yosys/backends/cxxrtl/cxxrtl.cc

1552 lines
48 KiB
C++
Raw Normal View History

/*
* yosys -- Yosys Open SYnthesis Suite
*
* Copyright (C) 2019 whitequark <whitequark@whitequark.org>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "kernel/rtlil.h"
#include "kernel/register.h"
#include "kernel/sigtools.h"
#include "kernel/celltypes.h"
#include "kernel/log.h"
USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN
// [[CITE]]
// Peter Eades; Xuemin Lin; W. F. Smyth, "A Fast Effective Heuristic For The Feedback Arc Set Problem"
// Information Processing Letters, Vol. 47, pp 319-323, 1993
// https://pdfs.semanticscholar.org/c7ed/d9acce96ca357876540e19664eb9d976637f.pdf
// A topological sort (on a cell/wire graph) is always possible in a fully flattened RTLIL design without
// processes or logic loops where every wire has a single driver. Logic loops are illegal in RTLIL and wires
// with multiple drivers can be split by the `splitnets` pass; however, interdependencies between processes
// or module instances can create strongly connected components without introducing evaluation nondeterminism.
// We wish to support designs with such benign SCCs (as well as designs with multiple drivers per wire), so
// we sort the graph in a way that minimizes feedback arcs. If there are no feedback arcs in the sorted graph,
// then a more efficient evaluation method is possible, since eval() will always immediately converge.
template<class T>
struct Scheduler {
struct Vertex {
T *data;
Vertex *prev, *next;
pool<Vertex*, hash_ptr_ops> preds, succs;
Vertex() : data(NULL), prev(this), next(this) {}
Vertex(T *data) : data(data), prev(NULL), next(NULL) {}
bool empty() const
{
log_assert(data == NULL);
if (next == this) {
log_assert(prev == next);
return true;
}
return false;
}
void link(Vertex *list)
{
log_assert(prev == NULL && next == NULL);
next = list;
prev = list->prev;
list->prev->next = this;
list->prev = this;
}
void unlink()
{
log_assert(prev->next == this && next->prev == this);
prev->next = next;
next->prev = prev;
next = prev = NULL;
}
int delta() const
{
return succs.size() - preds.size();
}
};
std::vector<Vertex*> vertices;
Vertex *sources = new Vertex;
Vertex *sinks = new Vertex;
dict<int, Vertex*> bins;
~Scheduler()
{
delete sources;
delete sinks;
for (auto bin : bins)
delete bin.second;
for (auto vertex : vertices)
delete vertex;
}
Vertex *add(T *data)
{
Vertex *vertex = new Vertex(data);
vertices.push_back(vertex);
return vertex;
}
void relink(Vertex *vertex)
{
if (vertex->succs.empty())
vertex->link(sinks);
else if (vertex->preds.empty())
vertex->link(sources);
else {
int delta = vertex->delta();
if (!bins.count(delta))
bins[delta] = new Vertex;
vertex->link(bins[delta]);
}
}
Vertex *remove(Vertex *vertex)
{
vertex->unlink();
for (auto pred : vertex->preds) {
if (pred == vertex)
continue;
log_assert(pred->succs[vertex]);
pred->unlink();
pred->succs.erase(vertex);
relink(pred);
}
for (auto succ : vertex->succs) {
if (succ == vertex)
continue;
log_assert(succ->preds[vertex]);
succ->unlink();
succ->preds.erase(vertex);
relink(succ);
}
vertex->preds.clear();
vertex->succs.clear();
return vertex;
}
std::vector<Vertex*> schedule()
{
std::vector<Vertex*> s1, s2r;
for (auto vertex : vertices)
relink(vertex);
bool bins_empty = false;
while (!(sinks->empty() && sources->empty() && bins_empty)) {
while (!sinks->empty())
s2r.push_back(remove(sinks->next));
while (!sources->empty())
s1.push_back(remove(sources->next));
// Choosing u in this implementation isn't O(1), but the paper handwaves which data structure they suggest
// using to get O(1) relinking *and* find-max-key ("it is clear"... no it isn't), so this code uses a very
// naive implementation of find-max-key.
bins_empty = true;
bins.template sort<std::greater<int>>();
for (auto bin : bins) {
if (!bin.second->empty()) {
bins_empty = false;
s1.push_back(remove(bin.second->next));
break;
}
}
}
s1.insert(s1.end(), s2r.rbegin(), s2r.rend());
return s1;
}
};
static bool is_unary_cell(RTLIL::IdString type)
{
return type.in(
ID($not), ID($logic_not), ID($reduce_and), ID($reduce_or), ID($reduce_xor), ID($reduce_xnor), ID($reduce_bool),
ID($pos), ID($neg));
}
static bool is_binary_cell(RTLIL::IdString type)
{
return type.in(
ID($and), ID($or), ID($xor), ID($xnor), ID($logic_and), ID($logic_or),
ID($shl), ID($sshl), ID($shr), ID($sshr), ID($shift), ID($shiftx),
ID($eq), ID($ne), ID($eqx), ID($nex), ID($gt), ID($ge), ID($lt), ID($le),
ID($add), ID($sub), ID($mul), ID($div), ID($mod));
}
static bool is_elidable_cell(RTLIL::IdString type)
{
return is_unary_cell(type) || is_binary_cell(type) || type == ID($mux);
}
static bool is_ff_cell(RTLIL::IdString type)
{
return type.in(
ID($dff), ID($dffe), ID($adff), ID($dffsr));
}
struct FlowGraph {
struct Node {
enum class Type {
CONNECT,
CELL,
PROCESS
};
Type type;
RTLIL::SigSig connect = {};
const RTLIL::Cell *cell = NULL;
const RTLIL::Process *process = NULL;
};
std::vector<Node*> nodes;
dict<const RTLIL::Wire*, pool<Node*, hash_ptr_ops>> wire_defs, wire_uses;
dict<const RTLIL::Wire*, bool> wire_def_elidable, wire_use_elidable;
~FlowGraph()
{
for (auto node : nodes)
delete node;
}
void add_defs(Node *node, const RTLIL::SigSpec &sig, bool elidable)
{
for (auto chunk : sig.chunks())
if (chunk.wire)
wire_defs[chunk.wire].insert(node);
// Only defs of an entire wire in the right order can be elided.
if (sig.is_wire())
wire_def_elidable[sig.as_wire()] = elidable;
}
void add_uses(Node *node, const RTLIL::SigSpec &sig)
{
for (auto chunk : sig.chunks())
if (chunk.wire) {
wire_uses[chunk.wire].insert(node);
// Only a single use of an entire wire in the right order can be elided.
