||
);
|
||||
parameter [15:0] INIT = 16'h0000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
wire [3:0] a = {A3, A2, A1, A0};
|
||||
reg [15:0] mem = INIT;
|
||||
assign O = mem[a];
|
||||
wire clk = WCLK ^ IS_WCLK_INVERTED;
|
||||
always @(negedge clk) if (WE) mem[a] <= D;
|
||||
endmodule
|
||||
|
||||
module RAM32X1S (
|
||||
output O,
|
||||
input A0, A1, A2, A3, A4,
|
||||
input D,
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK,
|
||||
input WE
|
||||
);
|
||||
parameter [31:0] INIT = 32'h00000000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
wire [4:0] a = {A4, A3, A2, A1, A0};
|
||||
reg [31:0] mem = INIT;
|
||||
assign O = mem[a];
|
||||
wire clk = WCLK ^ IS_WCLK_INVERTED;
|
||||
always @(posedge clk) if (WE) mem[a] <= D;
|
||||
endmodule
|
||||
|
||||
module RAM32X1S_1 (
|
||||
output O,
|
||||
input A0, A1, A2, A3, A4,
|
||||
input D,
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK,
|
||||
input WE
|
||||
);
|
||||
parameter [31:0] INIT = 32'h00000000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
wire [4:0] a = {A4, A3, A2, A1, A0};
|
||||
reg [31:0] mem = INIT;
|
||||
assign O = mem[a];
|
||||
wire clk = WCLK ^ IS_WCLK_INVERTED;
|
||||
always @(negedge clk) if (WE) mem[a] <= D;
|
||||
endmodule
|
||||
|
||||
module RAM64X1S (
|
||||
output O,
|
||||
input A0, A1, A2, A3, A4, A5,
|
||||
input D,
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK,
|
||||
input WE
|
||||
);
|
||||
parameter [63:0] INIT = 64'h0000000000000000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
wire [5:0] a = {A5, A4, A3, A2, A1, A0};
|
||||
reg [63:0] mem = INIT;
|
||||
assign O = mem[a];
|
||||
wire clk = WCLK ^ IS_WCLK_INVERTED;
|
||||
always @(posedge clk) if (WE) mem[a] <= D;
|
||||
endmodule
|
||||
|
||||
module RAM64X1S_1 (
|
||||
output O,
|
||||
input A0, A1, A2, A3, A4, A5,
|
||||
input D,
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK,
|
||||
input WE
|
||||
);
|
||||
parameter [63:0] INIT = 64'h0000000000000000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
wire [5:0] a = {A5, A4, A3, A2, A1, A0};
|
||||
reg [63:0] mem = INIT;
|
||||
assign O = mem[a];
|
||||
wire clk = WCLK ^ IS_WCLK_INVERTED;
|
||||
always @(negedge clk) if (WE) mem[a] <= D;
|
||||
endmodule
|
||||
|
||||
module RAM128X1S (
|
||||
output O,
|
||||
input A0, A1, A2, A3, A4, A5, A6,
|
||||
input D,
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK,
|
||||
input WE
|
||||
);
|
||||
parameter [127:0] INIT = 128'h00000000000000000000000000000000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
wire [6:0] a = {A6, A5, A4, A3, A2, A1, A0};
|
||||
reg [127:0] mem = INIT;
|
||||
assign O = mem[a];
|
||||
wire clk = WCLK ^ IS_WCLK_INVERTED;
|
||||
always @(posedge clk) if (WE) mem[a] <= D;
|
||||
endmodule
|
||||
|
||||
module RAM128X1S_1 (
|
||||
output O,
|
||||
input A0, A1, A2, A3, A4, A5, A6,
|
||||
input D,
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK,
|
||||
input WE
|
||||
);
|
||||
parameter [127:0] INIT = 128'h00000000000000000000000000000000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
wire [6:0] a = {A6, A5, A4, A3, A2, A1, A0};
|
||||
reg [127:0] mem = INIT;
|
||||
assign O = mem[a];
|
||||
wire clk = WCLK ^ IS_WCLK_INVERTED;
|
||||
always @(negedge clk) if (WE) mem[a] <= D;
|
||||
endmodule
|
||||
|
||||
module RAM256X1S (
|
||||
output O,
|
||||
input [7:0] A,
|
||||
input D,
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK,
|
||||
input WE
|
||||
);
|
||||
parameter [255:0] INIT = 256'h0;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
reg [255:0] mem = INIT;
|
||||
assign O = mem[A];
|
||||
wire clk = WCLK ^ IS_WCLK_INVERTED;
|
||||
always @(posedge clk) if (WE) mem[A] <= D;
|
||||
endmodule
|
||||
|
||||
module RAM512X1S (
|
||||
output O,
|
||||
input [8:0] A,
|
||||
input D,
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK,
|
||||
input WE
|
||||
);
|
||||
parameter [511:0] INIT = 512'h0;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
reg [511:0] mem = INIT;
|
||||
assign O = mem[A];
|
||||
wire clk = WCLK ^ IS_WCLK_INVERTED;
|
||||
always @(posedge clk) if (WE) mem[A] <= D;
|
||||
endmodule
|
||||
|
||||
// Single port, wide.
|
||||
|
||||
module RAM16X2S (
|
||||
output O0, O1,
|
||||
input A0, A1, A2, A3,
|
||||
input D0, D1,
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK,
|
||||
input WE
|
||||
);
|
||||
parameter [15:0] INIT_00 = 16'h0000;
|
||||
parameter [15:0] INIT_01 = 16'h0000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
wire [3:0] a = {A3, A2, A1, A0};
|
||||
wire clk = WCLK ^ IS_WCLK_INVERTED;
|
||||
reg [15:0] mem0 = INIT_00;
|
||||
reg [15:0] mem1 = INIT_01;
|
||||
assign O0 = mem0[a];
|
||||
assign O1 = mem1[a];
|
||||
always @(posedge clk)
|
||||
if (WE) begin
|
||||
mem0[a] <= D0;
|
||||
mem1[a] <= D1;
|
||||
end
|
||||
endmodule
|
||||
|
||||
module RAM32X2S (
|
||||
output O0, O1,
|
||||
input A0, A1, A2, A3, A4,
|
||||
input D0, D1,
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK,
|
||||
input WE
|
||||
);
|
||||
parameter [31:0] INIT_00 = 32'h00000000;
|
||||
parameter [31:0] INIT_01 = 32'h00000000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
wire [4:0] a = {A4, A3, A2, A1, A0};
|
||||
wire clk = WCLK ^ IS_WCLK_INVERTED;
|
||||
reg [31:0] mem0 = INIT_00;
|
||||
reg [31:0] mem1 = INIT_01;
|
||||
assign O0 = mem0[a];
|
||||
assign O1 = mem1[a];
|
||||
always @(posedge clk)
|
||||
if (WE) begin
|
||||
mem0[a] <= D0;
|
||||
mem1[a] <= D1;
|
||||
end
|
||||
endmodule
|
||||
|
||||
module RAM64X2S (
|
||||
output O0, O1,
|
||||
input A0, A1, A2, A3, A4, A5,
|
||||
input D0, D1,
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK,
|
||||
input WE
|
||||
);
|
||||
parameter [63:0] INIT_00 = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_01 = 64'h0000000000000000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
wire [5:0] a = {A5, A3, A2, A1, A0};
|
||||
wire clk = WCLK ^ IS_WCLK_INVERTED;
|
||||
reg [63:0] mem0 = INIT_00;
|
||||
reg [63:0] mem1 = INIT_01;
|
||||
assign O0 = mem0[a];
|
||||
assign O1 = mem1[a];
|
||||
always @(posedge clk)
|
||||
if (WE) begin
|
||||
mem0[a] <= D0;
|
||||
mem1[a] <= D1;
|
||||
end
|
||||
endmodule
|
||||
|
||||
module RAM16X4S (
|
||||
output O0, O1, O2, O3,
|
||||
input A0, A1, A2, A3,
|
||||
input D0, D1, D2, D3,
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK,
|
||||
input WE
|
||||
);
|
||||
parameter [15:0] INIT_00 = 16'h0000;
|
||||
parameter [15:0] INIT_01 = 16'h0000;
|
||||
parameter [15:0] INIT_02 = 16'h0000;
|
||||
parameter [15:0] INIT_03 = 16'h0000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
wire [3:0] a = {A3, A2, A1, A0};
|
||||
wire clk = WCLK ^ IS_WCLK_INVERTED;
|
||||
reg [15:0] mem0 = INIT_00;
|
||||
reg [15:0] mem1 = INIT_01;
|
||||
reg [15:0] mem2 = INIT_02;
|
||||
reg [15:0] mem3 = INIT_03;
|
||||
assign O0 = mem0[a];
|
||||
assign O1 = mem1[a];
|
||||
assign O2 = mem2[a];
|
||||
assign O3 = mem3[a];
|
||||
always @(posedge clk)
|
||||
if (WE) begin
|
||||
mem0[a] <= D0;
|
||||
mem1[a] <= D1;
|
||||
mem2[a] <= D2;
|
||||
mem3[a] <= D3;
|
||||
end
|
||||
endmodule
|
||||
|
||||
module RAM32X4S (
|
||||
output O0, O1, O2, O3,
|
||||
input A0, A1, A2, A3, A4,
|
||||
input D0, D1, D2, D3,
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK,
|
||||
input WE
|
||||
);
|
||||
parameter [31:0] INIT_00 = 32'h00000000;
|
||||
parameter [31:0] INIT_01 = 32'h00000000;
|
||||
