yosys/passes/sat/qbfsat.cc

804 lines
31 KiB
C++
Raw Normal View History

2020-03-23 02:42:48 -05:00
/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2020 Alberto Gonzalez <boqwxp@airmail.cc>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/yosys.h"
2020-03-23 02:42:48 -05:00
#include "kernel/celltypes.h"
#include "kernel/consteval.h"
2020-03-23 02:42:48 -05:00
#include "kernel/log.h"
#include "kernel/rtlil.h"
#include "kernel/register.h"
#include <algorithm>
#include <numeric>
2020-03-23 02:42:48 -05:00
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
static inline unsigned int difference(unsigned int a, unsigned int b) {
if (a < b)
return b - a;
else
return a - b;
}
2020-03-23 02:42:48 -05:00
struct QbfSolutionType {
std::vector<std::string> stdout_lines;
dict<pool<std::string>, std::string> hole_to_value;
2020-03-23 02:42:48 -05:00
bool sat;
bool unknown; //true if neither 'sat' nor 'unsat'
QbfSolutionType() : sat(false), unknown(true) {}
2020-03-23 02:42:48 -05:00
};
struct QbfSolveOptions {
bool specialize, specialize_from_file, write_solution, nocleanup, dump_final_smt2, assume_outputs, assume_neg;
bool nooptimize, nobisection;
bool sat, unsat, show_smtbmc;
2020-05-01 03:12:23 -05:00
enum Solver{Z3, Yices, CVC4} solver;
int timeout;
std::string specialize_soln_file;
std::string write_soln_soln_file;
std::string dump_final_smt2_file;
2020-03-25 18:37:49 -05:00
size_t argidx;
QbfSolveOptions() : specialize(false), specialize_from_file(false), write_solution(false),
nocleanup(false), dump_final_smt2(false), assume_outputs(false), assume_neg(false),
nooptimize(false), nobisection(false), sat(false), unsat(false), show_smtbmc(false),
solver(Yices), timeout(0), argidx(0) {};
};
std::string get_solver_name(const QbfSolveOptions &opt) {
if (opt.solver == opt.Solver::Z3)
return "z3";
else if (opt.solver == opt.Solver::Yices)
return "yices";
2020-05-01 03:12:23 -05:00
else if (opt.solver == opt.Solver::CVC4)
return "cvc4";
else
log_cmd_error("unknown solver specified.\n");
return "";
}
void recover_solution(QbfSolutionType &sol) {
YS_REGEX_TYPE sat_regex = YS_REGEX_COMPILE("Status: PASSED");
YS_REGEX_TYPE unsat_regex = YS_REGEX_COMPILE("Solver Error.*model is not available");
YS_REGEX_TYPE unsat_regex2 = YS_REGEX_COMPILE("Status: FAILED");
YS_REGEX_TYPE timeout_regex = YS_REGEX_COMPILE("No solution found! \\(timeout\\)");
YS_REGEX_TYPE timeout_regex2 = YS_REGEX_COMPILE("No solution found! \\(interrupted\\)");
YS_REGEX_TYPE unknown_regex = YS_REGEX_COMPILE("No solution found! \\(unknown\\)");
YS_REGEX_TYPE unknown_regex2 = YS_REGEX_COMPILE("Unexpected EOF response from solver");
YS_REGEX_TYPE memout_regex = YS_REGEX_COMPILE("Solver Error:.*error \"out of memory\"");
YS_REGEX_TYPE hole_value_regex = YS_REGEX_COMPILE_WITH_SUBS("Value for anyconst in [a-zA-Z0-9_]* \\(([^:]*:[^\\)]*)\\): (.*)");
#ifndef NDEBUG
YS_REGEX_TYPE hole_loc_regex = YS_REGEX_COMPILE("[^:]*:[0-9]+.[0-9]+-[0-9]+.[0-9]+");
YS_REGEX_TYPE hole_val_regex = YS_REGEX_COMPILE("[0-9]+");
#endif
YS_REGEX_MATCH_TYPE m;
bool sat_regex_found = false;
bool unsat_regex_found = false;
2020-04-11 01:53:59 -05:00
dict<std::string, bool> hole_value_recovered;
for (const std::string &x : sol.stdout_lines) {
if(YS_REGEX_NS::regex_search(x, m, hole_value_regex)) {
std::string loc = m[1].str();
std::string val = m[2].str();
#ifndef NDEBUG
log_assert(YS_REGEX_NS::regex_search(loc, hole_loc_regex));
log_assert(YS_REGEX_NS::regex_search(val, hole_val_regex));
#endif
auto locs = split_tokens(loc, "|");
pool<std::string> loc_pool(locs.begin(), locs.end());
sol.hole_to_value[loc_pool] = val;
}
else if (YS_REGEX_NS::regex_search(x, sat_regex)) {
sat_regex_found = true;
sol.sat = true;
sol.unknown = false;