// (But the use can include other chunks.)
if (!wire_use_elidable.count(chunk.wire))
wire_use_elidable[chunk.wire] = true;
else
wire_use_elidable[chunk.wire] = false;
}
}
bool is_elidable(const RTLIL::Wire *wire) const
{
if (wire_def_elidable.count(wire) && wire_use_elidable.count(wire))
return wire_def_elidable.at(wire) && wire_use_elidable.at(wire);
return false;
}
// Connections
void add_connect_defs_uses(Node *node, const RTLIL::SigSig &conn)
{
add_defs(node, conn.first, /*elidable=*/true);
add_uses(node, conn.second);
}
Node *add_node(const RTLIL::SigSig &conn)
{
Node *node = new Node;
node->type = Node::Type::CONNECT;
node->connect = conn;
nodes.push_back(node);
add_connect_defs_uses(node, conn);
return node;
}
// Cells
void add_cell_defs_uses(Node *node, const RTLIL::Cell *cell)
{
log_assert(cell->known());
for (auto conn : cell->connections()) {
if (cell->output(conn.first)) {
if (is_ff_cell(cell->type) || (cell->type == ID($memrd) && cell->getParam(ID(CLK_ENABLE)).as_bool()))
/* non-combinatorial outputs do not introduce defs */;
else if (is_elidable_cell(cell->type))
add_defs(node, conn.second, /*elidable=*/true);
else
add_defs(node, conn.second, /*elidable=*/false);
}
if (cell->input(conn.first))
add_uses(node, conn.second);
}
}
Node *add_node(const RTLIL::Cell *cell)
{
Node *node = new Node;
node->type = Node::Type::CELL;
node->cell = cell;
nodes.push_back(node);
add_cell_defs_uses(node, cell);
return node;
}
// Processes
void add_case_defs_uses(Node *node, const RTLIL::CaseRule *case_)
{
for (auto &action : case_->actions) {
add_defs(node, action.first, /*elidable=*/false);
add_uses(node, action.second);
}
for (auto sub_switch : case_->switches) {
add_uses(node, sub_switch->signal);
for (auto sub_case : sub_switch->cases) {
for (auto &compare : sub_case->compare)
add_uses(node, compare);
add_case_defs_uses(node, sub_case);
}
}
}
void add_process_defs_uses(Node *node, const RTLIL::Process *process)
{
add_case_defs_uses(node, &process->root_case);
for (auto sync : process->syncs)
for (auto action : sync->actions) {
if (sync->type == RTLIL::STp || sync->type == RTLIL::STn || sync->type == RTLIL::STe)
/* sync actions do not introduce feedback */;
else
add_defs(node, action.first, /*elidable=*/false);
add_uses(node, action.second);
}
}
Node *add_node(const RTLIL::Process *process)
{
Node *node = new Node;
node->type = Node::Type::PROCESS;
node->process = process;
nodes.push_back(node);
add_process_defs_uses(node, process);
return node;
}
};
struct CxxrtlWorker {
bool elide_internal = false;
bool elide_public = false;
bool localize_internal = false;
bool localize_public = false;
bool run_splitnets = false;
std::ostream &f;
std::string indent;
int temporary = 0;
dict<const RTLIL::Module*, SigMap> sigmaps;
pool<const RTLIL::Wire*> sync_wires;
dict<RTLIL::SigBit, RTLIL::SyncType> sync_types;
pool<const RTLIL::Memory*> writable_memories;
dict<const RTLIL::Cell*, pool<const RTLIL::Cell*>> transparent_for;
dict<const RTLIL::Wire*, FlowGraph::Node> elided_wires;
dict<const RTLIL::Module*, std::vector<FlowGraph::Node>> schedule;
pool<const RTLIL::Wire*> localized_wires;
CxxrtlWorker(std::ostream &f) : f(f) {}
void inc_indent() {
indent += "\t";
}
void dec_indent() {
indent.resize(indent.size() - 1);
}
// RTLIL allows any characters in names other than whitespace. This presents an issue for generating C++ code
// because C++ identifiers may be only alphanumeric, cannot clash with C++ keywords, and cannot clash with cxxrtl
// identifiers. This issue can be solved with a name mangling scheme. We choose a name mangling scheme that results
// in readable identifiers, does not depend on an up-to-date list of C++ keywords, and is easy to apply. Its rules:
// 1. All generated identifiers start with `_`.
// 1a. Generated identifiers for public names (beginning with `\`) start with `p_`.
// 1b. Generated identifiers for internal names (beginning with `$`) start with `i_`.
// 2. An underscore is escaped with another underscore, i.e. `__`.
// 3. Any other non-alnum character is escaped with underscores around its lowercase hex code, e.g. `@` as `_40_`.
std::string mangle_name(const RTLIL::IdString &name)
{
std::string mangled;
bool first = true;
for (char c : name.str()) {
if (first) {
first = false;
if (c == '\\')
mangled += "p_";
else if (c == '$')
mangled += "i_";
else
log_assert(false);
} else {
if (isalnum(c)) {
mangled += c;
} else if (c == '_') {
mangled += "__";
} else {
char l = c & 0xf, h = (c >> 4) & 0xf;
mangled += '_';
mangled += (h < 10 ? '0' + h : 'a' + h - 10);
mangled += (l < 10 ? '0' + l : 'a' + l - 10);
mangled += '_';
}
}
}
return mangled;
}
std::string mangle_module_name(const RTLIL::IdString &name)
{
// Class namespace.
return mangle_name(name);
}
std::string mangle_memory_name(const RTLIL::IdString &name)
{
// Class member namespace.
return "memory_" + mangle_name(name);
}
std::string mangle_wire_name(const RTLIL::IdString &name)
{
// Class member namespace.