parameter [31:0] INIT_02 = 32'h00000000;
|
||||
parameter [31:0] INIT_03 = 32'h00000000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
wire [4:0] a = {A4, A3, A2, A1, A0};
|
||||
wire clk = WCLK ^ IS_WCLK_INVERTED;
|
||||
reg [31:0] mem0 = INIT_00;
|
||||
reg [31:0] mem1 = INIT_01;
|
||||
reg [31:0] mem2 = INIT_02;
|
||||
reg [31:0] mem3 = INIT_03;
|
||||
assign O0 = mem0[a];
|
||||
assign O1 = mem1[a];
|
||||
assign O2 = mem2[a];
|
||||
assign O3 = mem3[a];
|
||||
always @(posedge clk)
|
||||
if (WE) begin
|
||||
mem0[a] <= D0;
|
||||
mem1[a] <= D1;
|
||||
mem2[a] <= D2;
|
||||
mem3[a] <= D3;
|
||||
end
|
||||
endmodule
|
||||
|
||||
module RAM16X8S (
|
||||
output [7:0] O,
|
||||
input A0, A1, A2, A3,
|
||||
input [7:0] D,
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK,
|
||||
input WE
|
||||
);
|
||||
parameter [15:0] INIT_00 = 16'h0000;
|
||||
parameter [15:0] INIT_01 = 16'h0000;
|
||||
parameter [15:0] INIT_02 = 16'h0000;
|
||||
parameter [15:0] INIT_03 = 16'h0000;
|
||||
parameter [15:0] INIT_04 = 16'h0000;
|
||||
parameter [15:0] INIT_05 = 16'h0000;
|
||||
parameter [15:0] INIT_06 = 16'h0000;
|
||||
parameter [15:0] INIT_07 = 16'h0000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
wire [3:0] a = {A3, A2, A1, A0};
|
||||
wire clk = WCLK ^ IS_WCLK_INVERTED;
|
||||
reg [15:0] mem0 = INIT_00;
|
||||
reg [15:0] mem1 = INIT_01;
|
||||
reg [15:0] mem2 = INIT_02;
|
||||
reg [15:0] mem3 = INIT_03;
|
||||
reg [15:0] mem4 = INIT_04;
|
||||
reg [15:0] mem5 = INIT_05;
|
||||
reg [15:0] mem6 = INIT_06;
|
||||
reg [15:0] mem7 = INIT_07;
|
||||
assign O[0] = mem0[a];
|
||||
assign O[1] = mem1[a];
|
||||
assign O[2] = mem2[a];
|
||||
assign O[3] = mem3[a];
|
||||
assign O[4] = mem4[a];
|
||||
assign O[5] = mem5[a];
|
||||
assign O[6] = mem6[a];
|
||||
assign O[7] = mem7[a];
|
||||
always @(posedge clk)
|
||||
if (WE) begin
|
||||
mem0[a] <= D[0];
|
||||
mem1[a] <= D[1];
|
||||
mem2[a] <= D[2];
|
||||
mem3[a] <= D[3];
|
||||
mem4[a] <= D[4];
|
||||
mem5[a] <= D[5];
|
||||
mem6[a] <= D[6];
|
||||
mem7[a] <= D[7];
|
||||
end
|
||||
endmodule
|
||||
|
||||
module RAM32X8S (
|
||||
output [7:0] O,
|
||||
input A0, A1, A2, A3, A4,
|
||||
input [7:0] D,
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK,
|
||||
input WE
|
||||
);
|
||||
parameter [31:0] INIT_00 = 32'h00000000;
|
||||
parameter [31:0] INIT_01 = 32'h00000000;
|
||||
parameter [31:0] INIT_02 = 32'h00000000;
|
||||
parameter [31:0] INIT_03 = 32'h00000000;
|
||||
parameter [31:0] INIT_04 = 32'h00000000;
|
||||
parameter [31:0] INIT_05 = 32'h00000000;
|
||||
parameter [31:0] INIT_06 = 32'h00000000;
|
||||
parameter [31:0] INIT_07 = 32'h00000000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
wire [4:0] a = {A4, A3, A2, A1, A0};
|
||||
wire clk = WCLK ^ IS_WCLK_INVERTED;
|
||||
reg [31:0] mem0 = INIT_00;
|
||||
reg [31:0] mem1 = INIT_01;
|
||||
reg [31:0] mem2 = INIT_02;
|
||||
reg [31:0] mem3 = INIT_03;
|
||||
reg [31:0] mem4 = INIT_04;
|
||||
reg [31:0] mem5 = INIT_05;
|
||||
reg [31:0] mem6 = INIT_06;
|
||||
reg [31:0] mem7 = INIT_07;
|
||||
assign O[0] = mem0[a];
|
||||
assign O[1] = mem1[a];
|
||||
assign O[2] = mem2[a];
|
||||
assign O[3] = mem3[a];
|
||||
assign O[4] = mem4[a];
|
||||
assign O[5] = mem5[a];
|
||||
assign O[6] = mem6[a];
|
||||
assign O[7] = mem7[a];
|
||||
always @(posedge clk)
|
||||
if (WE) begin
|
||||
mem0[a] <= D[0];
|
||||
mem1[a] <= D[1];
|
||||
mem2[a] <= D[2];
|
||||
mem3[a] <= D[3];
|
||||
mem4[a] <= D[4];
|
||||
mem5[a] <= D[5];
|
||||
mem6[a] <= D[6];
|
||||
mem7[a] <= D[7];
|
||||
end
|
||||
endmodule
|
||||
|
||||
// Dual port.
|
||||
|
||||
module RAM16X1D (
|
||||
output DPO, SPO,
|
||||
input D,
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK,
|
||||
input WE,
|
||||
input A0, A1, A2, A3,
|
||||
input DPRA0, DPRA1, DPRA2, DPRA3
|
||||
);
|
||||
parameter INIT = 16'h0;
|
||||
parameter IS_WCLK_INVERTED = 1'b0;
|
||||
wire [3:0] a = {A3, A2, A1, A0};
|
||||
wire [3:0] dpra = {DPRA3, DPRA2, DPRA1, DPRA0};
|
||||
reg [15:0] mem = INIT;
|
||||
assign SPO = mem[a];
|
||||
assign DPO = mem[dpra];
|
||||
wire clk = WCLK ^ IS_WCLK_INVERTED;
|
||||
always @(posedge clk) if (WE) mem[a] <= D;
|
||||
endmodule
|
||||
|
||||
module RAM16X1D_1 (
|
||||
output DPO, SPO,
|
||||
input D,
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK,
|
||||
input WE,
|
||||
input A0, A1, A2, A3,
|
||||
input DPRA0, DPRA1, DPRA2, DPRA3
|
||||
);
|
||||
parameter INIT = 16'h0;
|
||||
parameter IS_WCLK_INVERTED = 1'b0;
|
||||
wire [3:0] a = {A3, A2, A1, A0};
|
||||
wire [3:0] dpra = {DPRA3, DPRA2, DPRA1, DPRA0};
|
||||
reg [15:0] mem = INIT;
|
||||
assign SPO = mem[a];
|
||||
assign DPO = mem[dpra];
|
||||
wire clk = WCLK ^ IS_WCLK_INVERTED;
|
||||
always @(negedge clk) if (WE) mem[a] <= D;
|
||||
endmodule
|
||||
|
||||
module RAM32X1D (
|
||||
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L957
|
||||
(* abc9_arrival=1153 *)
|
||||
|
@ -502,6 +969,29 @@ module RAM32X1D (
|
|||
always @(posedge clk) if (WE) mem[a] <= D;
|
||||
endmodule
|
||||
|
||||
module RAM32X1D_1 (
|
||||
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L957
|
||||
(* abc9_arrival=1153 *)
|
||||
output DPO, SPO,
|
||||
input D,
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK,
|
||||
input WE,
|
||||
input A0, A1, A2, A3, A4,
|
||||
input DPRA0, DPRA1, DPRA2, DPRA3, DPRA4
|
||||
);
|
||||
parameter INIT = 32'h0;
|
||||
parameter IS_WCLK_INVERTED = 1'b0;
|
||||
wire [4:0] a = {A4, A3, A2, A1, A0};
|
||||
wire [4:0] dpra = {DPRA4, DPRA3, DPRA2, DPRA1, DPRA0};
|
||||
reg [31:0] mem = INIT;
|
||||
assign SPO = mem[a];
|
||||
assign DPO = mem[dpra];
|
||||
wire clk = WCLK ^ IS_WCLK_INVERTED;
|
||||
always @(negedge clk) if (WE) mem[a] <= D;
|
||||
endmodule
|
||||
|
||||
module RAM64X1D (
|
||||
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L957
|
||||
(* abc9_arrival=1153 *)
|
||||
|
@ -525,6 +1015,29 @@ module RAM64X1D (
|
|||
always @(posedge clk) if (WE) mem[a] <= D;
|
||||
endmodule
|
||||
|
||||
module RAM64X1D_1 (
|
||||
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L957
|
||||
(* abc9_arrival=1153 *)
|
||||
output DPO, SPO,
|
||||
input D,
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK,
|
||||
input WE,
|
||||
input A0, A1, A2, A3, A4, A5,
|
||||
input DPRA0, DPRA1, DPRA2, DPRA3, DPRA4, DPRA5
|
||||
);
|
||||
parameter INIT = 64'h0;
|
||||
parameter IS_WCLK_INVERTED = 1'b0;
|
||||
wire [5:0] a = {A5, A4, A3, A2, A1, A0};
|
||||
wire [5:0] dpra = {DPRA5, DPRA4, DPRA3, DPRA2, DPRA1, DPRA0};
|
||||
reg [63:0] mem = INIT;
|
||||
assign SPO = mem[a];
|
||||
assign DPO = mem[dpra];
|
||||
wire clk = WCLK ^ IS_WCLK_INVERTED;
|
||||
always @(negedge clk) if (WE) mem[a] <= D;
|
||||
endmodule
|
||||
|
||||
module RAM128X1D (
|
||||
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L957
|
||||
(* abc9_arrival=1153 *)
|
||||
|
@ -545,6 +1058,290 @@ module RAM128X1D (
|
|||
always @(posedge clk) if (WE) mem[A] <= D;
|
||||
endmodule
|
||||
|
||||
module RAM256X1D (
|
||||
output DPO, SPO,
|
||||
input D,
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK,
|
||||
input WE,
|
||||
input [7:0] A, DPRA
|
||||
);
|
||||
parameter INIT = 256'h0;
|
||||
parameter IS_WCLK_INVERTED = 1'b0;
|
||||
reg [255:0] mem = INIT;
|
||||
assign SPO = mem[A];
|
||||
assign DPO = mem[DPRA];
|
||||
wire clk = WCLK ^ IS_WCLK_INVERTED;
|
||||
always @(posedge clk) if (WE) mem[A] <= D;
|
||||
endmodule
|
||||
|
||||
// Multi port.