}
else if (YS_REGEX_NS::regex_search(x, unsat_regex)) {
unsat_regex_found = true;
sol.sat = false;
sol.unknown = false;
}
else if (YS_REGEX_NS::regex_search(x, memout_regex)) {
sol.unknown = true;
log_warning("solver ran out of memory\n");
}
else if (YS_REGEX_NS::regex_search(x, timeout_regex)) {
sol.unknown = true;
log_warning("solver timed out\n");
}
else if (YS_REGEX_NS::regex_search(x, timeout_regex2)) {
sol.unknown = true;
log_warning("solver timed out\n");
}
else if (YS_REGEX_NS::regex_search(x, unknown_regex)) {
sol.unknown = true;
log_warning("solver returned \"unknown\"\n");
}
else if (YS_REGEX_NS::regex_search(x, unsat_regex2)) {
unsat_regex_found = true;
sol.sat = false;
sol.unknown = false;
}
else if (YS_REGEX_NS::regex_search(x, unknown_regex2)) {
sol.unknown = true;
}
}
#ifndef NDEBUG
log_assert(!sol.unknown && sol.sat? sat_regex_found : true);
log_assert(!sol.unknown && !sol.sat? unsat_regex_found : true);
#endif
}
2020-03-23 02:42:48 -05:00
dict<std::pair<pool<std::string>, int>, RTLIL::SigBit> get_hole_loc_idx_sigbit_map(RTLIL::Module *module, const QbfSolutionType &sol) {
dict<std::pair<pool<std::string>, int>, RTLIL::SigBit> hole_loc_idx_to_sigbit;
for (auto cell : module->cells()) {
pool<std::string> cell_src = cell->get_strpool_attribute(ID::src);
auto pos = sol.hole_to_value.find(cell_src);
if (pos != sol.hole_to_value.end() && cell->type.in("$anyconst", "$anyseq")) {
RTLIL::SigSpec port_y = cell->getPort(ID::Y);
for (int i = GetSize(port_y) - 1; i >= 0; --i) {
hole_loc_idx_to_sigbit[std::make_pair(pos->first, i)] = port_y[i];
}
}
}
return hole_loc_idx_to_sigbit;
}
pool<std::string> validate_design_and_get_inputs(RTLIL::Module *module, const QbfSolveOptions &opt) {
bool found_input = false;
bool found_hole = false;
bool found_1bit_output = false;
bool found_assert_assume = false;
pool<std::string> input_wires;
for (auto wire : module->wires()) {
if (wire->port_input) {
found_input = true;
input_wires.insert(wire->name.str());
}
if (wire->port_output && wire->width == 1)
found_1bit_output = true;
}
for (auto cell : module->cells()) {
if (cell->type == "$allconst")
found_input = true;
if (cell->type == "$anyconst")
found_hole = true;
if (cell->type.in("$assert", "$assume"))
found_assert_assume = true;
}
if (!found_input)
log_cmd_error("Can't perform QBF-SAT on a miter with no inputs!\n");
if (!found_hole)
log_cmd_error("Did not find any existentially-quantified variables. Use 'sat' instead.\n");
if (!found_1bit_output && !found_assert_assume)
log_cmd_error("Did not find any single-bit outputs or $assert/$assume cells. Is this a miter circuit?\n");
if (!found_assert_assume && !opt.assume_outputs)
log_cmd_error("Did not find any $assert/$assume cells. Single-bit outputs were found, but `-assume-outputs` was not specified.\n");
return input_wires;
}
void write_solution(RTLIL::Module *module, const QbfSolutionType &sol, const std::string &file) {
std::ofstream fout(file.c_str());
if (!fout)
log_cmd_error("could not open solution file for writing.\n");
//There is a question here: How exactly shall we identify holes?
//There are at least two reasonable options:
//1. By the source location of the $anyconst cells
//2. By the name(s) of the wire(s) connected to each SigBit of the $anyconst cell->getPort(ID::Y) SigSpec.
//
//Option 1 has the benefit of being very precise. There is very limited potential for confusion, as long
//as the source attribute has been set. However, if the source attribute is not set, this won't work.
//More importantly, we want to have the ability to port hole assignments to other modules with compatible
//hole names and widths. Obviously in those cases source locations of the $anyconst cells will not match.