return mangle_name(name);
}
std::string mangle(const RTLIL::Module *module)
{
return mangle_module_name(module->name);
}
std::string mangle(const RTLIL::Memory *memory)
{
return mangle_memory_name(memory->name);
}
std::string mangle(const RTLIL::Wire *wire)
{
return mangle_wire_name(wire->name);
}
std::string mangle(RTLIL::SigBit sigbit)
{
log_assert(sigbit.wire != NULL);
if (sigbit.wire->width == 1)
return mangle(sigbit.wire);
return mangle(sigbit.wire) + "_" + std::to_string(sigbit.offset);
}
std::string fresh_temporary()
{
return stringf("tmp_%d", temporary++);
}
void dump_attrs(const RTLIL::AttrObject *object)
{
for (auto attr : object->attributes) {
f << indent << "// " << attr.first.str() << ": ";
if (attr.second.flags & RTLIL::CONST_FLAG_STRING) {
f << attr.second.decode_string();
} else {
f << attr.second.as_int(/*is_signed=*/attr.second.flags & RTLIL::CONST_FLAG_SIGNED);
}
f << "\n";
}
}
void dump_const_init(const RTLIL::Const &data, int width, int offset = 0, bool fixed_width = false)
{
f << "{";
while (width > 0) {
const int CHUNK_SIZE = 32;
uint32_t chunk = data.extract(offset, width > CHUNK_SIZE ? CHUNK_SIZE : width).as_int();
if (fixed_width)
f << stringf("0x%08xu", chunk);
else
f << stringf("%#xu", chunk);
if (width > CHUNK_SIZE)
f << ',';
offset += CHUNK_SIZE;
width -= CHUNK_SIZE;
}
f << "}";
}
void dump_const_init(const RTLIL::Const &data)
{
dump_const_init(data, data.size());
}
void dump_const(const RTLIL::Const &data, int width, int offset = 0, bool fixed_width = false)
{
f << "value<" << width << ">";
dump_const_init(data, width, offset, fixed_width);
}
void dump_const(const RTLIL::Const &data)
{
dump_const(data, data.size());
}
bool dump_sigchunk(const RTLIL::SigChunk &chunk, bool is_lhs)
{
if (chunk.wire == NULL) {
dump_const(chunk.data, chunk.width, chunk.offset);
return false;
} else {
if (!is_lhs && elided_wires.count(chunk.wire)) {
const FlowGraph::Node &node = elided_wires[chunk.wire];
switch (node.type) {
case FlowGraph::Node::Type::CONNECT:
dump_connect_elided(node.connect);
break;
case FlowGraph::Node::Type::CELL:
dump_cell_elided(node.cell);
break;
default:
log_assert(false);
}
} else if (localized_wires[chunk.wire]) {
f << mangle(chunk.wire);
} else {
f << mangle(chunk.wire) << (is_lhs ? ".next" : ".curr");
}
if (chunk.width == chunk.wire->width && chunk.offset == 0)
return false;
else if (chunk.width == 1)
f << ".slice<" << chunk.offset << ">()";
else
f << ".slice<" << chunk.offset+chunk.width-1 << "," << chunk.offset << ">()";
return true;
}
}
bool dump_sigspec(const RTLIL::SigSpec &sig, bool is_lhs)
{
if (sig.empty()) {
f << "value<0>()";
return false;
} else if (sig.is_chunk()) {
return dump_sigchunk(sig.as_chunk(), is_lhs);
} else {
dump_sigchunk(*sig.chunks().rbegin(), is_lhs);
for (auto it = sig.chunks().rbegin() + 1; it != sig.chunks().rend(); ++it) {
f << ".concat(";
dump_sigchunk(*it, is_lhs);
f << ")";
}
return true;
}
}
void dump_sigspec_lhs(const RTLIL::SigSpec &sig)
{
dump_sigspec(sig, /*is_lhs=*/true);
}
void dump_sigspec_rhs(const RTLIL::SigSpec &sig)
{
// In the contexts where we want template argument deduction to occur for `template<size_t Bits> ... value<Bits>`,
// it is necessary to have the argument to already be a `value<N>`, since template argument deduction and implicit
// type conversion are mutually exclusive. In these contexts, we use dump_sigspec_rhs() to emit an explicit
// type conversion, but only if the expression needs it.
bool is_complex = dump_sigspec(sig, /*is_lhs=*/false);
if (is_complex)
f << ".val()";
}
void collect_sigspec_rhs(const RTLIL::SigSpec &sig, std::vector<RTLIL::IdString> &cells)
{
for (auto chunk : sig.chunks()) {
if (!chunk.wire || !elided_wires.count(chunk.wire))
continue;
const FlowGraph::Node &node = elided_wires[chunk.wire];
switch (node.type) {
case FlowGraph::Node::Type::CONNECT:
collect_connect(node.connect, cells);
break;
case FlowGraph::Node::Type::CELL:
collect_cell(node.cell, cells);
break;
default:
log_assert(false);
}
}
}
void dump_connect_elided(const RTLIL::SigSig &conn)
{
dump_sigspec_rhs(conn.second);
}
bool is_connect_elided(const RTLIL::SigSig &conn)
{
return conn.first.is_wire() && elided_wires.count(conn.first.as_wire());
}
void collect_connect(const RTLIL::SigSig &conn, std::vector<RTLIL::IdString> &cells)
{
if (!is_connect_elided(conn))
return;
collect_sigspec_rhs(conn.second, cells);
}
void dump_connect(const RTLIL::SigSig &conn)
{
if (is_connect_elided(conn))
return;
f << indent << "// connection\n";
f << indent;
dump_sigspec_lhs(conn.first);
f << " = ";
dump_connect_elided(conn);
f << ";\n";
}
void dump_cell_elided(const RTLIL::Cell *cell)
{
// Unary cells
if (is_unary_cell(cell->type)) {
f << cell->type.substr(1) << '_' <<
(cell->getParam(ID(A_SIGNED)).as_bool() ? 's' : 'u') <<
"<" << cell->getParam(ID(Y_WIDTH)).as_int() << ">(";
dump_sigspec_rhs(cell->getPort(ID(A)));
f << ")";
// Binary cells
} else if (is_binary_cell(cell->type)) {
f << cell->type.substr(1) << '_' <<
(cell->getParam(ID(A_SIGNED)).as_bool() ? 's' : 'u') <<
(cell->getParam(ID(B_SIGNED)).as_bool() ? 's' : 'u') <<
"<" << cell->getParam(ID(Y_WIDTH)).as_int() << ">(";
dump_sigspec_rhs(cell->getPort(ID(A)));
f << ", ";
dump_sigspec_rhs(cell->getPort(ID(B)));
f << ")";
// Muxes
} else if (cell->type == ID($mux)) {
f << "(";
dump_sigspec_rhs(cell->getPort(ID(S)));
f << " ? ";
dump_sigspec_rhs(cell->getPort(ID(B)));
f << " : ";
dump_sigspec_rhs(cell->getPort(ID(A)));
f << ")";
} else {
log_assert(false);
}
}
bool is_cell_elided(const RTLIL::Cell *cell)
{
return cell->hasPort(ID(Y)) && cell->getPort(ID(Y)).is_wire() && elided_wires.count(cell->getPort(ID(Y)).as_wire());
}
void collect_cell(const RTLIL::Cell *cell, std::vector<RTLIL::IdString> &cells)
{
if (!is_cell_elided(cell))
return;
cells.push_back(cell->name);
for (auto port : cell->connections())
if (port.first != ID(Y))
collect_sigspec_rhs(port.second, cells);
}
void dump_cell(const RTLIL::Cell *cell)
{
if (is_cell_elided(cell))
return;
if (cell->type == ID($meminit))
return; // Handled elsewhere.
