mirror of https://github.com/YosysHQ/yosys.git
905 lines
28 KiB
C++
905 lines
28 KiB
C++
|
/*
|
||
|
* yosys -- Yosys Open SYnthesis Suite
|
||
|
*
|
||
|
* Copyright (C) 2019 whitequark <whitequark@whitequark.org>
|
||
|
*
|
||
|
* Permission to use, copy, modify, and/or distribute this software for any
|
||
|
* purpose with or without fee is hereby granted, provided that the above
|
||
|
* copyright notice and this permission notice appear in all copies.
|
||
|
*
|
||
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#include "kernel/rtlil.h"
|
||
|
#include "kernel/register.h"
|
||
|
#include "kernel/sigtools.h"
|
||
|
#include "kernel/celltypes.h"
|
||
|
#include "kernel/log.h"
|
||
|
|
||
|
USING_YOSYS_NAMESPACE
|
||
|
PRIVATE_NAMESPACE_BEGIN
|
||
|
|
||
|
struct CxxrtlWorker {
|
||
|
std::ostream &f;
|
||
|
std::string indent;
|
||
|
int temporary = 0;
|
||
|
|
||
|
dict<const RTLIL::Module*, SigMap> sigmaps;
|
||
|
pool<const RTLIL::Wire*> sync_wires;
|
||
|
dict<RTLIL::SigBit, RTLIL::SyncType> sync_types;
|
||
|
pool<const RTLIL::Memory*> writable_memories;
|
||
|
|
||
|
CxxrtlWorker(std::ostream &f) : f(f) {}
|
||
|
|
||
|
void inc_indent() {
|
||
|
indent += "\t";
|
||
|
}
|
||
|
void dec_indent() {
|
||
|
indent.resize(indent.size() - 1);
|
||
|
}
|
||
|
|
||
|
// RTLIL allows any characters in names other than whitespace. This presents an issue for generating C++ code
|
||
|
// because C++ identifiers may be only alphanumeric, cannot clash with C++ keywords, and cannot clash with cxxrtl
|
||
|
// identifiers. This issue can be solved with a name mangling scheme. We choose a name mangling scheme that results
|
||
|
// in readable identifiers, does not depend on an up-to-date list of C++ keywords, and is easy to apply. Its rules:
|
||
|
// 1. All generated identifiers start with `_`.
|
||
|
// 1a. Generated identifiers for public names (beginning with `\`) start with `p_`.
|
||
|
// 1b. Generated identifiers for internal names (beginning with `$`) start with `i_`.
|
||
|
// 2. An underscore is escaped with another underscore, i.e. `__`.
|
||
|
// 3. Any other non-alnum character is escaped with underscores around its lowercase hex code, e.g. `@` as `_40_`.
|
||
|
std::string mangle_name(const RTLIL::IdString &name)
|
||
|
{
|
||
|
std::string mangled;
|
||
|
bool first = true;
|
||
|
for (char c : name.str()) {
|
||
|
if (first) {
|
||
|
first = false;
|
||
|
if (c == '\\')
|
||
|
mangled += "p_";
|
||
|
else if (c == '$')
|
||
|
mangled += "i_";
|
||
|
else
|
||
|
log_assert(false);
|
||
|
} else {
|
||
|
if (isalnum(c)) {
|
||
|
mangled += c;
|
||
|
} else if (c == '_') {
|
||
|
mangled += "__";
|
||
|
} else {
|
||
|
char l = c & 0xf, h = (c >> 4) & 0xf;
|
||
|
mangled += '_';
|
||
|
mangled += (h < 10 ? '0' + h : 'a' + h - 10);
|
||
|
mangled += (l < 10 ? '0' + l : 'a' + l - 10);
|
||
|
mangled += '_';
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return mangled;
|
||
|
}
|
||
|
|
||
|
std::string mangle_module_name(const RTLIL::IdString &name)
|
||
|
{
|
||
|
// Class namespace.
|
||
|
return mangle_name(name);
|
||
|
}
|
||
|
|
||
|
std::string mangle_memory_name(const RTLIL::IdString &name)
|
||
|
{
|
||
|
// Class member namespace.
|
||
|
return "memory_" + mangle_name(name);
|
||
|
}
|
||
|
|
||
|
std::string mangle_wire_name(const RTLIL::IdString &name)
|
||
|
{
|
||
|
// Class member namespace.