//
//Option 2 has the benefits previously described, but wire names can be changed automatically by
//optimization or techmapping passes, especially when (ex/im)porting from BLIF for optimization with ABC.
//
//The approach taken here is to allow both options. We write the assignment information for each bit of
//the solution on a separate line. Each line is of one of two forms:
//
//location bit name = value
//location bit name [offset] = value
//
//where '[', ']', and '=' are literal symbols, "location" is the $anyconst cell source location attribute,
//"bit" is the index of the $anyconst cell, "name" is the `wire->name` field of the SigBit corresponding
//to the current bit of the $anyconst cell->getPort(ID::Y), "offset" is the `offset` field of that same
//SigBit, and "value", which is either '0' or '1', represents the assignment for that bit.
dict<std::pair<pool<std::string>, int>, RTLIL::SigBit> hole_loc_idx_to_sigbit = get_hole_loc_idx_sigbit_map(module, sol);
for (auto &x : sol.hole_to_value) {
std::string src_as_str = std::accumulate(x.first.begin(), x.first.end(), std::string(), [](const std::string &a, const std::string &b){return a + "|" + b;});
for (auto i = 0; i < GetSize(x.second); ++i)
fout << src_as_str.c_str() << " " << i << " " << log_signal(hole_loc_idx_to_sigbit[std::make_pair(x.first, i)]) << " = " << x.second[GetSize(x.second) - 1 - i] << std::endl;
}
}
void specialize_from_file(RTLIL::Module *module, const std::string &file) {
YS_REGEX_TYPE hole_bit_assn_regex = YS_REGEX_COMPILE_WITH_SUBS("^(.*) ([0-9]+) ([^ ]*) \\[([0-9]+)] = ([01])$");
YS_REGEX_TYPE hole_assn_regex = YS_REGEX_COMPILE_WITH_SUBS("^(.*) ([0-9]+) ([^ ]*) = ([01])$"); //if no index specified
YS_REGEX_MATCH_TYPE bit_m, m;
//(hole_loc, hole_bit, hole_name, hole_offset) -> (value, found)
dict<pool<std::string>, RTLIL::Cell*> anyconst_loc_to_cell;
dict<RTLIL::SigBit, RTLIL::State> hole_assignments;
for (auto cell : module->cells())
if (cell->type == "$anyconst")
anyconst_loc_to_cell[cell->get_strpool_attribute(ID::src)] = cell;
std::ifstream fin(file.c_str());
if (!fin)
log_cmd_error("could not read solution file.\n");
std::string buf;
while (std::getline(fin, buf)) {
std::string hole_loc;
unsigned int hole_bit;
std::string hole_name;
unsigned int hole_offset;
RTLIL::State hole_value;
if (!YS_REGEX_NS::regex_search(buf, bit_m, hole_bit_assn_regex)) {
if (!YS_REGEX_NS::regex_search(buf, m, hole_assn_regex)) {
log_cmd_error("solution file is not formatted correctly: \"%s\"\n", buf.c_str());
} else {
hole_loc = m[1].str();
hole_bit = atoi(m[2].str().c_str());
hole_name = m[3].str();
hole_offset = 0;
hole_value = atoi(m[4].str().c_str()) == 1? RTLIL::State::S1 : RTLIL::State::S0;
}
} else {
hole_loc = bit_m[1].str();
hole_bit = atoi(bit_m[2].str().c_str());
hole_name = bit_m[3].str();
hole_offset = atoi(bit_m[4].str().c_str());
hole_value = atoi(bit_m[5].str().c_str()) == 1? RTLIL::State::S1 : RTLIL::State::S0;
}
//We have two options to identify holes. First, try to match wire names. If we can't find a matching wire,
//then try to find a cell with a matching location.