std::vector<RTLIL::IdString> elided_cells;
if (is_elidable_cell(cell->type)) {
for (auto port : cell->connections())
if (port.first != ID(Y))
collect_sigspec_rhs(port.second, elided_cells);
}
if (elided_cells.empty()) {
dump_attrs(cell);
f << indent << "// cell " << cell->name.str() << "\n";
} else {
f << indent << "// cells";
for (auto elided_cell : elided_cells)
f << " " << elided_cell.str();
f << "\n";
}
// Elidable cells
if (is_elidable_cell(cell->type)) {
f << indent;
dump_sigspec_lhs(cell->getPort(ID(Y)));
f << " = ";
dump_cell_elided(cell);
f << ";\n";
// Parallel (one-hot) muxes
} else if (cell->type == ID($pmux)) {
int width = cell->getParam(ID(WIDTH)).as_int();
int s_width = cell->getParam(ID(S_WIDTH)).as_int();
bool first = true;
for (int part = 0; part < s_width; part++) {
f << (first ? indent : " else ");
first = false;
f << "if (";
dump_sigspec_rhs(cell->getPort(ID(S)).extract(part));
f << ") {\n";
inc_indent();
f << indent;
dump_sigspec_lhs(cell->getPort(ID(Y)));
f << " = ";
dump_sigspec_rhs(cell->getPort(ID(B)).extract(part * width, width));
f << ";\n";
dec_indent();
f << indent << "}";
}
f << " else {\n";
inc_indent();
f << indent;
dump_sigspec_lhs(cell->getPort(ID(Y)));
f << " = ";
dump_sigspec_rhs(cell->getPort(ID(A)));
f << ";\n";
dec_indent();
f << indent << "}\n";
// Flip-flops
} else if (is_ff_cell(cell->type)) {
if (cell->getPort(ID(CLK)).is_wire()) {
// Edge-sensitive logic
RTLIL::SigBit clk_bit = cell->getPort(ID(CLK))[0];
clk_bit = sigmaps[clk_bit.wire->module](clk_bit);
f << indent << "if (" << (cell->getParam(ID(CLK_POLARITY)).as_bool() ? "posedge_" : "negedge_")
<< mangle(clk_bit) << ") {\n";
inc_indent();
if (cell->type == ID($dffe)) {
f << indent << "if (";
dump_sigspec_rhs(cell->getPort(ID(EN)));
f << " == value<1> {" << cell->getParam(ID(EN_POLARITY)).as_bool() << "}) {\n";
inc_indent();
}
f << indent;
dump_sigspec_lhs(cell->getPort(ID(Q)));
f << " = ";
dump_sigspec_rhs(cell->getPort(ID(D)));
f << ";\n";
if (cell->type == ID($dffe)) {
dec_indent();
f << indent << "}\n";
}
dec_indent();
f << indent << "}\n";
}
// Level-sensitive logic
if (cell->type == ID($adff)) {
f << indent << "if (";
dump_sigspec_rhs(cell->getPort(ID(ARST)));
f << " == value<1> {" << cell->getParam(ID(ARST_POLARITY)).as_bool() << "}) {\n";
inc_indent();
f << indent;
dump_sigspec_lhs(cell->getPort(ID(Q)));
f << " = ";
dump_const(cell->getParam(ID(ARST_VALUE)));
f << ";\n";
dec_indent();
f << indent << "}\n";
} else if (cell->type == ID($dffsr)) {
f << indent << "if (";
dump_sigspec_rhs(cell->getPort(ID(CLR)));
f << " == value<1> {" << cell->getParam(ID(CLR_POLARITY)).as_bool() << "}) {\n";
inc_indent();
f << indent;
dump_sigspec_lhs(cell->getPort(ID(Q)));
f << " = ";
dump_const(RTLIL::Const(RTLIL::S0, cell->getParam(ID(WIDTH)).as_int()));
f << ";\n";
dec_indent();
f << indent << "} else if (";
dump_sigspec_rhs(cell->getPort(ID(SET)));
f << " == value<1> {" << cell->getParam(ID(SET_POLARITY)).as_bool() << "}) {\n";
inc_indent();
f << indent;
dump_sigspec_lhs(cell->getPort(ID(Q)));
f << " = ";
dump_const(RTLIL::Const(RTLIL::S1, cell->getParam(ID(WIDTH)).as_int()));
f << ";\n";
dec_indent();
f << indent << "}\n";
}
// Memory ports
} else if (cell->type.in(ID($memrd), ID($memwr))) {
if (cell->getParam(ID(CLK_ENABLE)).as_bool()) {
RTLIL::SigBit clk_bit = cell->getPort(ID(CLK))[0];
clk_bit = sigmaps[clk_bit.wire->module](clk_bit);
f << indent << "if (" << (cell->getParam(ID(CLK_POLARITY)).as_bool() ? "posedge_" : "negedge_")
<< mangle(clk_bit) << ") {\n";
inc_indent();
}
RTLIL::Memory *memory = cell->module->memories[cell->getParam(ID(MEMID)).decode_string()];
std::string valid_index_temp = fresh_temporary();
f << indent << "std::pair<bool, size_t> " << valid_index_temp << " = memory_index(";
dump_sigspec_rhs(cell->getPort(ID(ADDR)));
f << ", " << memory->start_offset << ", " << memory->size << ");\n";
if (cell->type == ID($memrd)) {
if (!cell->getPort(ID(EN)).is_fully_ones()) {
f << indent << "if (";
dump_sigspec_rhs(cell->getPort(ID(EN)));
f << ") {\n";
inc_indent();
}
// The generated code has two bounds checks; one in an assertion, and another that guards the read.
// This is done so that the code does not invoke undefined behavior under any conditions, but nevertheless
// loudly crashes if an illegal condition is encountered. The assert may be turned off with -NDEBUG not
// just for release builds, but also to make sure the simulator (which is presumably embedded in some
// larger program) will never crash the code that calls into it.