|
||||
|
||||
module RAM32M (
|
||||
output [1:0] DOA,
|
||||
output [1:0] DOB,
|
||||
output [1:0] DOC,
|
||||
output [1:0] DOD,
|
||||
input [4:0] ADDRA,
|
||||
input [4:0] ADDRB,
|
||||
input [4:0] ADDRC,
|
||||
input [4:0] ADDRD,
|
||||
input [1:0] DIA,
|
||||
input [1:0] DIB,
|
||||
input [1:0] DIC,
|
||||
input [1:0] DID,
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK,
|
||||
input WE
|
||||
);
|
||||
parameter [63:0] INIT_A = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_B = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_C = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_D = 64'h0000000000000000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
reg [63:0] mem_a = INIT_A;
|
||||
reg [63:0] mem_b = INIT_B;
|
||||
reg [63:0] mem_c = INIT_C;
|
||||
reg [63:0] mem_d = INIT_D;
|
||||
assign DOA = mem_a[2*ADDRA+:2];
|
||||
assign DOB = mem_b[2*ADDRB+:2];
|
||||
assign DOC = mem_c[2*ADDRC+:2];
|
||||
assign DOD = mem_d[2*ADDRD+:2];
|
||||
wire clk = WCLK ^ IS_WCLK_INVERTED;
|
||||
always @(posedge clk)
|
||||
if (WE) begin
|
||||
mem_a[2*ADDRD+:2] <= DIA;
|
||||
mem_b[2*ADDRD+:2] <= DIB;
|
||||
mem_c[2*ADDRD+:2] <= DIC;
|
||||
mem_d[2*ADDRD+:2] <= DID;
|
||||
end
|
||||
endmodule
|
||||
|
||||
module RAM32M16 (
|
||||
output [1:0] DOA,
|
||||
output [1:0] DOB,
|
||||
output [1:0] DOC,
|
||||
output [1:0] DOD,
|
||||
output [1:0] DOE,
|
||||
output [1:0] DOF,
|
||||
output [1:0] DOG,
|
||||
output [1:0] DOH,
|
||||
input [4:0] ADDRA,
|
||||
input [4:0] ADDRB,
|
||||
input [4:0] ADDRC,
|
||||
input [4:0] ADDRD,
|
||||
input [4:0] ADDRE,
|
||||
input [4:0] ADDRF,
|
||||
input [4:0] ADDRG,
|
||||
input [4:0] ADDRH,
|
||||
input [1:0] DIA,
|
||||
input [1:0] DIB,
|
||||
input [1:0] DIC,
|
||||
input [1:0] DID,
|
||||
input [1:0] DIE,
|
||||
input [1:0] DIF,
|
||||
input [1:0] DIG,
|
||||
input [1:0] DIH,
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK,
|
||||
input WE
|
||||
);
|
||||
parameter [63:0] INIT_A = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_B = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_C = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_D = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_E = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_F = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_G = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_H = 64'h0000000000000000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
reg [63:0] mem_a = INIT_A;
|
||||
reg [63:0] mem_b = INIT_B;
|
||||
reg [63:0] mem_c = INIT_C;
|
||||
reg [63:0] mem_d = INIT_D;
|
||||
reg [63:0] mem_e = INIT_E;
|
||||
reg [63:0] mem_f = INIT_F;
|
||||
reg [63:0] mem_g = INIT_G;
|
||||
reg [63:0] mem_h = INIT_H;
|
||||
assign DOA = mem_a[2*ADDRA+:2];
|
||||
assign DOB = mem_b[2*ADDRB+:2];
|
||||
assign DOC = mem_c[2*ADDRC+:2];
|
||||
assign DOD = mem_d[2*ADDRD+:2];
|
||||
assign DOE = mem_e[2*ADDRE+:2];
|
||||
assign DOF = mem_f[2*ADDRF+:2];
|
||||
assign DOG = mem_g[2*ADDRG+:2];
|
||||
assign DOH = mem_h[2*ADDRH+:2];
|
||||
wire clk = WCLK ^ IS_WCLK_INVERTED;
|
||||
always @(posedge clk)
|
||||
if (WE) begin
|
||||
mem_a[2*ADDRH+:2] <= DIA;
|
||||
mem_b[2*ADDRH+:2] <= DIB;
|
||||
mem_c[2*ADDRH+:2] <= DIC;
|
||||
mem_d[2*ADDRH+:2] <= DID;
|
||||
mem_e[2*ADDRH+:2] <= DIE;
|
||||
mem_f[2*ADDRH+:2] <= DIF;
|
||||
mem_g[2*ADDRH+:2] <= DIG;
|
||||
mem_h[2*ADDRH+:2] <= DIH;
|
||||
end
|
||||
endmodule
|
||||
|
||||
module RAM64M (
|
||||
output DOA,
|
||||
output DOB,
|
||||
output DOC,
|
||||
output DOD,
|
||||
input [4:0] ADDRA,
|
||||
input [4:0] ADDRB,
|
||||
input [4:0] ADDRC,
|
||||
input [4:0] ADDRD,
|
||||
input DIA,
|
||||
input DIB,
|
||||
input DIC,
|
||||
input DID,
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK,
|
||||
input WE
|
||||
);
|
||||
parameter [63:0] INIT_A = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_B = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_C = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_D = 64'h0000000000000000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
reg [63:0] mem_a = INIT_A;
|
||||
reg [63:0] mem_b = INIT_B;
|
||||
reg [63:0] mem_c = INIT_C;
|
||||
reg [63:0] mem_d = INIT_D;
|
||||
assign DOA = mem_a[ADDRA];
|
||||
assign DOB = mem_b[ADDRB];
|
||||
assign DOC = mem_c[ADDRC];
|
||||
assign DOD = mem_d[ADDRD];
|
||||
wire clk = WCLK ^ IS_WCLK_INVERTED;
|
||||
always @(posedge clk)
|
||||
if (WE) begin
|
||||
mem_a[ADDRD] <= DIA;
|
||||
mem_b[ADDRD] <= DIB;
|
||||
mem_c[ADDRD] <= DIC;
|
||||
mem_d[ADDRD] <= DID;
|
||||
end
|
||||
endmodule
|
||||
|
||||
module RAM64M8 (
|
||||
output DOA,
|
||||
output DOB,
|
||||
output DOC,
|
||||
output DOD,
|
||||
output DOE,
|
||||
output DOF,
|
||||
output DOG,
|
||||
output DOH,
|
||||
input [4:0] ADDRA,
|
||||
input [4:0] ADDRB,
|
||||
input [4:0] ADDRC,
|
||||
input [4:0] ADDRD,
|
||||
input [4:0] ADDRE,
|
||||
input [4:0] ADDRF,
|
||||
input [4:0] ADDRG,
|
||||
input [4:0] ADDRH,
|
||||
input DIA,
|
||||
input DIB,
|
||||
input DIC,
|
||||
input DID,
|
||||
input DIE,
|
||||
input DIF,
|
||||
input DIG,
|
||||
input DIH,
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK,
|
||||
input WE
|
||||
);
|
||||
parameter [63:0] INIT_A = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_B = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_C = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_D = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_E = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_F = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_G = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_H = 64'h0000000000000000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
reg [63:0] mem_a = INIT_A;
|
||||
reg [63:0] mem_b = INIT_B;
|
||||
reg [63:0] mem_c = INIT_C;
|
||||
reg [63:0] mem_d = INIT_D;
|
||||
reg [63:0] mem_e = INIT_E;
|
||||
reg [63:0] mem_f = INIT_F;
|
||||
reg [63:0] mem_g = INIT_G;
|
||||
reg [63:0] mem_h = INIT_H;
|
||||
assign DOA = mem_a[ADDRA];
|
||||
assign DOB = mem_b[ADDRB];
|
||||
assign DOC = mem_c[ADDRC];
|
||||
assign DOD = mem_d[ADDRD];
|
||||
assign DOE = mem_e[ADDRE];
|
||||
assign DOF = mem_f[ADDRF];
|
||||
assign DOG = mem_g[ADDRG];
|
||||
assign DOH = mem_h[ADDRH];
|
||||
wire clk = WCLK ^ IS_WCLK_INVERTED;
|
||||
always @(posedge clk)
|
||||
if (WE) begin
|
||||
mem_a[ADDRH] <= DIA;
|
||||
mem_b[ADDRH] <= DIB;
|
||||
mem_c[ADDRH] <= DIC;
|
||||
mem_d[ADDRH] <= DID;
|
||||
mem_e[ADDRH] <= DIE;
|
||||
mem_f[ADDRH] <= DIF;
|
||||
mem_g[ADDRH] <= DIG;
|
||||
mem_h[ADDRH] <= DIH;
|
||||
end
|
||||
endmodule
|
||||
|
||||
// ROM.
