yosys/docs/source/using_yosys/more_scripting/selections.rst

295 lines
9.6 KiB
ReStructuredText
Raw Normal View History

Selections
2023-08-06 19:58:40 -05:00
----------
.. todo:: copypaste
2023-08-06 19:58:40 -05:00
Most Yosys commands make use of the "selection framework" of Yosys. It can be
used to apply commands only to part of the design. For example:
.. code:: yoscrypt
delete # will delete the whole design, but
delete foobar # will only delete the module foobar.
The ``select`` command can be used to create a selection for subsequent
commands. For example:
.. code:: yoscrypt
select foobar # select the module foobar
delete # delete selected objects
select -clear # reset selection (select whole design)
See :doc:`/cmd/select`
2023-08-06 19:58:40 -05:00
How to make a selection
~~~~~~~~~~~~~~~~~~~~~~~
Selection by object name
^^^^^^^^^^^^^^^^^^^^^^^^
The easiest way to select objects is by object name. This is usually only done
in synthesis scripts that are hand-tailored for a specific design.
.. code:: yoscrypt
select foobar # select module foobar
select foo* # select all modules whose names start with foo
select foo*/bar* # select all objects matching bar* from modules matching foo*
select */clk # select objects named clk from all modules
Module and design context
^^^^^^^^^^^^^^^^^^^^^^^^^
Commands can be executed in *module/* or *design/* context. Until now
all commands have been executed in design context. The ``cd`` command can be
used to switch to module context.
In module context all commands only effect the active module. Objects in the
module are selected without the ``<module_name>/`` prefix. For example:
.. code:: yoscrypt
cd foo # switch to module foo
delete bar # delete object foo/bar
cd mycpu # switch to module mycpu
dump reg_* # print details on all objects whose names start with reg_
cd .. # switch back to design
Note: Most synthesis scripts never switch to module context. But it is a very
powerful tool for interactive design investigation.
Selecting by object property or type
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Special patterns can be used to select by object property or type. For example:
.. code:: yoscrypt
select w:reg_* # select all wires whose names start with reg_
select a:foobar # select all objects with the attribute foobar set
select a:foobar=42 # select all objects with the attribute foobar set to 42
select A:blabla # select all modules with the attribute blabla set
select foo/t:$add # select all $add cells from the module foo
A complete list of this pattern expressions can be found in the command
reference to the ``select`` command.
Combining selection
^^^^^^^^^^^^^^^^^^^
When more than one selection expression is used in one statement, then they are
pushed on a stack. The final elements on the stack are combined into a union:
.. code:: yoscrypt
select t:$dff r:WIDTH>1 # all cells of type $dff and/or with a parameter WIDTH > 1
Special ``%``-commands can be used to combine the elements on the stack:
.. code:: yoscrypt
select t:$dff r:WIDTH>1 %i # all cells of type $dff *AND* with a parameter WIDTH > 1
Examples for ``%``-codes (see :doc:`/cmd/select` for full list):
- ``%u``: union of top two elements on stack -- pop 2, push 1
- ``%d``: difference of top two elements on stack -- pop 2, push 1
- ``%i``: intersection of top two elements on stack -- pop 2, push 1
- ``%n``: inverse of top element on stack -- pop 1, push 1
Expanding selections
^^^^^^^^^^^^^^^^^^^^
Selections of cells and wires can be expanded along connections using
``%``-codes for selecting input cones (``%ci``), output cones (``%co``), or
both (``%x``).
.. code:: yoscrypt
# select all wires that are inputs to $add cells
select t:$add %ci w:* %i
Additional constraints such as port names can be specified.
.. code:: yoscrypt
# select all wires that connect a "Q" output with a "D" input
select c:* %co:+[Q] w:* %i c:* %ci:+[D] w:* %i %i
# select the multiplexer tree that drives the signal 'state'
select state %ci*:+$mux,$pmux[A,B,Y]
See :doc:`/cmd/select` for full documentation of these expressions.
Incremental selection
^^^^^^^^^^^^^^^^^^^^^
Sometimes a selection can most easily be described by a series of add/delete
operations. The commands ``select -add`` and ``select -del`` respectively add or
remove objects from the current selection instead of overwriting it.
.. code:: yoscrypt
select -none # start with an empty selection
select -add reg_* # select a bunch of objects
select -del reg_42 # but not this one
select -add state %ci # and add more stuff
Within a select expression the token ``%`` can be used to push the previous selection
on the stack.
.. code:: yoscrypt
select t:$add t:$sub # select all $add and $sub cells
select % %ci % %d # select only the input wires to those cells
Creating selection variables
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Selections can be stored under a name with the ``select -set <name>``
command. The stored selections can be used in later select expressions
using the syntax ``@<name>``.