//
// If assertions are disabled, out of bounds reads are defined to return zero.
f << indent << "assert(" << valid_index_temp << ".first && \"out of bounds read\");\n";
f << indent << "if(" << valid_index_temp << ".first) {\n";
inc_indent();
if (writable_memories[memory]) {
std::string addr_temp = fresh_temporary();
f << indent << "const value<" << cell->getPort(ID(ADDR)).size() << "> &" << addr_temp << " = ";
dump_sigspec_rhs(cell->getPort(ID(ADDR)));
f << ";\n";
std::string lhs_temp = fresh_temporary();
f << indent << "value<" << memory->width << "> " << lhs_temp << " = "
<< mangle(memory) << "[" << valid_index_temp << ".second].curr;\n";
for (auto memwr_cell : transparent_for[cell]) {
f << indent << "if (" << addr_temp << " == ";
dump_sigspec_rhs(memwr_cell->getPort(ID(ADDR)));
f << ") {\n";
inc_indent();
f << indent << lhs_temp << " = " << lhs_temp;
f << ".update(";
dump_sigspec_rhs(memwr_cell->getPort(ID(EN)));
f << ", ";
dump_sigspec_rhs(memwr_cell->getPort(ID(DATA)));
f << ");\n";
dec_indent();
f << indent << "}\n";
}
f << indent;
dump_sigspec_lhs(cell->getPort(ID(DATA)));
f << " = " << lhs_temp << ";\n";
} else {
f << indent;
dump_sigspec_lhs(cell->getPort(ID(DATA)));
f << " = " << mangle(memory) << "[" << valid_index_temp << ".second];\n";
}
dec_indent();
f << indent << "} else {\n";
inc_indent();
f << indent;
dump_sigspec_lhs(cell->getPort(ID(DATA)));
f << " = value<" << memory->width << "> {};\n";
dec_indent();
f << indent << "}\n";
if (!cell->getPort(ID(EN)).is_fully_ones()) {
dec_indent();
f << indent << "}\n";
}
} else /*if (cell->type == ID($memwr))*/ {
// FIXME: handle write port priority, here and above in transparent $memrd cells
log_assert(writable_memories[memory]);
// See above for rationale of having both the assert and the condition.
//
// If assertions are disabled, out of bounds writes are defined to do nothing.
f << indent << "assert(" << valid_index_temp << ".first && \"out of bounds write\");\n";
f << indent << "if (" << valid_index_temp << ".first) {\n";
inc_indent();
std::string lhs_temp = fresh_temporary();
f << indent << "wire<" << memory->width << "> &" << lhs_temp << " = ";
f << mangle(memory) << "[" << valid_index_temp << ".second];\n";
f << indent << lhs_temp << ".next = " << lhs_temp << ".curr.update(";
dump_sigspec_rhs(cell->getPort(ID(EN)));
f << ", ";
dump_sigspec_rhs(cell->getPort(ID(DATA)));
f << ");\n";
dec_indent();
f << indent << "}\n";
}
if (cell->getParam(ID(CLK_ENABLE)).as_bool()) {
dec_indent();
f << indent << "}\n";
}
// Memory initializers
} else if (cell->type[0] == '$') {
log_cmd_error("Unsupported internal cell `%s'.\n", cell->type.c_str());
} else {
log_assert(false);
}
}
void dump_assign(const RTLIL::SigSig &sigsig)
{
f << indent;
dump_sigspec_lhs(sigsig.first);
f << " = ";
dump_sigspec_rhs(sigsig.second);
f << ";\n";
}
void dump_case_rule(const RTLIL::CaseRule *rule)
{
for (auto action : rule->actions)
dump_assign(action);
for (auto switch_ : rule->switches)
dump_switch_rule(switch_);
}
void dump_switch_rule(const RTLIL::SwitchRule *rule)
{
// The switch attributes are printed before the switch condition is captured.
dump_attrs(rule);
std::string signal_temp = fresh_temporary();
f << indent << "const value<" << rule->signal.size() << "> &" << signal_temp << " = ";
dump_sigspec(rule->signal, /*is_lhs=*/false);
f << ";\n";
bool first = true;
for (auto case_ : rule->cases) {
// The case attributes (for nested cases) are printed before the if/else if/else statement.
dump_attrs(rule);
f << indent;
if (!first)
f << "} else ";
first = false;
if (!case_->compare.empty()) {
f << "if (";
bool first = true;
for (auto &compare : case_->compare) {
if (!first)
f << " || ";
first = false;
if (compare.is_fully_def()) {
f << signal_temp << " == ";
dump_sigspec(compare, /*is_lhs=*/false);
} else if (compare.is_fully_const()) {
RTLIL::Const compare_mask, compare_value;
for (auto bit : compare.as_const()) {
switch (bit) {
case RTLIL::S0:
case RTLIL::S1:
compare_mask.bits.push_back(RTLIL::S1);
compare_value.bits.push_back(bit);
break;
case RTLIL::Sx:
case RTLIL::Sz:
case RTLIL::Sa:
compare_mask.bits.push_back(RTLIL::S0);
compare_value.bits.push_back(RTLIL::S0);
break;
default:
log_assert(false);
}
}
f << "and_uu<" << compare.size() << ">(" << signal_temp << ", ";
dump_const(compare_mask);
f << ") == ";
dump_const(compare_value);
} else {
log_assert(false);
}
}
f << ") ";
}
f << "{\n";
inc_indent();
dump_case_rule(case_);
dec_indent();
}
f << indent << "}\n";
}
void dump_process(const RTLIL::Process *proc)
{
dump_attrs(proc);
f << indent << "// process " << proc->name.str() << "\n";
// The case attributes (for root case) are always empty.