|
||||
|
||||
module ROM16X1 (
|
||||
output O,
|
||||
input A0, A1, A2, A3
|
||||
);
|
||||
parameter [15:0] INIT = 16'h0;
|
||||
assign O = INIT[{A3, A2, A1, A0}];
|
||||
endmodule
|
||||
|
||||
module ROM32X1 (
|
||||
output O,
|
||||
input A0, A1, A2, A3, A4
|
||||
);
|
||||
parameter [31:0] INIT = 32'h0;
|
||||
assign O = INIT[{A4, A3, A2, A1, A0}];
|
||||
endmodule
|
||||
|
||||
module ROM64X1 (
|
||||
output O,
|
||||
input A0, A1, A2, A3, A4, A5
|
||||
);
|
||||
parameter [63:0] INIT = 64'h0;
|
||||
assign O = INIT[{A5, A4, A3, A2, A1, A0}];
|
||||
endmodule
|
||||
|
||||
module ROM128X1 (
|
||||
output O,
|
||||
input A0, A1, A2, A3, A4, A5, A6
|
||||
);
|
||||
parameter [127:0] INIT = 128'h0;
|
||||
assign O = INIT[{A6, A5, A4, A3, A2, A1, A0}];
|
||||
endmodule
|
||||
|
||||
module ROM256X1 (
|
||||
output O,
|
||||
input A0, A1, A2, A3, A4, A5, A6, A7
|
||||
);
|
||||
parameter [255:0] INIT = 256'h0;
|
||||
assign O = INIT[{A7, A6, A5, A4, A3, A2, A1, A0}];
|
||||
endmodule
|
||||
|
||||
// Shift registers.
|
||||
|
||||
module SRL16E (
|
||||
// Max delay from: https://github.com/SymbiFlow/prjxray-db/blob/34ea6eb08a63d21ec16264ad37a0a7b142ff6031/artix7/timings/CLBLM_R.sdf#L904-L905
|
||||
(* abc9_arrival=1472 *)
|
||||
|
|
|
@ -28,40 +28,40 @@ CELLS = [
|
|||
# - UG974 (Ultrascale)
|
||||
|
||||
# CLB -- RAM/ROM.
|
||||
Cell('RAM16X1S', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
Cell('RAM16X1S_1', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
Cell('RAM32X1S', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
Cell('RAM32X1S_1', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
Cell('RAM64X1S', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
Cell('RAM64X1S_1', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
Cell('RAM128X1S', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
Cell('RAM128X1S_1', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
Cell('RAM256X1S', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
Cell('RAM512X1S', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
Cell('RAM16X2S', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
Cell('RAM32X2S', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
Cell('RAM64X2S', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
Cell('RAM16X4S', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
Cell('RAM32X4S', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
Cell('RAM16X8S', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
Cell('RAM32X8S', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
Cell('RAM16X1D', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
Cell('RAM16X1D_1', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
#Cell('RAM32X1D', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
Cell('RAM32X1D_1', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
#Cell('RAM64X1D', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
Cell('RAM64X1D_1', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
#Cell('RAM128X1D', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
Cell('RAM256X1D', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
Cell('RAM32M', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
Cell('RAM32M16', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
Cell('RAM64M', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
Cell('RAM64M8', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
Cell('ROM16X1'),
|
||||
Cell('ROM32X1'),
|
||||
Cell('ROM64X1'),
|
||||
Cell('ROM128X1'),
|
||||
Cell('ROM256X1'),
|
||||
# Cell('RAM16X1S', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
# Cell('RAM16X1S_1', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
# Cell('RAM32X1S', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
# Cell('RAM32X1S_1', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
# Cell('RAM64X1S', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
# Cell('RAM64X1S_1', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
# Cell('RAM128X1S', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
# Cell('RAM128X1S_1', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
# Cell('RAM256X1S', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
# Cell('RAM512X1S', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
# Cell('RAM16X2S', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
# Cell('RAM32X2S', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
# Cell('RAM64X2S', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
# Cell('RAM16X4S', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
# Cell('RAM32X4S', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
# Cell('RAM16X8S', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
# Cell('RAM32X8S', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
# Cell('RAM16X1D', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
# Cell('RAM16X1D_1', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
# Cell('RAM32X1D', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
# Cell('RAM32X1D_1', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
# Cell('RAM64X1D', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
# Cell('RAM64X1D_1', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
# Cell('RAM128X1D', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
# Cell('RAM256X1D', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
# Cell('RAM32M', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
# Cell('RAM32M16', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
# Cell('RAM64M', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
# Cell('RAM64M8', port_attrs={'WCLK': ['clkbuf_sink']}),
|
||||
# Cell('ROM16X1'),
|
||||
# Cell('ROM32X1'),
|
||||
# Cell('ROM64X1'),
|
||||
# Cell('ROM128X1'),
|
||||
# Cell('ROM256X1'),
|
||||
|
||||
# CLB -- registers/latches.
|
||||
# Virtex 1/2/4/5, Spartan 3.
|
||||
|
@ -372,6 +372,7 @@ CELLS = [
|
|||
Cell('BUFIO2', port_attrs={'IOCLK': ['clkbuf_driver'], 'DIVCLK': ['clkbuf_driver']}),
|
||||
Cell('BUFIO2_2CLK', port_attrs={'IOCLK': ['clkbuf_driver'], 'DIVCLK': ['clkbuf_driver']}),
|
||||
Cell('BUFIO2FB', port_attrs={'O': ['clkbuf_driver']}),
|
||||
Cell('BUFPLL', port_attrs={'IOCLK': ['clkbuf_driver']}),
|
||||
Cell('BUFPLL_MCB', port_attrs={'IOCLK0': ['clkbuf_driver'], 'IOCLK1': ['clkbuf_driver']}),
|
||||
|
||||
# Clock buffers (IO and regional) -- Virtex.
|
||||
|
|
|
@ -1,595 +1,5 @@
|
|||
// Created by cells_xtra.py from Xilinx models
|
||||
|
||||
module RAM16X1S (...);
|
||||
parameter [15:0] INIT = 16'h0000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
output O;
|
||||
input A0;
|
||||
input A1;
|
||||
input A2;
|
||||
input A3;
|
||||
input D;
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK;
|
||||
input WE;
|
||||
endmodule
|
||||
|
||||
module RAM16X1S_1 (...);
|
||||
parameter [15:0] INIT = 16'h0000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
output O;
|
||||
input A0;
|
||||
input A1;
|
||||
input A2;
|
||||
input A3;
|
||||
input D;
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK;
|
||||
input WE;
|
||||
endmodule
|
||||
|
||||
module RAM32X1S (...);
|
||||
parameter [31:0] INIT = 32'h00000000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
output O;
|
||||
input A0;
|
||||
input A1;
|
||||
input A2;
|
||||
input A3;
|
||||
input A4;
|
||||
input D;
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK;
|
||||
input WE;
|
||||
endmodule
|
||||
|
||||
module RAM32X1S_1 (...);
|
||||
parameter [31:0] INIT = 32'h00000000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
output O;
|
||||
input A0;
|
||||
input A1;
|
||||
input A2;
|
||||
input A3;
|
||||
input A4;
|
||||
input D;
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK;
|
||||
input WE;
|
||||
endmodule
|
||||
|
||||
module RAM64X1S (...);
|
||||
parameter [63:0] INIT = 64'h0000000000000000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