RTLIL::SigBit hole_sigbit;
if (module->wire(hole_name) != nullptr) {
RTLIL::Wire *hole_wire = module->wire(hole_name);
hole_sigbit = RTLIL::SigSpec(hole_wire)[hole_offset];
} else {
auto locs = split_tokens(hole_loc, "|");
pool<std::string> hole_loc_pool(locs.begin(), locs.end());
auto hole_cell_it = anyconst_loc_to_cell.find(hole_loc_pool);
if (hole_cell_it == anyconst_loc_to_cell.end())
YS_DEBUGTRAP;
//log_cmd_error("cannot find matching wire name or $anyconst cell location for hole spec \"%s\"\n", buf.c_str());
RTLIL::Cell *hole_cell = hole_cell_it->second;
hole_sigbit = hole_cell->getPort(ID::Y)[hole_bit];
}
hole_assignments[hole_sigbit] = hole_value;
}
for (auto &it : anyconst_loc_to_cell)
module->remove(it.second);
for (auto &it : hole_assignments) {
RTLIL::SigSpec lhs(it.first);
RTLIL::SigSpec rhs(it.second);
log("Specializing %s from file with %s = %d.\n", module->name.c_str(), log_signal(it.first), it.second == RTLIL::State::S1? 1 : 0);
module->connect(lhs, rhs);
}
}
void specialize(RTLIL::Module *module, const QbfSolutionType &sol, bool quiet = false) {
dict<std::pair<pool<std::string>, int>, RTLIL::SigBit> hole_loc_idx_to_sigbit = get_hole_loc_idx_sigbit_map(module, sol);
2020-04-11 04:41:09 -05:00
pool<RTLIL::Cell *> anyconsts_to_remove;
for (auto cell : module->cells())
if (cell->type == "$anyconst")
if (hole_loc_idx_to_sigbit.find(std::make_pair(cell->get_strpool_attribute(ID::src), 0)) != hole_loc_idx_to_sigbit.end())
anyconsts_to_remove.insert(cell);
for (auto cell : anyconsts_to_remove)
module->remove(cell);
for (auto &it : sol.hole_to_value) {
pool<std::string> hole_loc = it.first;
std::string hole_value = it.second;
for (unsigned int i = 0; i < hole_value.size(); ++i) {
int bit_idx = GetSize(hole_value) - 1 - i;
auto it = hole_loc_idx_to_sigbit.find(std::make_pair(hole_loc, i));
log_assert(it != hole_loc_idx_to_sigbit.end());
RTLIL::SigBit hole_sigbit = it->second;
log_assert(hole_sigbit.wire != nullptr);
log_assert(hole_value[bit_idx] == '0' || hole_value[bit_idx] == '1');
RTLIL::SigSpec lhs(hole_sigbit.wire, hole_sigbit.offset, 1);
RTLIL::State hole_bit_val = hole_value[bit_idx] == '1'? RTLIL::State::S1 : RTLIL::State::S0;
if (!quiet)
log("Specializing %s with %s = %d.\n", module->name.c_str(), log_signal(hole_sigbit), hole_bit_val == RTLIL::State::S0? 0 : 1)
;
module->connect(lhs, hole_bit_val);
}
}
}
void dump_model(RTLIL::Module *module, const QbfSolutionType &sol) {
log("Satisfiable model:\n");
dict<std::pair<pool<std::string>, int>, RTLIL::SigBit> hole_loc_idx_to_sigbit = get_hole_loc_idx_sigbit_map(module, sol);
for (auto &it : sol.hole_to_value) {
pool<std::string> hole_loc = it.first;
std::string hole_value = it.second;
for (unsigned int i = 0; i < hole_value.size(); ++i) {
int bit_idx = GetSize(hole_value) - 1 - i;
auto it = hole_loc_idx_to_sigbit.find(std::make_pair(hole_loc, i));
log_assert(it != hole_loc_idx_to_sigbit.end());
RTLIL::SigBit hole_sigbit = it->second;
log("\t%s = 1'b%c\n", log_signal(hole_sigbit), hole_value[bit_idx]);
}
}
}
2020-04-11 04:41:09 -05:00
void allconstify_inputs(RTLIL::Module *module, const pool<std::string> &input_wires) {
for (auto &n : input_wires) {
2020-03-25 18:37:49 -05:00
RTLIL::Wire *input = module->wire(n);
#ifndef NDEBUG
2020-03-25 18:37:49 -05:00
log_assert(input != nullptr);
#endif
2020-03-25 18:37:49 -05:00
RTLIL::Cell *allconst = module->addCell("$allconst$" + n, "$allconst");
allconst->setParam(ID(WIDTH), input->width);
allconst->setPort(ID::Y, input);
allconst->set_src_attribute(input->get_src_attribute());
input->port_input = false;
log("Replaced input %s with $allconst cell.\n", n.c_str());
}
module->fixup_ports();
}
void assume_miter_outputs(RTLIL::Module *module, const QbfSolveOptions &opt) {
std::vector<RTLIL::Wire *> wires_to_assume;
for (auto w : module->wires())
if (w->port_output && w->width == 1)
wires_to_assume.push_back(w);
if (wires_to_assume.size() == 0)
return;
else {
log("Adding $assume cell for output(s): ");
for (auto w : wires_to_assume)
log("\"%s\" ", w->name.c_str());
log("\n");
}
if (opt.assume_neg) {
for (unsigned int i = 0; i < wires_to_assume.size(); ++i) {
RTLIL::SigSpec n_wire = module->LogicNot(wires_to_assume[i]->name.str() + "__n__qbfsat", wires_to_assume[i], false, wires_to_assume[i]->get_src_attribute());