log_assert(proc->root_case.attributes.empty());
dump_case_rule(&proc->root_case);
for (auto sync : proc->syncs) {
RTLIL::SigBit sync_bit = sync->signal[0];
sync_bit = sigmaps[sync_bit.wire->module](sync_bit);
pool<std::string> events;
switch (sync->type) {
case RTLIL::STp:
events.insert("posedge_" + mangle(sync_bit));
break;
case RTLIL::STn:
events.insert("negedge_" + mangle(sync_bit));
case RTLIL::STe:
events.insert("posedge_" + mangle(sync_bit));
events.insert("negedge_" + mangle(sync_bit));
break;
case RTLIL::ST0:
case RTLIL::ST1:
case RTLIL::STa:
case RTLIL::STg:
case RTLIL::STi:
log_assert(false);
}
if (!events.empty()) {
f << indent << "if (";
bool first = true;
for (auto &event : events) {
if (!first)
f << " || ";
first = false;
f << event;
}
f << ") {\n";
inc_indent();
for (auto action : sync->actions)
dump_assign(action);
dec_indent();
f << indent << "}\n";
}
}
}
void dump_wire(const RTLIL::Wire *wire, bool is_local)
{
if (elided_wires.count(wire))
return;
if (is_local) {
if (!localized_wires.count(wire))
return;
dump_attrs(wire);
f << indent << "value<" << wire->width << "> " << mangle(wire) << ";\n";
} else {
if (localized_wires.count(wire))
return;
dump_attrs(wire);
f << indent << "wire<" << wire->width << "> " << mangle(wire);
if (wire->attributes.count(ID(init))) {
f << " ";
dump_const_init(wire->attributes.at(ID(init)));
}
f << ";\n";
if (sync_wires[wire]) {
for (auto sync_type : sync_types) {
if (sync_type.first.wire == wire) {
if (sync_type.second != RTLIL::STn)
f << indent << "bool posedge_" << mangle(sync_type.first) << " = false;\n";
if (sync_type.second != RTLIL::STp)
f << indent << "bool negedge_" << mangle(sync_type.first) << " = false;\n";
}
}
}
}
}
void dump_memory(RTLIL::Module *module, const RTLIL::Memory *memory)
{
vector<const RTLIL::Cell*> init_cells;
for (auto cell : module->cells())
if (cell->type == ID($meminit) && cell->getParam(ID(MEMID)).decode_string() == memory->name.str())
init_cells.push_back(cell);
std::sort(init_cells.begin(), init_cells.end(), [](const RTLIL::Cell *a, const RTLIL::Cell *b) {
int a_addr = a->getPort(ID(ADDR)).as_int(), b_addr = b->getPort(ID(ADDR)).as_int();
int a_prio = a->getParam(ID(PRIORITY)).as_int(), b_prio = b->getParam(ID(PRIORITY)).as_int();
return a_prio > b_prio || (a_prio == b_prio && a_addr < b_addr);
});
dump_attrs(memory);
f << indent << "memory_" << (writable_memories[memory] ? "rw" : "ro")
<< "<" << memory->width << "> " << mangle(memory)
<< " { " << memory->size << "u";
if (init_cells.empty()) {
f << " };\n";
} else {
f << ",\n";
inc_indent();
for (auto cell : init_cells) {
dump_attrs(cell);
RTLIL::Const data = cell->getPort(ID(DATA)).as_const();
size_t width = cell->getParam(ID(WIDTH)).as_int();
size_t words = cell->getParam(ID(WORDS)).as_int();
f << indent << "memory_" << (writable_memories[memory] ? "rw" : "ro")
<< "<" << memory->width << ">::init<" << words << "> { "
<< stringf("%#x", cell->getPort(ID(ADDR)).as_int()) << ", {";
inc_indent();
for (size_t n = 0; n < words; n++) {
if (n % 4 == 0)
f << "\n" << indent;
else
f << " ";
dump_const(data, width, n * width, /*fixed_width=*/true);
f << ",";
}
dec_indent();
f << "\n" << indent << "}},\n";
}
dec_indent();
f << indent << "};\n";
}
}
void dump_module(RTLIL::Module *module)
{
dump_attrs(module);
f << "struct " << mangle(module) << " : public module {\n";
inc_indent();
for (auto wire : module->wires())
dump_wire(wire, /*is_local=*/false);
f << "\n";
for (auto memory : module->memories)
dump_memory(module, memory.second);
if (!module->memories.empty())
f << "\n";
f << indent << "void eval() override;\n";
f << indent << "bool commit() override;\n";
dec_indent();
f << "}; // struct " << mangle(module) << "\n";
f << "\n";
f << "void " << mangle(module) << "::eval() {\n";
inc_indent();
for (auto wire : module->wires())
dump_wire(wire, /*is_local=*/true);
for (auto node : schedule[module]) {
switch (node.type) {
case FlowGraph::Node::Type::CONNECT:
dump_connect(node.connect);
break;
case FlowGraph::Node::Type::CELL:
dump_cell(node.cell);
break;
case FlowGraph::Node::Type::PROCESS:
dump_process(node.process);
break;
}
}
for (auto sync_type : sync_types) {
if (sync_type.first.wire->module == module) {
if (sync_type.second != RTLIL::STn)
f << indent << "posedge_" << mangle(sync_type.first) << " = false;\n";
if (sync_type.second != RTLIL::STp)
f << indent << "negedge_" << mangle(sync_type.first) << " = false;\n";
}
}
dec_indent();
f << "}\n";
f << "\n";
f << "bool " << mangle(module) << "::commit() {\n";
inc_indent();
f << indent << "bool changed = false;\n";
for (auto wire : module->wires()) {
if (elided_wires.count(wire) || localized_wires.count(wire))
continue;
if (sync_wires[wire]) {
std::string wire_prev = mangle(wire) + "_prev";
std::string wire_curr = mangle(wire) + ".curr";
std::string wire_edge = mangle(wire) + "_edge";
f << indent << "value<" << wire->width << "> " << wire_prev << " = " << wire_curr << ";\n";
f << indent << "if (" << mangle(wire) << ".commit()) {\n";
inc_indent();
f << indent << "value<" << wire->width << "> " << wire_edge << " = "
<< wire_prev << ".bit_xor(" << wire_curr << ");\n";
for (auto sync_type : sync_types) {
if (sync_type.first.wire != wire)
continue;
if (sync_type.second != RTLIL::STn) {
f << indent << "if (" << wire_edge << ".slice<" << sync_type.first.offset << ">().val() && "
<< wire_curr << ".slice<" << sync_type.first.offset << ">().val())\n";
inc_indent();
f << indent << "posedge_" << mangle(sync_type.first) << " = true;\n";
dec_indent();
}
if (sync_type.second != RTLIL::STp) {
f << indent << "if (" << wire_edge << ".slice<" << sync_type.first.offset << ">().val() && "
<< "!" << wire_curr << ".slice<" << sync_type.first.offset << ">().val())\n";
inc_indent();
f << indent << "negedge_" << mangle(sync_type.first) << " = true;\n";
dec_indent();
}
f << indent << "changed = true;\n";
}
dec_indent();
f << indent << "}\n";
} else {
f << indent << "changed |= " << mangle(wire) << ".commit();\n";
}
}
for (auto memory : module->memories) {
if (!writable_memories[memory.second])
continue;
f << indent << "for (size_t i = 0; i < " << memory.second->size << "u; i++)\n";
inc_indent();
f << indent << "changed |= " << mangle(memory.second) << "[i].commit();\n";
dec_indent();
}
f << indent << "return changed;\n";
dec_indent();
f << "}\n";
}
void dump_design(RTLIL::Design *design)
{
f << "#include <cxxrtl.h>\n";
f << "\n";
f << "using namespace cxxrtl_yosys;\n";
f << "\n";
f << "namespace cxxrtl_design {\n";
for (auto module : design->modules()) {
if (module->get_blackbox_attribute())
continue;
if (!design->selected_module(module))
continue;
f << "\n";
dump_module(module);
}
f << "\n";
f << "} // namespace cxxrtl_design\n";
}
// Edge-type sync rules require us to emit edge detectors, which require coordination between
// eval and commit phases. To do this we need to collect them upfront.