output O;
|
||||
input A0;
|
||||
input A1;
|
||||
input A2;
|
||||
input A3;
|
||||
input A4;
|
||||
input A5;
|
||||
input D;
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK;
|
||||
input WE;
|
||||
endmodule
|
||||
|
||||
module RAM64X1S_1 (...);
|
||||
parameter [63:0] INIT = 64'h0000000000000000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
output O;
|
||||
input A0;
|
||||
input A1;
|
||||
input A2;
|
||||
input A3;
|
||||
input A4;
|
||||
input A5;
|
||||
input D;
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK;
|
||||
input WE;
|
||||
endmodule
|
||||
|
||||
module RAM128X1S (...);
|
||||
parameter [127:0] INIT = 128'h00000000000000000000000000000000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
output O;
|
||||
input A0;
|
||||
input A1;
|
||||
input A2;
|
||||
input A3;
|
||||
input A4;
|
||||
input A5;
|
||||
input A6;
|
||||
input D;
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK;
|
||||
input WE;
|
||||
endmodule
|
||||
|
||||
module RAM128X1S_1 (...);
|
||||
parameter [127:0] INIT = 128'h00000000000000000000000000000000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
output O;
|
||||
input A0;
|
||||
input A1;
|
||||
input A2;
|
||||
input A3;
|
||||
input A4;
|
||||
input A5;
|
||||
input A6;
|
||||
input D;
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK;
|
||||
input WE;
|
||||
endmodule
|
||||
|
||||
module RAM256X1S (...);
|
||||
parameter [255:0] INIT = 256'h0;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
output O;
|
||||
input [7:0] A;
|
||||
input D;
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK;
|
||||
input WE;
|
||||
endmodule
|
||||
|
||||
module RAM512X1S (...);
|
||||
parameter [511:0] INIT = 512'h0;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
output O;
|
||||
input [8:0] A;
|
||||
input D;
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK;
|
||||
input WE;
|
||||
endmodule
|
||||
|
||||
module RAM16X2S (...);
|
||||
parameter [15:0] INIT_00 = 16'h0000;
|
||||
parameter [15:0] INIT_01 = 16'h0000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
output O0;
|
||||
output O1;
|
||||
input A0;
|
||||
input A1;
|
||||
input A2;
|
||||
input A3;
|
||||
input D0;
|
||||
input D1;
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK;
|
||||
input WE;
|
||||
endmodule
|
||||
|
||||
module RAM32X2S (...);
|
||||
parameter [31:0] INIT_00 = 32'h00000000;
|
||||
parameter [31:0] INIT_01 = 32'h00000000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
output O0;
|
||||
output O1;
|
||||
input A0;
|
||||
input A1;
|
||||
input A2;
|
||||
input A3;
|
||||
input A4;
|
||||
input D0;
|
||||
input D1;
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK;
|
||||
input WE;
|
||||
endmodule
|
||||
|
||||
module RAM64X2S (...);
|
||||
parameter [63:0] INIT_00 = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_01 = 64'h0000000000000000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
output O0;
|
||||
output O1;
|
||||
input A0;
|
||||
input A1;
|
||||
input A2;
|
||||
input A3;
|
||||
input A4;
|
||||
input A5;
|
||||
input D0;
|
||||
input D1;
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK;
|
||||
input WE;
|
||||
endmodule
|
||||
|
||||
module RAM16X4S (...);
|
||||
parameter [15:0] INIT_00 = 16'h0000;
|
||||
parameter [15:0] INIT_01 = 16'h0000;
|
||||
parameter [15:0] INIT_02 = 16'h0000;
|
||||
parameter [15:0] INIT_03 = 16'h0000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
output O0;
|
||||
output O1;
|
||||
output O2;
|
||||
output O3;
|
||||
input A0;
|
||||
input A1;
|
||||
input A2;
|
||||
input A3;
|
||||
input D0;
|
||||
input D1;
|
||||
input D2;
|
||||
input D3;
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK;
|
||||
input WE;
|
||||
endmodule
|
||||
|
||||
module RAM32X4S (...);
|
||||
parameter [31:0] INIT_00 = 32'h00000000;
|
||||
parameter [31:0] INIT_01 = 32'h00000000;
|
||||
parameter [31:0] INIT_02 = 32'h00000000;
|
||||
parameter [31:0] INIT_03 = 32'h00000000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
output O0;
|
||||
output O1;
|
||||
output O2;
|
||||
output O3;
|
||||
input A0;
|
||||
input A1;
|
||||
input A2;
|
||||
input A3;
|
||||
input A4;
|
||||
input D0;
|
||||
input D1;
|
||||
input D2;
|
||||
input D3;
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK;
|
||||
input WE;
|
||||
endmodule
|
||||
|
||||
module RAM16X8S (...);
|
||||
parameter [15:0] INIT_00 = 16'h0000;
|
||||
parameter [15:0] INIT_01 = 16'h0000;
|
||||
parameter [15:0] INIT_02 = 16'h0000;
|
||||
parameter [15:0] INIT_03 = 16'h0000;
|
||||
parameter [15:0] INIT_04 = 16'h0000;
|
||||
parameter [15:0] INIT_05 = 16'h0000;
|
||||
parameter [15:0] INIT_06 = 16'h0000;
|
||||
parameter [15:0] INIT_07 = 16'h0000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
output [7:0] O;
|
||||
input A0;
|
||||
input A1;
|
||||
input A2;
|
||||
input A3;
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK;
|
||||
input WE;
|
||||
input [7:0] D;
|
||||
endmodule
|
||||
|
||||
module RAM32X8S (...);
|
||||
parameter [31:0] INIT_00 = 32'h00000000;
|
||||
parameter [31:0] INIT_01 = 32'h00000000;
|
||||
parameter [31:0] INIT_02 = 32'h00000000;
|
||||
parameter [31:0] INIT_03 = 32'h00000000;
|
||||
parameter [31:0] INIT_04 = 32'h00000000;
|
||||
parameter [31:0] INIT_05 = 32'h00000000;
|
||||
parameter [31:0] INIT_06 = 32'h00000000;
|
||||
parameter [31:0] INIT_07 = 32'h00000000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
output [7:0] O;
|
||||
input A0;
|
||||
input A1;
|
||||
input A2;
|
||||
input A3;
|
||||
input A4;
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK;
|
||||
input WE;
|
||||
input [7:0] D;
|
||||
endmodule
|
||||
|
||||
module RAM16X1D (...);
|
||||
parameter [15:0] INIT = 16'h0000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
output DPO;
|
||||
output SPO;
|
||||
input A0;
|
||||
input A1;
|
||||
input A2;
|
||||
input A3;
|
||||
input D;
|
||||
input DPRA0;
|
||||
input DPRA1;
|
||||
input DPRA2;
|
||||
input DPRA3;
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK;
|
||||
input WE;
|
||||
endmodule
|
||||
|
||||
module RAM16X1D_1 (...);
|
||||
parameter [15:0] INIT = 16'h0000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
output DPO;
|
||||
output SPO;
|
||||
input A0;
|
||||
input A1;
|
||||
input A2;
|
||||
input A3;
|
||||
input D;
|
||||
input DPRA0;
|
||||
input DPRA1;
|
||||
input DPRA2;
|
||||
input DPRA3;
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK;
|
||||
input WE;
|
||||
endmodule
|
||||
|
||||
module RAM32X1D_1 (...);
|
||||
parameter [31:0] INIT = 32'h00000000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
output DPO;
|
||||
output SPO;
|
||||
input A0;
|
||||
input A1;
|
||||
input A2;
|
||||
input A3;
|
||||
input A4;
|
||||
input D;
|
||||
input DPRA0;
|
||||
input DPRA1;
|
||||
input DPRA2;
|
||||
input DPRA3;
|
||||
input DPRA4;
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK;
|
||||
input WE;
|
||||
endmodule
|
||||
|
||||
module RAM64X1D_1 (...);
|
||||
parameter [63:0] INIT = 64'h0000000000000000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
output DPO;
|
||||
output SPO;
|
||||
input A0;
|
||||
input A1;
|
||||
input A2;
|
||||
input A3;
|
||||
input A4;
|
||||
input A5;
|
||||
input D;
|
||||
input DPRA0;
|
||||
input DPRA1;
|
||||
input DPRA2;
|
||||
input DPRA3;
|
||||
input DPRA4;
|
||||
input DPRA5;
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK;
|
||||
input WE;
|
||||
endmodule
|
||||
|
||||
module RAM256X1D (...);
|
||||
parameter [255:0] INIT = 256'h0000000000000000000000000000000000000000000000000000000000000000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
output DPO;
|
||||
output SPO;
|
||||
input [7:0] A;
|
||||
input D;
|
||||
input [7:0] DPRA;
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK;