wires_to_assume[i] = n_wire.as_wire();
}
}
for (auto i = 0; wires_to_assume.size() > 1; ++i) {
std::vector<RTLIL::Wire *> buf;
for (auto j = 0; j + 1 < GetSize(wires_to_assume); j += 2) {
std::stringstream strstr; strstr << i << "_" << j;
RTLIL::Wire *and_wire = module->addWire("\\_qbfsat_and_" + strstr.str(), 1);
module->addLogicAnd("$_qbfsat_and_" + strstr.str(), wires_to_assume[j], wires_to_assume[j+1], and_wire, false, wires_to_assume[j]->get_src_attribute());
buf.push_back(and_wire);
}
if (wires_to_assume.size() % 2 == 1)
buf.push_back(wires_to_assume[wires_to_assume.size() - 1]);
wires_to_assume.swap(buf);
}
#ifndef NDEBUG
log_assert(wires_to_assume.size() == 1);
#endif
module->addAssume("$assume_qbfsat_miter_outputs", wires_to_assume[0], RTLIL::S1);
}
QbfSolutionType call_qbf_solver(RTLIL::Module *mod, const QbfSolveOptions &opt, const std::string &tempdir_name, const bool quiet = false, const int iter_num = 0) {
//Execute and capture stdout from `yosys-smtbmc -s z3 -t 1 -g --binary [--dump-smt2 <file>]`
2020-03-23 02:42:48 -05:00
QbfSolutionType ret;
const std::string yosys_smtbmc_exe = proc_self_dirname() + "yosys-smtbmc";
const std::string smt2_command = "write_smt2 -stbv -wires " + tempdir_name + "/problem" + (iter_num != 0? stringf("%d", iter_num) : "") + ".smt2";
const std::string smtbmc_warning = "z3: WARNING:";
const std::string smtbmc_cmd = yosys_smtbmc_exe + " -s " + (get_solver_name(opt)) + (opt.timeout != 0? stringf(" --timeout %d", opt.timeout) : "") + " -t 1 -g --binary " + (opt.dump_final_smt2? "--dump-smt2 " + opt.dump_final_smt2_file + " " : "") + tempdir_name + "/problem" + (iter_num != 0? stringf("%d", iter_num) : "") + ".smt2 2>&1";
Pass::call(mod->design, smt2_command);
auto process_line = [&ret, &smtbmc_warning, &opt, &quiet](const std::string &line) {
ret.stdout_lines.push_back(line.substr(0, line.size()-1)); //don't include trailing newline
auto warning_pos = line.find(smtbmc_warning);
if (warning_pos != std::string::npos)
log_warning("%s", line.substr(warning_pos + smtbmc_warning.size() + 1).c_str());
else
if (opt.show_smtbmc && !quiet)
log("smtbmc output: %s", line.c_str());
};
log_header(mod->design, "Solving QBF-SAT problem.\n");
if (!quiet) log("Launching \"%s\".\n", smtbmc_cmd.c_str());
run_command(smtbmc_cmd, process_line);
2020-03-23 02:42:48 -05:00
recover_solution(ret);
2020-03-23 02:42:48 -05:00
return ret;
}
QbfSolutionType qbf_solve(RTLIL::Module *mod, const QbfSolveOptions &opt) {
QbfSolutionType ret, best_soln;
const std::string tempdir_name = make_temp_dir("/tmp/yosys-z3-XXXXXX");
RTLIL::Module *module = mod;
RTLIL::Design *design = module->design;
std::string module_name = module->name.str();
RTLIL::Wire *wire_to_optimize = nullptr;
RTLIL::IdString wire_to_optimize_name;
bool maximize = false;
log_assert(module->design != nullptr);
Pass::call(design, "design -push-copy");
//Replace input wires with wires assigned $allconst cells:
pool<std::string> input_wires = validate_design_and_get_inputs(module, opt);
allconstify_inputs(module, input_wires);
if (opt.assume_outputs)
assume_miter_outputs(module, opt);
//Find the wire to be optimized, if any:
for (auto wire : module->wires())
if (wire->get_bool_attribute("\\maximize") || wire->get_bool_attribute("\\minimize"))
wire_to_optimize = wire;
if (wire_to_optimize != nullptr) {
wire_to_optimize_name = wire_to_optimize->name;
maximize = wire_to_optimize->get_bool_attribute("\\maximize");
2020-03-25 18:37:49 -05:00
}
if (opt.nobisection || opt.nooptimize || wire_to_optimize == nullptr) {
if (wire_to_optimize != nullptr && opt.nooptimize) {
wire_to_optimize->set_bool_attribute("\\maximize", false);
wire_to_optimize->set_bool_attribute("\\minimize", false);
}
ret = call_qbf_solver(module, opt, tempdir_name, false, 0);
} else {
//Do the iterated bisection method:
unsigned int iter_num = 1;
unsigned int success = 0;
unsigned int failure = 0;
unsigned int cur_thresh = 0;
log_assert(wire_to_optimize != nullptr);
log("%s wire \"%s\".\n", (maximize? "Maximizing" : "Minimizing"), log_signal(wire_to_optimize));
//If maximizing, grow until we get a failure. Then bisect success and failure.