//
// Note that the simulator commit phase operates at wire granularity but edge-type sync rules
// operate at wire bit granularity; it is possible to have code similar to:
// wire [3:0] clocks;
// always @(posedge clocks[0]) ...
// To handle this we track edge sensitivity both for wires and wire bits.
void register_edge_signal(SigMap &sigmap, RTLIL::SigSpec signal, RTLIL::SyncType type)
{
signal = sigmap(signal);
log_assert(signal.is_wire() && signal.is_bit());
log_assert(type == RTLIL::STp || type == RTLIL::STn || type == RTLIL::STe);
RTLIL::SigBit sigbit = signal[0];
if (!sync_types.count(sigbit))
sync_types[sigbit] = type;
else if (sync_types[sigbit] != type)
sync_types[sigbit] = RTLIL::STe;
sync_wires.insert(signal.as_wire());
}
void analyze_design(RTLIL::Design *design)
{
bool has_feedback_arcs = false;
for (auto module : design->modules()) {
if (!design->selected_module(module))
continue;
FlowGraph flow;
SigMap &sigmap = sigmaps[module];
sigmap.set(module);
for (auto conn : module->connections())
flow.add_node(conn);
dict<const RTLIL::Cell*, FlowGraph::Node*> memrw_cell_nodes;
dict<std::pair<RTLIL::SigBit, const RTLIL::Memory*>,
pool<const RTLIL::Cell*>> memwr_per_domain;
for (auto cell : module->cells()) {
FlowGraph::Node *node = flow.add_node(cell);
// Various DFF cells are treated like posedge/negedge processes, see above for details.
if (cell->type.in(ID($dff), ID($dffe), ID($adff), ID($dffsr))) {
if (cell->getPort(ID(CLK)).is_wire())
register_edge_signal(sigmap, cell->getPort(ID(CLK)),
cell->parameters[ID(CLK_POLARITY)].as_bool() ? RTLIL::STp : RTLIL::STn);
// The $adff and $dffsr cells are level-sensitive, not edge-sensitive (in spite of the fact that they
// are inferred from an edge-sensitive Verilog process) and do not correspond to an edge-type sync rule.
}
// Similar for memory port cells.
if (cell->type.in(ID($memrd), ID($memwr))) {
if (cell->getParam(ID(CLK_ENABLE)).as_bool()) {
if (cell->getPort(ID(CLK)).is_wire())
register_edge_signal(sigmap, cell->getPort(ID(CLK)),
cell->parameters[ID(CLK_POLARITY)].as_bool() ? RTLIL::STp : RTLIL::STn);
}
memrw_cell_nodes[cell] = node;
}
// Optimize access to read-only memories.
if (cell->type == ID($memwr))
writable_memories.insert(module->memories[cell->getParam(ID(MEMID)).decode_string()]);
// Collect groups of memory write ports in the same domain.
if (cell->type == ID($memwr) && cell->getParam(ID(CLK_ENABLE)).as_bool() && cell->getPort(ID(CLK)).is_wire()) {
RTLIL::SigBit clk_bit = sigmap(cell->getPort(ID(CLK)))[0];
const RTLIL::Memory *memory = module->memories[cell->getParam(ID(MEMID)).decode_string()];
memwr_per_domain[{clk_bit, memory}].insert(cell);
}
// Handling of packed memories is delegated to the `memory_unpack` pass, so we can rely on the presence
// of RTLIL memory objects and $memrd/$memwr/$meminit cells.
if (cell->type.in(ID($mem)))
log_assert(false);
}
for (auto cell : module->cells()) {
// Collect groups of memory write ports read by every transparent read port.
if (cell->type == ID($memrd) && cell->getParam(ID(CLK_ENABLE)).as_bool() && cell->getPort(ID(CLK)).is_wire() &&
cell->getParam(ID(TRANSPARENT)).as_bool()) {
RTLIL::SigBit clk_bit = sigmap(cell->getPort(ID(CLK)))[0];
const RTLIL::Memory *memory = module->memories[cell->getParam(ID(MEMID)).decode_string()];
for (auto memwr_cell : memwr_per_domain[{clk_bit, memory}]) {
transparent_for[cell].insert(memwr_cell);
// Our implementation of transparent $memrd cells reads \EN, \ADDR and \DATA from every $memwr cell
// in the same domain, which isn't directly visible in the netlist. Add these uses explicitly.
flow.add_uses(memrw_cell_nodes[cell], memwr_cell->getPort(ID(EN)));
flow.add_uses(memrw_cell_nodes[cell], memwr_cell->getPort(ID(ADDR)));
flow.add_uses(memrw_cell_nodes[cell], memwr_cell->getPort(ID(DATA)));
}
}
}
for (auto proc : module->processes) {
flow.add_node(proc.second);
for (auto sync : proc.second->syncs)
switch (sync->type) {
// Edge-type sync rules require pre-registration.
case RTLIL::STp:
case RTLIL::STn:
case RTLIL::STe:
register_edge_signal(sigmap, sync->signal, sync->type);
break;
// Level-type sync rules require no special handling.
case RTLIL::ST0:
case RTLIL::ST1:
case RTLIL::STa:
break;
// Handling of init-type sync rules is delegated to the `proc_init` pass, so we can use the wire
// attribute regardless of input.