.. code:: yoscrypt
select -set cone_a state_a %ci*:-$dff # set @cone_a to the input cone of state_a
select -set cone_b state_b %ci*:-$dff # set @cone_b to the input cone of state_b
select @cone_a @cone_b %i # select the objects that are in both cones
Remember that select expressions can also be used directly as arguments to most
commands. Some commands also except a single select argument to some options.
In those cases selection variables must be used to capture more complex selections.
.. code:: yoscrypt
dump @cone_a @cone_b
select -set cone_ab @cone_a @cone_b %i
show -color red @cone_ab -color magenta @cone_a -color blue @cone_b
Example:
.. literalinclude:: ../../../resources/PRESENTATION_ExAdv/select.v
:language: verilog
:caption: ``docs/resources/PRESENTATION_ExAdv/select.v``
.. literalinclude:: ../../../resources/PRESENTATION_ExAdv/select.ys
:language: yoscrypt
:caption: ``docs/resources/PRESENTATION_ExAdv/select.ys``
.. figure:: ../../../images/res/PRESENTATION_ExAdv/select.*
:class: width-helper
Interactive Design Investigation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Yosys can also be used to investigate designs (or netlists created from other
tools).
- The selection mechanism, especially patterns such as ``%ci`` and ``%co``,
can be used to figure out how parts of the design are connected.
- Commands such as ``submod``, ``expose``, and ``splice`` can be used to
transform the design into an equivalent design that is easier to analyse.
- Commands such as ``eval`` and ``sat`` can be used to investigate the behavior
of the circuit.
- :doc:`/cmd/show`.
- :doc:`/cmd/dump`.
2023-08-07 16:50:36 -05:00
- :doc:`/cmd/add` and :doc:`/cmd/delete` can be used to modify and reorganize a
design dynamically.
2023-08-06 19:58:40 -05:00
2023-08-07 16:50:36 -05:00
Changing design hierarchy
^^^^^^^^^^^^^^^^^^^^^^^^^
Commands such as ``flatten`` and ``submod`` can be used to change the design
hierarchy, i.e. flatten the hierarchy or moving parts of a module to a
submodule. This has applications in synthesis scripts as well as in reverse
engineering and analysis. An example using ``submod`` is shown below for
reorganizing a module in Yosys and checking the resulting circuit.
2023-08-06 19:58:40 -05:00
.. literalinclude:: ../../../resources/PRESENTATION_ExOth/scrambler.v
:language: verilog
:caption: ``docs/resources/PRESENTATION_ExOth/scrambler.v``
.. code:: yoscrypt
read_verilog scrambler.v
hierarchy; proc;;
cd scrambler
submod -name xorshift32 \
xs %c %ci %D %c %ci:+[D] %D \
%ci*:-$dff xs %co %ci %d
.. figure:: ../../../images/res/PRESENTATION_ExOth/scrambler_p01.*
:class: width-helper
.. figure:: ../../../images/res/PRESENTATION_ExOth/scrambler_p02.*
:class: width-helper
2023-08-07 16:50:36 -05:00
Analyzing the resulting circuit with :doc:`/cmd/eval`:
2023-08-06 19:58:40 -05:00
.. code:: text
> cd xorshift32
> rename n2 in
> rename n1 out
> eval -set in 1 -show out
Eval result: \out = 270369.
> eval -set in 270369 -show out
Eval result: \out = 67634689.
> sat -set out 632435482
Signal Name Dec Hex Bin
-------------------- ---------- ---------- -------------------------------------
\in 745495504 2c6f5bd0 00101100011011110101101111010000
\out 632435482 25b2331a 00100101101100100011001100011010
2023-08-07 16:50:36 -05:00
Behavioral changes
^^^^^^^^^^^^^^^^^^
Commands such as ``techmap`` can be used to make behavioral changes to the
design, for example changing asynchronous resets to synchronous resets. This has
applications in design space exploration (evaluation of various architectures
for one circuit).
The following techmap map file replaces all positive-edge async reset flip-flops
with positive-edge sync reset flip-flops. The code is taken from the example
Yosys script for ASIC synthesis of the Amber ARMv2 CPU.
.. code:: verilog
(* techmap_celltype = "$adff" *)
module adff2dff (CLK, ARST, D, Q);
parameter WIDTH = 1;
parameter CLK_POLARITY = 1;
parameter ARST_POLARITY = 1;
parameter ARST_VALUE = 0;
input CLK, ARST;
input [WIDTH-1:0] D;
output reg [WIDTH-1:0] Q;
wire [1023:0] _TECHMAP_DO_ = "proc";
wire _TECHMAP_FAIL_ = !CLK_POLARITY || !ARST_POLARITY;
always @(posedge CLK)
if (ARST)
Q <= ARST_VALUE;
else
<= D;
endmodule
For more on the ``techmap`` command, see the page on
:doc:`/yosys_internals/techmap` or the
:doc:`techmap command reference document</cmd/techmap>`.