|
||||
input WE;
|
||||
endmodule
|
||||
|
||||
module RAM32M (...);
|
||||
parameter [63:0] INIT_A = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_B = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_C = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_D = 64'h0000000000000000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
output [1:0] DOA;
|
||||
output [1:0] DOB;
|
||||
output [1:0] DOC;
|
||||
output [1:0] DOD;
|
||||
input [4:0] ADDRA;
|
||||
input [4:0] ADDRB;
|
||||
input [4:0] ADDRC;
|
||||
input [4:0] ADDRD;
|
||||
input [1:0] DIA;
|
||||
input [1:0] DIB;
|
||||
input [1:0] DIC;
|
||||
input [1:0] DID;
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK;
|
||||
input WE;
|
||||
endmodule
|
||||
|
||||
module RAM32M16 (...);
|
||||
parameter [63:0] INIT_A = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_B = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_C = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_D = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_E = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_F = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_G = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_H = 64'h0000000000000000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
output [1:0] DOA;
|
||||
output [1:0] DOB;
|
||||
output [1:0] DOC;
|
||||
output [1:0] DOD;
|
||||
output [1:0] DOE;
|
||||
output [1:0] DOF;
|
||||
output [1:0] DOG;
|
||||
output [1:0] DOH;
|
||||
input [4:0] ADDRA;
|
||||
input [4:0] ADDRB;
|
||||
input [4:0] ADDRC;
|
||||
input [4:0] ADDRD;
|
||||
input [4:0] ADDRE;
|
||||
input [4:0] ADDRF;
|
||||
input [4:0] ADDRG;
|
||||
input [4:0] ADDRH;
|
||||
input [1:0] DIA;
|
||||
input [1:0] DIB;
|
||||
input [1:0] DIC;
|
||||
input [1:0] DID;
|
||||
input [1:0] DIE;
|
||||
input [1:0] DIF;
|
||||
input [1:0] DIG;
|
||||
input [1:0] DIH;
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK;
|
||||
input WE;
|
||||
endmodule
|
||||
|
||||
module RAM64M (...);
|
||||
parameter [63:0] INIT_A = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_B = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_C = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_D = 64'h0000000000000000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
output DOA;
|
||||
output DOB;
|
||||
output DOC;
|
||||
output DOD;
|
||||
input [5:0] ADDRA;
|
||||
input [5:0] ADDRB;
|
||||
input [5:0] ADDRC;
|
||||
input [5:0] ADDRD;
|
||||
input DIA;
|
||||
input DIB;
|
||||
input DIC;
|
||||
input DID;
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK;
|
||||
input WE;
|
||||
endmodule
|
||||
|
||||
module RAM64M8 (...);
|
||||
parameter [63:0] INIT_A = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_B = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_C = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_D = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_E = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_F = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_G = 64'h0000000000000000;
|
||||
parameter [63:0] INIT_H = 64'h0000000000000000;
|
||||
parameter [0:0] IS_WCLK_INVERTED = 1'b0;
|
||||
output DOA;
|
||||
output DOB;
|
||||
output DOC;
|
||||
output DOD;
|
||||
output DOE;
|
||||
output DOF;
|
||||
output DOG;
|
||||
output DOH;
|
||||
input [5:0] ADDRA;
|
||||
input [5:0] ADDRB;
|
||||
input [5:0] ADDRC;
|
||||
input [5:0] ADDRD;
|
||||
input [5:0] ADDRE;
|
||||
input [5:0] ADDRF;
|
||||
input [5:0] ADDRG;
|
||||
input [5:0] ADDRH;
|
||||
input DIA;
|
||||
input DIB;
|
||||
input DIC;
|
||||
input DID;
|
||||
input DIE;
|
||||
input DIF;
|
||||
input DIG;
|
||||
input DIH;
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_WCLK_INVERTED" *)
|
||||
input WCLK;
|
||||
input WE;
|
||||
endmodule
|
||||
|
||||
module ROM16X1 (...);
|
||||
parameter [127:0] INIT = 16'h0000;
|
||||
output O;
|
||||
input A0;
|
||||
input A1;
|
||||
input A2;
|
||||
input A3;
|
||||
endmodule
|
||||
|
||||
module ROM32X1 (...);
|
||||
parameter [31:0] INIT = 32'h00000000;
|
||||
output O;
|
||||
input A0;
|
||||
input A1;
|
||||
input A2;
|
||||
input A3;
|
||||
input A4;
|
||||
endmodule
|
||||
|
||||
module ROM64X1 (...);
|
||||
parameter [63:0] INIT = 64'h0000000000000000;
|
||||
output O;
|
||||
input A0;
|
||||
input A1;
|
||||
input A2;
|
||||
input A3;
|
||||
input A4;
|
||||
input A5;
|
||||
endmodule
|
||||
|
||||
module ROM128X1 (...);
|
||||
parameter [127:0] INIT = 128'h00000000000000000000000000000000;
|
||||
output O;
|
||||
input A0;
|
||||
input A1;
|
||||
input A2;
|
||||
input A3;
|
||||
input A4;
|
||||
input A5;
|
||||
input A6;
|
||||
endmodule
|
||||
|
||||
module ROM256X1 (...);
|
||||
parameter [255:0] INIT = 256'h0000000000000000000000000000000000000000000000000000000000000000;
|
||||
output O;
|
||||
input A0;
|
||||
input A1;
|
||||
input A2;
|
||||
input A3;
|
||||
input A4;
|
||||
input A5;
|
||||
input A6;
|
||||
input A7;
|
||||
endmodule
|
||||
|
||||
module FDCPE (...);
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
parameter [0:0] IS_C_INVERTED = 1'b0;
|
||||
|
@ -5240,9 +4650,13 @@ module RAMB18E1 (...);
|
|||
parameter IS_RSTRAMB_INVERTED = 1'b0;
|
||||
parameter IS_RSTREGARSTREG_INVERTED = 1'b0;
|
||||
parameter IS_RSTREGB_INVERTED = 1'b0;
|
||||
(* abc9_arrival=2454 *)
|
||||
output [15:0] DOADO;
|
||||
(* abc9_arrival=2454 *)
|
||||
output [15:0] DOBDO;
|
||||
(* abc9_arrival=2454 *)
|
||||
output [1:0] DOPADOP;
|
||||
(* abc9_arrival=2454 *)
|
||||
output [1:0] DOPBDOP;
|
||||
(* clkbuf_sink *)
|
||||
(* invertible_pin = "IS_CLKARDCLK_INVERTED" *)
|
||||
|
@ -5452,9 +4866,13 @@ module RAMB36E1 (...);
|
|||
parameter IS_RSTREGB_INVERTED = 1'b0;
|
||||
output CASCADEOUTA;
|
||||
output CASCADEOUTB;
|
||||
(* abc9_arrival=2454 *)
|
||||
output [31:0] DOADO;
|
||||
(* abc9_arrival=2454 *)
|
||||
output [31:0] DOBDO;
|
||||
(* abc9_arrival=2454 *)
|
||||
output [3:0] DOPADOP;
|
||||
(* abc9_arrival=2454 *)
|
||||
output [3:0] DOPBDOP;
|
||||
output [7:0] ECCPARITY;
|
||||
output [8:0] RDADDRECC;
|
||||
|
@ -8527,6 +7945,18 @@ module BUFIO2FB (...);
|
|||
input I;
|
||||
endmodule
|
||||
|
||||
module BUFPLL (...);
|
||||
parameter integer DIVIDE = 1;
|
||||
parameter ENABLE_SYNC = "TRUE";
|
||||
(* clkbuf_driver *)
|
||||
output IOCLK;
|
||||
output LOCK;
|
||||
output SERDESSTROBE;
|
||||
input GCLK;
|
||||
input LOCKED;
|
||||
input PLLIN;
|
||||
endmodule
|
||||
|
||||
module BUFPLL_MCB (...);
|
||||
parameter integer DIVIDE = 2;
|
||||
parameter LOCK_SRC = "LOCK_TO_0";
|
||||
|
|
|
@ -282,6 +282,7 @@ struct SynthXilinxPass : public ScriptPass
|
|||
|
||||
void script() YS_OVERRIDE
|
||||
{
|
||||
bool do_iopad = iopad || (ise && !noiopad);
|
||||
std::string ff_map_file;
|
||||
if (help_mode)
|
||||
ff_map_file = "+/xilinx/{family}_ff_map.v";
|
||||
|
@ -306,6 +307,8 @@ struct SynthXilinxPass : public ScriptPass
|
|||
run("proc");
|
||||
if (flatten || help_mode)
|
||||
run("flatten", "(with '-flatten')");
|
||||
run("tribuf -logic");
|
||||
run("deminout");
|
||||
run("opt_expr");
|
||||
run("opt_clean");
|
||||
run("check");
|
||||
|
@ -504,6 +507,9 @@ struct SynthXilinxPass : public ScriptPass
|
|||
}
|
||||
|
||||
if (check_label("map_cells")) {
|
||||
// Needs to be done before logic optimization, so that inverters (OE vs T) are handled.
|
||||
if (help_mode || do_iopad)
|
||||
run("iopadmap -bits -outpad OBUF I:O -inpad IBUF O:I -toutpad $__XILINX_TOUTPAD OE:I:O -tinoutpad $__XILINX_TINOUTPAD OE:O:I:IO A:top", "(only if '-iopad' or '-ise' and not '-noiopad')");
|
||||
std::string techmap_args = "-map +/techmap.v -map +/xilinx/cells_map.v";
|
||||
if (widemux > 0)
|
||||
techmap_args += stringf(" -D MIN_MUX_INPUTS=%d", widemux);
|
||||
|
@ -560,15 +566,8 @@ struct SynthXilinxPass : public ScriptPass
|
|||
}
|
||||
|
||||
if (check_label("finalize")) {