case RTLIL::STi:
log_assert(false);
case RTLIL::STg:
log_cmd_error("Global clock is not supported.\n");
}
}
for (auto wire : module->wires()) {
if (!flow.is_elidable(wire)) continue;
if (wire->port_id != 0) continue;
if (wire->get_bool_attribute(ID(keep))) continue;
if (wire->name.begins_with("$") && !elide_internal) continue;
if (wire->name.begins_with("\\") && !elide_public) continue;
if (sync_wires[wire]) continue;
log_assert(flow.wire_defs[wire].size() == 1);
elided_wires[wire] = **flow.wire_defs[wire].begin();
}
dict<FlowGraph::Node*, pool<const RTLIL::Wire*>, hash_ptr_ops> node_defs;
for (auto wire_def : flow.wire_defs)
for (auto node : wire_def.second)
node_defs[node].insert(wire_def.first);
Scheduler<FlowGraph::Node> scheduler;
dict<FlowGraph::Node*, Scheduler<FlowGraph::Node>::Vertex*, hash_ptr_ops> node_map;
for (auto node : flow.nodes)
node_map[node] = scheduler.add(node);
for (auto node_def : node_defs) {
auto vertex = node_map[node_def.first];
for (auto wire : node_def.second)
for (auto succ_node : flow.wire_uses[wire]) {
auto succ_vertex = node_map[succ_node];
vertex->succs.insert(succ_vertex);
succ_vertex->preds.insert(vertex);
}
}
auto eval_order = scheduler.schedule();
pool<FlowGraph::Node*, hash_ptr_ops> evaluated;
pool<const RTLIL::Wire*> feedback_wires;
for (auto vertex : eval_order) {
auto node = vertex->data;
schedule[module].push_back(*node);
// Any wire that is an output of node vo and input of node vi where vo is scheduled later than vi
// is a feedback wire. Feedback wires indicate apparent logic loops in the design, which may be
// caused by a true logic loop, but usually are a benign result of dependency tracking that works
// on wire, not bit, level. Nevertheless, feedback wires cannot be localized.
evaluated.insert(node);
for (auto wire : node_defs[node])
for (auto succ_node : flow.wire_uses[wire])
if (evaluated[succ_node]) {
feedback_wires.insert(wire);
// Feedback wires may never be elided because feedback requires state, but the point of elision
// (and localization) is to eliminate state.
elided_wires.erase(wire);
}
}
if (!feedback_wires.empty()) {
has_feedback_arcs = true;
log("Module `%s` contains feedback arcs through wires:\n", module->name.c_str());
for (auto wire : feedback_wires) {
log(" %s\n", wire->name.c_str());
}
}
for (auto wire : module->wires()) {
if (feedback_wires[wire]) continue;
if (wire->port_id != 0) continue;
if (wire->get_bool_attribute(ID(keep))) continue;
if (wire->name.begins_with("$") && !localize_internal) continue;
if (wire->name.begins_with("\\") && !localize_public) continue;
if (sync_wires[wire]) continue;
// Outputs of FF/$memrd cells and LHS of sync actions do not end up in defs.
if (flow.wire_defs[wire].size() != 1) continue;
localized_wires.insert(wire);
}
}
if (has_feedback_arcs) {
log("Feedback arcs require delta cycles during evaluation.\n");
}
}
void check_design(RTLIL::Design *design, bool &has_sync_init, bool &has_packed_mem)
{
has_sync_init = has_packed_mem = false;
for (auto module : design->modules()) {
if (module->get_blackbox_attribute())
continue;
if (!design->selected_whole_module(module))
if (design->selected_module(module))
log_cmd_error("Can't handle partially selected module `%s`!\n", id2cstr(module->name));
if (!design->selected_module(module))
continue;
for (auto proc : module->processes)
for (auto sync : proc.second->syncs)
if (sync->type == RTLIL::STi)
has_sync_init = true;
for (auto cell : module->cells())
if (cell->type == ID($mem))
has_packed_mem = true;
}
}
void prepare_design(RTLIL::Design *design)
{
bool has_sync_init, has_packed_mem;
check_design(design, has_sync_init, has_packed_mem);
if (has_sync_init)
Pass::call(design, "proc_init");
if (has_packed_mem)
Pass::call(design, "memory_unpack");
// Recheck the design if it was modified.
if (has_sync_init || has_packed_mem)
check_design(design, has_sync_init, has_packed_mem);
log_assert(!(has_sync_init || has_packed_mem));
if (run_splitnets) {
Pass::call(design, "splitnets -driver");
Pass::call(design, "opt_clean -purge");
}
log("\n");
analyze_design(design);
}
};
struct CxxrtlBackend : public Backend {
static const int DEFAULT_OPT_LEVEL = 5;
CxxrtlBackend() : Backend("cxxrtl", "convert design to C++ RTL simulation") { }
void help() YS_OVERRIDE
{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
log(" write_cxxrtl [options] [filename]\n");
log("\n");
log("Write C++ code for simulating the design.\n");
log("\n");
log(" -O <level>\n");
log(" set the optimization level. the default is -O%d. higher optimization\n", DEFAULT_OPT_LEVEL);
log(" levels dramatically decrease compile and run time, and highest level\n");
log(" possible for a design should be used.\n");
log("\n");
log(" -O0\n");
log(" no optimization.\n");
log("\n");
log(" -O1\n");
log(" elide internal wires if possible.\n");
log("\n");
log(" -O2\n");
log(" like -O1, and localize internal wires if possible.\n");
log("\n");
log(" -O3\n");
log(" like -O2, and elide public wires not marked (*keep*) if possible.\n");
log("\n");
log(" -O4\n");
log(" like -O3, and localize public wires not marked (*keep*) if possible.\n");
log("\n");
log(" -O5\n");
log(" like -O4, and run `splitnets -driver; opt_clean -purge` first.\n");
log("\n");
}
void execute(std::ostream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
{
int opt_level = DEFAULT_OPT_LEVEL;
log_header(design, "Executing CXXRTL backend.\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++)
{
if (args[argidx] == "-O" && argidx+1 < args.size()) {
opt_level = std::stoi(args[++argidx]);
continue;
}
if (args[argidx].substr(0, 2) == "-O" && args[argidx].size() == 3 && isdigit(args[argidx][2])) {
opt_level = std::stoi(args[argidx].substr(2));
continue;
}
break;
}
extra_args(f, filename, args, argidx);
CxxrtlWorker worker(*f);
switch (opt_level) {
case 5:
worker.run_splitnets = true;
case 4:
worker.localize_public = true;
case 3:
worker.elide_public = true;
case 2:
worker.localize_internal = true;
case 1:
worker.elide_internal = true;
case 0:
break;
default:
log_cmd_error("Invalid optimization level %d.\n", opt_level);
}
worker.prepare_design(design);
worker.dump_design(design);
}
} CxxrtlBackend;
PRIVATE_NAMESPACE_END