while (failure == 0 || difference(success, failure) > 1) {
Pass::call(design, "design -push-copy");
log_header(design, "Preparing QBF-SAT problem.\n");
if (cur_thresh != 0) {
//Add thresholding logic (but not on the initial run when we don't have a sense of where to start):
RTLIL::SigSpec comparator = maximize? module->Ge(NEW_ID, module->wire(wire_to_optimize_name), RTLIL::Const(cur_thresh), false)
: module->Le(NEW_ID, module->wire(wire_to_optimize_name), RTLIL::Const(cur_thresh), false);
module->addAssume(wire_to_optimize_name.str() + "__threshold", comparator, RTLIL::Const(1, 1));
log("Trying to solve with %s %s %d.\n", wire_to_optimize_name.c_str(), (maximize? ">=" : "<="), cur_thresh);
}
ret = call_qbf_solver(module, opt, tempdir_name, false, iter_num);
Pass::call(design, "design -pop");
module = design->module(module_name);
if (!ret.unknown && ret.sat) {
Pass::call(design, "design -push-copy");
specialize(module, ret, true);
RTLIL::SigSpec wire, value, undef;
RTLIL::SigSpec::parse_sel(wire, design, module, wire_to_optimize_name.str());
ConstEval ce(module);
value = wire;
if (!ce.eval(value, undef))
log_cmd_error("Failed to evaluate signal %s: Missing value for %s.\n", log_signal(wire), log_signal(undef));
log_assert(value.is_fully_const());
success = value.as_const().as_int();
best_soln = ret;
log("Problem is satisfiable with %s = %d.\n", wire_to_optimize_name.c_str(), success);
Pass::call(design, "design -pop");
module = design->module(module_name);
//sometimes this happens if we get an 'unknown' or timeout
if (!maximize && success < failure)
break;
else if (maximize && failure != 0 && success > failure)
break;
} else {
//Treat 'unknown' as UNSAT
failure = cur_thresh;
if (failure == 0) {
log("Problem is NOT satisfiable.\n");
break;
}
else
log("Problem is NOT satisfiable with %s %s %d.\n", wire_to_optimize_name.c_str(), (maximize? ">=" : "<="), failure);
}
iter_num++;
if (maximize && failure == 0 && success == 0)
cur_thresh = 2;
else if (maximize && failure == 0)
cur_thresh = 2 * success; //growth
else //if (!maximize || failure != 0)
cur_thresh = (success + failure) / 2; //bisection
}
if (success != 0 || failure != 0) {
log("Wire %s is %s at %d.\n", wire_to_optimize_name.c_str(), (maximize? "maximized" : "minimized"), success);
ret = best_soln;
}
2020-03-25 18:37:49 -05:00
}
if(!opt.nocleanup)
remove_directory(tempdir_name);
Pass::call(design, "design -pop");
return ret;
2020-03-25 18:37:49 -05:00
}
QbfSolveOptions parse_args(const std::vector<std::string> &args) {
QbfSolveOptions opt;
for (opt.argidx = 1; opt.argidx < args.size(); opt.argidx++) {
if (args[opt.argidx] == "-nocleanup") {
2020-03-25 18:37:49 -05:00
opt.nocleanup = true;
continue;
}
else if (args[opt.argidx] == "-specialize") {
opt.specialize = true;
continue;
}
else if (args[opt.argidx] == "-assume-outputs") {
opt.assume_outputs = true;
continue;
}
else if (args[opt.argidx] == "-assume-negative-polarity") {
opt.assume_neg = true;
continue;
}
else if (args[opt.argidx] == "-nooptimize") {
opt.nooptimize = true;
continue;
}
else if (args[opt.argidx] == "-nobisection") {
opt.nobisection = true;
continue;
}
else if (args[opt.argidx] == "-solver") {
if (args.size() <= opt.argidx + 1)
log_cmd_error("solver not specified.\n");
else {
if (args[opt.argidx+1] == "z3")
opt.solver = opt.Solver::Z3;
else if (args[opt.argidx+1] == "yices")
opt.solver = opt.Solver::Yices;
2020-05-01 03:12:23 -05:00
else if (args[opt.argidx+1] == "cvc4")
opt.solver = opt.Solver::CVC4;
else
log_cmd_error("Unknown solver \"%s\".\n", args[opt.argidx+1].c_str());