|
||||
bool do_iopad = iopad || (ise && !noiopad);
|
||||
if (help_mode || !noclkbuf) {
|
||||
if (help_mode || do_iopad)
|
||||
run("clkbufmap -buf BUFG O:I -inpad IBUFG O:I", "(skip if '-noclkbuf', '-inpad' passed if '-iopad' or '-ise' and not '-noiopad')");
|
||||
else
|
||||
run("clkbufmap -buf BUFG O:I");
|
||||
}
|
||||
if (help_mode || do_iopad)
|
||||
run("iopadmap -bits -outpad OBUF I:O -inpad IBUF O:I A:top", "(only if '-iopad' or '-ise' and not '-noiopad')");
|
||||
if (help_mode || !noclkbuf)
|
||||
run("clkbufmap -buf BUFG O:I ", "(skip if '-noclkbuf')");
|
||||
if (help_mode || ise)
|
||||
run("extractinv -inv INV O:I", "(only if '-ise')");
|
||||
run("clean");
|
||||
|
|
|
@ -34,11 +34,12 @@ proc
|
|||
equiv_opt -async2sync -assert -map +/gowin/cells_sim.v synth_gowin # equivalency check
|
||||
design -load postopt # load the post-opt design (otherwise equiv_opt loads the pre-opt design)
|
||||
cd dffs # Constrain all select calls below inside the top module
|
||||
select -assert-count 1 t:DFFS
|
||||
select -assert-count 1 t:DFF
|
||||
select -assert-count 1 t:LUT2
|
||||
select -assert-count 4 t:IBUF
|
||||
select -assert-count 1 t:OBUF
|
||||
|
||||
select -assert-none t:DFFS t:IBUF t:OBUF %% t:* %D
|
||||
select -assert-none t:DFF t:LUT2 t:IBUF t:OBUF %% t:* %D
|
||||
|
||||
|
||||
design -load read
|
||||
|
|
|
@ -0,0 +1,224 @@
|
|||
module myDFF (output reg Q, input CLK, D);
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
initial Q = INIT;
|
||||
always @(posedge CLK)
|
||||
Q <= D;
|
||||
endmodule
|
||||
|
||||
module myDFFE (output reg Q, input D, CLK, CE);
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
initial Q = INIT;
|
||||
always @(posedge CLK) begin
|
||||
if (CE)
|
||||
Q <= D;
|
||||
end
|
||||
endmodule // DFFE (positive clock edge; clock enable)
|
||||
|
||||
|
||||
module myDFFS (output reg Q, input D, CLK, SET);
|
||||
parameter [0:0] INIT = 1'b1;
|
||||
initial Q = INIT;
|
||||
always @(posedge CLK) begin
|
||||
if (SET)
|
||||
Q <= 1'b1;
|
||||
else
|
||||
Q <= D;
|
||||
end
|
||||
endmodule // DFFS (positive clock edge; synchronous set)
|
||||
|
||||
|
||||
module myDFFSE (output reg Q, input D, CLK, CE, SET);
|
||||
parameter [0:0] INIT = 1'b1;
|
||||
initial Q = INIT;
|
||||
always @(posedge CLK) begin
|
||||
if (SET)
|
||||
Q <= 1'b1;
|
||||
else if (CE)
|
||||
Q <= D;
|
||||
end
|
||||
endmodule // DFFSE (positive clock edge; synchronous set takes precedence over clock enable)
|
||||
|
||||
|
||||
module myDFFR (output reg Q, input D, CLK, RESET);
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
initial Q = INIT;
|
||||
always @(posedge CLK) begin
|
||||
if (RESET)
|
||||
Q <= 1'b0;
|
||||
else
|
||||
Q <= D;
|
||||
end
|
||||
endmodule // DFFR (positive clock edge; synchronous reset)
|
||||
|
||||
|
||||
module myDFFRE (output reg Q, input D, CLK, CE, RESET);
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
initial Q = INIT;
|
||||
always @(posedge CLK) begin
|
||||
if (RESET)
|
||||
Q <= 1'b0;
|
||||
else if (CE)
|
||||
Q <= D;
|
||||
end
|
||||
endmodule // DFFRE (positive clock edge; synchronous reset takes precedence over clock enable)
|
||||
|
||||
|
||||
module myDFFP (output reg Q, input D, CLK, PRESET);
|
||||
parameter [0:0] INIT = 1'b1;
|
||||
initial Q = INIT;
|
||||
always @(posedge CLK or posedge PRESET) begin
|
||||
if(PRESET)
|
||||
Q <= 1'b1;
|
||||
else
|
||||
Q <= D;
|
||||
end
|
||||
endmodule // DFFP (positive clock edge; asynchronous preset)
|
||||
|
||||
|
||||
module myDFFPE (output reg Q, input D, CLK, CE, PRESET);
|
||||
parameter [0:0] INIT = 1'b1;
|
||||
initial Q = INIT;
|
||||
always @(posedge CLK or posedge PRESET) begin
|
||||
if(PRESET)
|
||||
Q <= 1'b1;
|
||||
else if (CE)
|
||||
Q <= D;
|
||||
end
|
||||
endmodule // DFFPE (positive clock edge; asynchronous preset; clock enable)
|
||||
|
||||
|
||||
module myDFFC (output reg Q, input D, CLK, CLEAR);
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
initial Q = INIT;
|
||||
always @(posedge CLK or posedge CLEAR) begin
|
||||
if(CLEAR)
|
||||
Q <= 1'b0;
|
||||
else
|
||||
Q <= D;
|
||||
end
|
||||
endmodule // DFFC (positive clock edge; asynchronous clear)
|
||||
|
||||
|
||||
module myDFFCE (output reg Q, input D, CLK, CE, CLEAR);
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
initial Q = INIT;
|
||||
always @(posedge CLK or posedge CLEAR) begin
|
||||
if(CLEAR)
|
||||
Q <= 1'b0;
|
||||
else if (CE)
|
||||
Q <= D;
|
||||
end
|
||||
endmodule // DFFCE (positive clock edge; asynchronous clear; clock enable)
|
||||
|
||||
|
||||
module myDFFN (output reg Q, input CLK, D);
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
initial Q = INIT;
|
||||
always @(negedge CLK)
|
||||
Q <= D;
|
||||
endmodule
|
||||
|
||||
module myDFFNE (output reg Q, input D, CLK, CE);
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
initial Q = INIT;
|
||||
always @(negedge CLK) begin
|
||||
if (CE)
|
||||
Q <= D;
|
||||
end
|
||||
endmodule // DFFNE (negative clock edge; clock enable)
|
||||
|
||||
|
||||
module myDFFNS (output reg Q, input D, CLK, SET);
|
||||
parameter [0:0] INIT = 1'b1;
|
||||
initial Q = INIT;
|
||||
always @(negedge CLK) begin
|
||||
if (SET)
|
||||
Q <= 1'b1;
|
||||
else
|
||||
Q <= D;
|
||||
end
|
||||
endmodule // DFFNS (negative clock edge; synchronous set)
|
||||
|
||||
|
||||
module myDFFNSE (output reg Q, input D, CLK, CE, SET);
|
||||
parameter [0:0] INIT = 1'b1;
|
||||
initial Q = INIT;
|
||||
always @(negedge CLK) begin
|
||||
if (SET)
|
||||
Q <= 1'b1;
|
||||
else if (CE)
|
||||
Q <= D;
|
||||
end
|
||||
endmodule // DFFNSE (negative clock edge; synchronous set takes precedence over clock enable)
|
||||
|
||||
|
||||
module myDFFNR (output reg Q, input D, CLK, RESET);
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
initial Q = INIT;
|
||||
always @(negedge CLK) begin
|
||||
if (RESET)
|
||||
Q <= 1'b0;
|
||||
else
|
||||
Q <= D;
|
||||
end
|
||||
endmodule // DFFNR (negative clock edge; synchronous reset)
|
||||
|
||||
|
||||
module myDFFNRE (output reg Q, input D, CLK, CE, RESET);
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
initial Q = INIT;
|
||||
always @(negedge CLK) begin
|
||||
if (RESET)
|
||||
Q <= 1'b0;
|
||||
else if (CE)
|
||||
Q <= D;
|
||||
end
|
||||
endmodule // DFFNRE (negative clock edge; synchronous reset takes precedence over clock enable)
|
||||
|
||||
|
||||
module myDFFNP (output reg Q, input D, CLK, PRESET);
|
||||
parameter [0:0] INIT = 1'b1;
|
||||
initial Q = INIT;
|
||||
always @(negedge CLK or posedge PRESET) begin
|
||||
if(PRESET)
|
||||
Q <= 1'b1;
|
||||
else
|
||||
Q <= D;
|
||||
end
|
||||
endmodule // DFFNP (negative clock edge; asynchronous preset)
|
||||
|
||||
|
||||
module myDFFNPE (output reg Q, input D, CLK, CE, PRESET);
|
||||
parameter [0:0] INIT = 1'b1;
|
||||
initial Q = INIT;
|
||||
always @(negedge CLK or posedge PRESET) begin
|
||||
if(PRESET)
|
||||
Q <= 1'b1;
|
||||
else if (CE)
|
||||
Q <= D;
|
||||
end
|
||||
endmodule // DFFNPE (negative clock edge; asynchronous preset; clock enable)
|
||||
|
||||
|
||||
module myDFFNC (output reg Q, input D, CLK, CLEAR);
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
initial Q = INIT;
|
||||
always @(negedge CLK or posedge CLEAR) begin
|
||||
if(CLEAR)
|
||||
Q <= 1'b0;
|
||||
else
|
||||
Q <= D;
|
||||
end
|
||||
endmodule // DFFNC (negative clock edge; asynchronous clear)
|
||||
|
||||
|
||||
module myDFFNCE (output reg Q, input D, CLK, CE, CLEAR);
|
||||
parameter [0:0] INIT = 1'b0;
|
||||
initial Q = INIT;
|
||||
always @(negedge CLK or posedge CLEAR) begin
|
||||
if(CLEAR)
|
||||
Q <= 1'b0;
|
||||
else if (CE)
|
||||
Q <= D;
|
||||
end
|
||||
endmodule // DFFNCE (negative clock edge; asynchronous clear; clock enable)
|
|
@ -0,0 +1,74 @@
|
|||
read_verilog init.v
|
||||