opt.argidx++;
}
continue;
}
else if (args[opt.argidx] == "-timeout") {
if (args.size() <= opt.argidx + 1)
log_cmd_error("timeout not specified.\n");
else {
int timeout = atoi(args[opt.argidx+1].c_str());
if (timeout > 0)
opt.timeout = timeout;
else
log_cmd_error("timeout must be greater than 0.\n");
opt.argidx++;
}
continue;
}
else if (args[opt.argidx] == "-sat") {
opt.sat = true;
continue;
}
else if (args[opt.argidx] == "-unsat") {
opt.unsat = true;
continue;
}
else if (args[opt.argidx] == "-show-smtbmc") {
opt.show_smtbmc = true;
continue;
}
2020-03-25 18:37:49 -05:00
else if (args[opt.argidx] == "-dump-final-smt2") {
opt.dump_final_smt2 = true;
if (args.size() <= opt.argidx + 1)
log_cmd_error("smt2 file not specified.\n");
else
opt.dump_final_smt2_file = args[++opt.argidx];
continue;
}
else if (args[opt.argidx] == "-specialize-from-file") {
opt.specialize_from_file = true;
if (args.size() <= opt.argidx + 1)
log_cmd_error("solution file not specified.\n");
else
opt.specialize_soln_file = args[++opt.argidx];
continue;
}
else if (args[opt.argidx] == "-write-solution") {
opt.write_solution = true;
if (args.size() <= opt.argidx + 1)
log_cmd_error("solution file not specified.\n");
else
opt.write_soln_soln_file = args[++opt.argidx];
continue;
}
break;
}
return opt;
}
2020-03-23 02:42:48 -05:00
void print_proof_failed()
{
log("\n");
log(" ______ ___ ___ _ _ _ _ \n");
log(" (_____ \\ / __) / __) (_) | | | |\n");
log(" _____) )___ ___ ___ _| |__ _| |__ _____ _| | _____ __| | |\n");
log(" | ____/ ___) _ \\ / _ (_ __) (_ __|____ | | || ___ |/ _ |_|\n");
log(" | | | | | |_| | |_| || | | | / ___ | | || ____( (_| |_ \n");
log(" |_| |_| \\___/ \\___/ |_| |_| \\_____|_|\\_)_____)\\____|_|\n");
log("\n");
}
void print_qed()
{
log("\n");
log(" /$$$$$$ /$$$$$$$$ /$$$$$$$ \n");
log(" /$$__ $$ | $$_____/ | $$__ $$ \n");
log(" | $$ \\ $$ | $$ | $$ \\ $$ \n");
log(" | $$ | $$ | $$$$$ | $$ | $$ \n");
log(" | $$ | $$ | $$__/ | $$ | $$ \n");
log(" | $$/$$ $$ | $$ | $$ | $$ \n");
log(" | $$$$$$/ /$$| $$$$$$$$ /$$| $$$$$$$//$$\n");
log(" \\____ $$$|__/|________/|__/|_______/|__/\n");
log(" \\__/ \n");
log("\n");
}
struct QbfSatPass : public Pass {
QbfSatPass() : Pass("qbfsat", "solve a 2QBF-SAT problem in the circuit") { }
2020-06-18 18:34:52 -05:00
void help() override
2020-03-23 02:42:48 -05:00
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" qbfsat [options] [selection]\n");
log("\n");
log("This command solves an \"exists-forall\" 2QBF-SAT problem defined over the currently\n");
log("selected module. Existentially-quantified variables are declared by assigning a wire\n");
log("\"$anyconst\". Universally-quantified variables may be explicitly declared by assigning\n");
log("a wire \"$allconst\", but module inputs will be treated as universally-quantified\n");
log("variables by default.\n");
2020-03-23 02:42:48 -05:00
log("\n");
log(" -nocleanup\n");
log(" Do not delete temporary files and directories. Useful for debugging.\n");
log("\n");
log(" -dump-final-smt2 <file>\n");
log(" Pass the --dump-smt2 option to yosys-smtbmc.\n");
log("\n");
log(" -assume-outputs\n");
log(" Add an \"$assume\" cell for the conjunction of all one-bit module output wires.\n");
log("\n");
log(" -assume-negative-polarity\n");
log(" When adding $assume cells for one-bit module output wires, assume they are\n");
log(" negative polarity signals and should always be low, for example like the\n");
log(" miters created with the `miter` command.\n");
log("\n");
log(" -nooptimize\n");
log(" Ignore \"\\minimize\" and \"\\maximize\" attributes, do not emit \"(maximize)\" or\n");
log(" \"(minimize)\" in the SMT-LIBv2, and generally make no attempt to optimize anything.\n");
log("\n");
log(" -nobisection\n");
log(" If a wire is marked with the \"\\minimize\" or \"\\maximize\" attribute, do not\n");
log(" attempt to optimize that value with the default iterated solving and threshold\n");
log(" bisection approach. Instead, have yosys-smtbmc emit a \"(minimize)\" or \"(maximize)\"\n");
log(" command in the SMT-LIBv2 output and hope that the solver supports optimizing\n");
log(" quantified bitvector problems.\n");
log("\n");
log(" -solver <solver>\n");
2020-05-01 03:12:23 -05:00
log(" Use a particular solver. Choose one of: \"z3\", \"yices\", and \"cvc4\".\n");
log("\n");
log(" -timeout <value>\n");
log(" Set the per-iteration timeout in seconds.\n");
log("\n");
log(" -sat\n");
log(" Generate an error if the solver does not return \"sat\".\n");
log("\n");
log(" -unsat\n");
log(" Generate an error if the solver does not return \"unsat\".\n");
log("\n");
log(" -show-smtbmc\n");
log(" Print the output from yosys-smtbmc.\n");
log("\n");
2020-03-23 02:42:48 -05:00
log(" -specialize\n");
log(" If the problem is satisfiable, replace each \"$anyconst\" cell with its\n");
log(" corresponding constant value from the model produced by the solver.\n");
2020-03-23 02:42:48 -05:00
log("\n");
log(" -specialize-from-file <solution file>\n");
log(" Do not run the solver, but instead only attempt to replace each \"$anyconst\"\n");
log(" cell in the current module with a constant value provided by the specified file.\n");
2020-03-23 02:42:48 -05:00
log("\n");
log(" -write-solution <solution file>\n");
log(" If the problem is satisfiable, write the corresponding constant value for each\n");
log(" \"$anyconst\" cell from the model produced by the solver to the specified file.");
2020-03-23 02:42:48 -05:00
log("\n");
log("\n");
}
2020-06-18 18:34:52 -05:00
void execute(std::vector<std::string> args, RTLIL::Design *design) override
2020-03-23 02:42:48 -05:00
{
log_header(design, "Executing QBFSAT pass (solving QBF-SAT problems in the circuit).\n");
2020-03-25 18:37:49 -05:00
QbfSolveOptions opt = parse_args(args);
extra_args(args, opt.argidx, design);
2020-03-23 02:42:48 -05:00
RTLIL::Module *module = nullptr;
2020-03-23 02:42:48 -05:00
for (auto mod : design->selected_modules()) {
if (module)
log_cmd_error("Only one module must be selected for the QBF-SAT pass! (selected: %s and %s)\n", log_id(module), log_id(mod));
module = mod;
}
if (module == nullptr)
2020-03-23 02:42:48 -05:00
log_cmd_error("Can't perform QBF-SAT on an empty selection!\n");
log_push();
if (!opt.specialize_from_file) {
//Save the design to restore after modiyfing the current module.
std::string module_name = module->name.str();
2020-03-23 02:42:48 -05:00
QbfSolutionType ret = qbf_solve(module, opt);
module = design->module(module_name);
if (ret.unknown) {
if (opt.sat || opt.unsat)
log_cmd_error("expected problem to be %s\n", opt.sat? "SAT" : "UNSAT");
}
else if (ret.sat) {
print_qed();
if (opt.write_solution) {
write_solution(module, ret, opt.write_soln_soln_file);
}
if (opt.specialize) {
specialize(module, ret);
} else {
dump_model(module, ret);
}
if (opt.unsat)
log_cmd_error("expected problem to be UNSAT\n");
}
else {
print_proof_failed();
if (opt.sat)
log_cmd_error("expected problem to be SAT\n");
}
} else
specialize_from_file(module, opt.specialize_soln_file);
log_pop();
2020-03-23 02:42:48 -05:00
}
} QbfSatPass;
PRIVATE_NAMESPACE_END