read_verilog -lib +/gowin/cells_sim.v
|
||||
design -save read
|
||||
|
||||
proc
|
||||
flatten
|
||||
synth_gowin -run coarse:
|
||||
|
||||
# check if all init values are handled
|
||||
check -assert -noinit
|
||||
# check if every flop mapped correctly
|
||||
select -assert-count 1 t:DFF
|
||||
select -assert-count 1 t:DFFC
|
||||
select -assert-count 1 t:DFFCE
|
||||
select -assert-count 1 t:DFFE
|
||||
select -assert-count 1 t:DFFN
|
||||
select -assert-count 1 t:DFFNC
|
||||
select -assert-count 1 t:DFFNCE
|
||||
select -assert-count 1 t:DFFNE
|
||||
select -assert-count 1 t:DFFNP
|
||||
select -assert-count 1 t:DFFNPE
|
||||
select -assert-count 1 t:DFFNR
|
||||
select -assert-count 1 t:DFFNRE
|
||||
select -assert-count 1 t:DFFNS
|
||||
select -assert-count 1 t:DFFNSE
|
||||
select -assert-count 1 t:DFFP
|
||||
select -assert-count 1 t:DFFPE
|
||||
select -assert-count 1 t:DFFR
|
||||
select -assert-count 1 t:DFFRE
|
||||
select -assert-count 1 t:DFFS
|
||||
select -assert-count 1 t:DFFSE
|
||||
|
||||
delete
|
||||
design -load read
|
||||
|
||||
# these should synth to a flop with reset
|
||||
chparam -set INIT 1 myDFF myDFFN myDFFE myDFFNE
|
||||
|
||||
# async should give a warning
|
||||
# sync should synth to a mux
|
||||
chparam -set INIT 0 myDFF*S* myDFF*P*
|
||||
chparam -set INIT 1 myDFF*R* myDFF*C*
|
||||
|
||||
proc
|
||||
flatten
|
||||
synth_gowin -run coarse:
|
||||
|
||||
# check the flops mapped as expected
|
||||
select -assert-count 1 t:DFF
|
||||
select -assert-count 1 t:DFFC
|
||||
select -assert-count 1 t:DFFCE
|
||||
select -assert-count 1 t:DFFE
|
||||
select -assert-count 1 t:DFFN
|
||||
select -assert-count 1 t:DFFNC
|
||||
select -assert-count 1 t:DFFNCE
|
||||
select -assert-count 1 t:DFFNE
|
||||
select -assert-count 1 t:DFFNP
|
||||
select -assert-count 1 t:DFFNPE
|
||||
select -assert-count 0 t:DFFNR
|
||||
select -assert-count 0 t:DFFNRE
|
||||
select -assert-count 2 t:DFFNS
|
||||
select -assert-count 2 t:DFFNSE
|
||||
select -assert-count 1 t:DFFP
|
||||
select -assert-count 1 t:DFFPE
|
||||
select -assert-count 0 t:DFFR
|
||||
select -assert-count 0 t:DFFRE
|
||||
select -assert-count 2 t:DFFS
|
||||
select -assert-count 2 t:DFFSE
|
||||
select -assert-count 12 t:LUT2
|
||||
|
||||
# check the expected leftover init values
|
||||
# this would happen if your reset value is not the initial value
|
||||
# which would be weird
|
||||
select -assert-count 8 a:init
|
|
@ -1,3 +1,3 @@
|
|||
../../../yosys -qp "synth_xilinx -top macc2; rename -top macc2_uut" macc.v -o macc_uut.v
|
||||
../../../yosys -qp "synth_xilinx -top macc2; rename -top macc2_uut" -o macc_uut.v macc.v
|
||||
iverilog -o test_macc macc_tb.v macc_uut.v macc.v ../../../techlibs/xilinx/cells_sim.v
|
||||
vvp -N ./test_macc
|
||||
|
|
|
@ -259,29 +259,35 @@ assign o = { 1'b1, 1'bx };
|
|||
assign p = { 1'b1, 1'bx, 1'b0 };
|
||||
endmodule
|
||||
|
||||
module abc9_test029(input clk1, clk2, d, output reg q1, q2);
|
||||
module abc9_test030(input [3:0] d, input en, output reg [3:0] q);
|
||||
always @*
|
||||
if (en)
|
||||
q <= d;
|
||||
endmodule
|
||||
|
||||
module abc9_test031(input clk1, clk2, d, output reg q1, q2);
|
||||
always @(posedge clk1) q1 <= d;
|
||||
always @(negedge clk2) q2 <= q1;
|
||||
endmodule
|
||||
|
||||
module abc9_test030(input clk, d, r, output reg q);
|
||||
module abc9_test032(input clk, d, r, output reg q);
|
||||
always @(posedge clk or posedge r)
|
||||
if (r) q <= 1'b0;
|
||||
else q <= d;
|
||||
endmodule
|
||||
|
||||
module abc9_test031(input clk, d, r, output reg q);
|
||||
module abc9_test033(input clk, d, r, output reg q);
|
||||
always @(negedge clk or posedge r)
|
||||
if (r) q <= 1'b1;
|
||||
else q <= d;
|
||||
endmodule
|
||||
|
||||
module abc9_test033(input clk, d, output reg q1, q2);
|
||||
module abc9_test034(input clk, d, output reg q1, q2);
|
||||
always @(posedge clk) q1 <= d;
|
||||
always @(posedge clk) q2 <= q1;
|
||||
endmodule
|
||||
|
||||
module abc9_test034(input clk, d, output reg [1:0] q);
|
||||
module abc9_test035(input clk, d, output reg [1:0] q);
|
||||
always @(posedge clk) q[0] <= d;
|
||||
always @(negedge clk) q[1] <= q[0];
|
||||
endmodule
|
||||
|
|
|
@ -0,0 +1,99 @@
|
|||
read_verilog << EOT
|
||||
module ibuf ((* iopad_external_pin *) input i, output o); endmodule
|
||||
module obuf (input i, (* iopad_external_pin *) output o); endmodule
|
||||
module obuft (input i, input oe, (* iopad_external_pin *) output o); endmodule
|
||||
module iobuf (input i, input oe, output o, (* iopad_external_pin *) inout io); endmodule
|
||||
|
||||
module a(input i, output o);
|
||||
assign o = i;
|
||||
endmodule
|
||||
|
||||
module b(input i, output o);
|
||||
assign o = i;
|
||||
ibuf b (.i(i), .o(o));
|
||||
endmodule
|
||||
|
||||
module c(input i, output o);
|
||||
obuf b (.i(i), .o(o));
|
||||
endmodule
|
||||
|
||||
module d(input i, oe, output o, o2, o3);
|
||||
assign o = oe ? i : 1'bz;
|
||||
assign o2 = o;
|
||||
assign o3 = ~o;
|
||||
endmodule
|
||||
|
||||
module e(input i, oe, inout io, output o2, o3);
|
||||
assign io = oe ? i : 1'bz;
|
||||
assign o2 = io;
|
||||
assign o3 = ~io;
|
||||
endmodule
|
||||
EOT
|
||||
|
||||
opt_clean
|
||||
tribuf
|
||||
simplemap
|
||||
iopadmap -bits -inpad ibuf o:i -outpad obuf i:o -toutpad obuft oe:i:o -tinoutpad iobuf oe:o:i:io
|
||||
opt_clean
|
||||
|
||||
select -assert-count 1 a/t:ibuf
|
||||
select -assert-count 1 a/t:obuf
|
||||
select -set ib w:i %a %co a/t:ibuf %i
|
||||
select -set ob w:o %a %ci a/t:obuf %i
|
||||
select -assert-count 1 @ib
|
||||
select -assert-count 1 @ob
|
||||
select -assert-count 1 @ib %co %co @ob %i
|
||||
|
||||
select -assert-count 1 b/t:ibuf
|
||||
select -assert-count 1 b/t:obuf
|
||||
select -set ib w:i %a %co b/t:ibuf %i
|
||||
select -set ob w:o %a %ci b/t:obuf %i
|
||||
select -assert-count 1 @ib
|
||||
select -assert-count 1 @ob
|
||||
select -assert-count 1 @ib %co %co @ob %i
|
||||
|
||||
select -assert-count 1 c/t:ibuf
|
||||
select -assert-count 1 c/t:obuf
|
||||
select -set ib w:i %a %co c/t:ibuf %i
|
||||
select -set ob w:o %a %ci c/t:obuf %i
|
||||
select -assert-count 1 @ib
|
||||
select -assert-count 1 @ob
|
||||
select -assert-count 1 @ib %co %co @ob %i
|
||||
|
||||
select -assert-count 2 d/t:ibuf
|
||||
select -assert-count 2 d/t:obuf
|
||||
select -assert-count 1 d/t:obuft
|
||||
select -set ib w:i %a %co d/t:ibuf %i
|
||||
select -set oeb w:oe %a %co d/t:ibuf %i
|
||||
select -set ob w:o %a %ci d/t:obuft %i
|
||||
select -set o2b w:o2 %a %ci d/t:obuf %i
|
||||
select -set o3b w:o3 %a %ci d/t:obuf %i
|
||||
select -assert-count 1 @ib
|
||||
select -assert-count 1 @oeb
|
||||
select -assert-count 1 @ob
|
||||
select -assert-count 1 @o2b
|
||||
select -assert-count 1 @o3b
|
||||
select -assert-count 1 @ib %co %co @ob %i
|
||||
select -assert-count 1 @oeb %co %co @ob %i
|
||||
select -assert-count 1 @ib %co %co @o2b %i
|
||||
select -assert-count 1 @ib %co %co t:$_NOT_ %i
|
||||
select -assert-count 1 @o3b %ci %ci t:$_NOT_ %i
|
||||
|
||||
select -assert-count 2 e/t:ibuf
|
||||
select -assert-count 2 e/t:obuf
|
||||
select -assert-count 1 e/t:iobuf
|
||||
select -set ib w:i %a %co e/t:ibuf %i
|
||||
select -set oeb w:oe %a %co e/t:ibuf %i
|
||||
select -set iob w:io %a %ci e/t:iobuf %i
|
||||
select -set o2b w:o2 %a %ci e/t:obuf %i
|
||||
select -set o3b w:o3 %a %ci e/t:obuf %i
|
||||
select -assert-count 1 @ib
|
||||
select -assert-count 1 @oeb
|
||||
select -assert-count 1 @iob
|
||||
select -assert-count 1 @o2b
|
||||
select -assert-count 1 @o3b
|
||||
select -assert-count 1 @ib %co %co @iob %i
|
||||
select -assert-count 1 @oeb %co %co @iob %i
|
||||
select -assert-count 1 @iob %co %co @o2b %i
|
||||
select -assert-count 1 @iob %co %co t:$_NOT_ %i
|
||||
select -assert-count 1 @o3b %ci %ci t:$_NOT_ %i
|
Loading…
Reference in New Issue