|
||
|
return mangle_name(name);
|
||
|
}
|
||
|
|
||
|
std::string mangle(const RTLIL::Module *module)
|
||
|
{
|
||
|
return mangle_module_name(module->name);
|
||
|
}
|
||
|
|
||
|
std::string mangle(const RTLIL::Memory *memory)
|
||
|
{
|
||
|
return mangle_memory_name(memory->name);
|
||
|
}
|
||
|
|
||
|
std::string mangle(const RTLIL::Wire *wire)
|
||
|
{
|
||
|
return mangle_wire_name(wire->name);
|
||
|
}
|
||
|
|
||
|
std::string mangle(RTLIL::SigBit sigbit)
|
||
|
{
|
||
|
log_assert(sigbit.wire != NULL);
|
||
|
if (sigbit.wire->width == 1)
|
||
|
return mangle(sigbit.wire);
|
||
|
return mangle(sigbit.wire) + "_" + std::to_string(sigbit.offset);
|
||
|
}
|
||
|
|
||
|
std::string fresh_temporary()
|
||
|
{
|
||
|
return stringf("tmp_%d", temporary++);
|
||
|
}
|
||
|
|
||
|
void dump_attrs(const RTLIL::AttrObject *object)
|
||
|
{
|
||
|
for (auto attr : object->attributes) {
|
||
|
f << indent << "// " << attr.first.str() << ": ";
|
||
|
if (attr.second.flags & RTLIL::CONST_FLAG_STRING) {
|
||
|
f << attr.second.decode_string();
|
||
|
} else {
|
||
|
f << attr.second.as_int(/*is_signed=*/attr.second.flags & RTLIL::CONST_FLAG_SIGNED);
|
||
|
}
|
||
|
f << "\n";
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void dump_const_init(const RTLIL::Const &data, int width, int offset = 0, bool fixed_width = false)
|
||
|
{
|
||
|
f << "{";
|
||
|
while (width > 0) {
|
||
|
const int CHUNK_SIZE = 32;
|
||
|
uint32_t chunk = data.extract(offset, width > CHUNK_SIZE ? CHUNK_SIZE : width).as_int();
|
||
|
if (fixed_width)
|
||
|
f << stringf("0x%08xu", chunk);
|
||
|
else
|
||
|
f << stringf("%#xu", chunk);
|
||
|
if (width > CHUNK_SIZE)
|
||
|
f << ',';
|
||
|
offset += CHUNK_SIZE;
|
||
|
width -= CHUNK_SIZE;
|
||
|
}
|
||
|
f << "}";
|
||
|
}
|
||
|
|
||
|
void dump_const_init(const RTLIL::Const &data)
|
||
|
{
|
||
|
dump_const_init(data, data.size());
|
||
|
}
|
||
|
|
||
|
void dump_const(const RTLIL::Const &data, int width, int offset = 0, bool fixed_width = false)
|
||
|
{
|
||
|
f << "value<" << width << ">";
|
||
|
dump_const_init(data, width, offset, fixed_width);
|
||
|
}
|
||
|
|
||
|
void dump_const(const RTLIL::Const &data)
|
||
|
{
|
||
|
dump_const(data, data.size());
|
||
|
}
|
||
|
|
||
|
bool dump_sigchunk(const RTLIL::SigChunk &chunk, bool is_lhs)
|
||
|
{
|
||
|
if (chunk.wire == NULL) {
|
||
|
dump_const(chunk.data, chunk.width, chunk.offset);
|
||
|
return false;
|
||
|
} else {
|
||
|
f << mangle(chunk.wire) << (is_lhs ? ".next" : ".curr");
|
||
|
if (chunk.width == chunk.wire->width && chunk.offset == 0)
|
||
|
return false;
|
||
|
else if (chunk.width == 1)
|
||
|
f << ".slice<" << chunk.offset << ">()";
|
||
|
else
|
||
|
f << ".slice<" << chunk.offset+chunk.width-1 << "," << chunk.offset << ">()";
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool dump_sigspec(const RTLIL::SigSpec &sig, bool is_lhs)
|
||
|
{
|
||
|
if (sig.empty()) {
|
||
|
f << "value<0>()";
|
||
|
return false;
|
||
|
} else if (sig.is_chunk()) {
|
||
|
return dump_sigchunk(sig.as_chunk(), is_lhs);
|
||
|
} else {
|
||
|
dump_sigchunk(*sig.chunks().rbegin(), is_lhs);
|
||
|
for (auto it = sig.chunks().rbegin() + 1; it != sig.chunks().rend(); ++it) {
|
||
|
f << ".concat(";
|
||
|
dump_sigchunk(*it, is_lhs);
|
||
|
f << ")";
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void dump_sigspec_lhs(const RTLIL::SigSpec &sig)
|
||
|
{
|
||
|
dump_sigspec(sig, /*is_lhs=*/true);
|
||
|
}
|
||
|
|
||
|
void dump_sigspec_rhs(const RTLIL::SigSpec &sig)
|
||
|
{
|
||
|
// In the contexts where we want template argument deduction to occur for `template<size_t Bits> ... value<Bits>`,
|
||
|
// it is necessary to have the argument to already be a `value<N>`, since template argument deduction and implicit
|
||
|
// type conversion are mutually exclusive. In these contexts, we use dump_sigspec_rhs() to emit an explicit
|
||
|
// type conversion, but only if the expression needs it.
|
||
|
bool is_complex = dump_sigspec(sig, /*is_lhs=*/false);
|
||
|
if (is_complex)
|
||
|
f << ".val()";
|
||
|
}
|
||
|
|
||
|
void dump_assign(const RTLIL::SigSig &sigsig)
|
||
|
{
|
||
|
f << indent;
|
||
|
dump_sigspec_lhs(sigsig.first);
|
||
|
f << " = ";
|
||
|
dump_sigspec_rhs(sigsig.second);
|
||
|
f << ";\n";
|
||
|
}
|
||
|
|
||
|
void dump_cell(const RTLIL::Cell *cell)
|
||
|
{
|
||
|
dump_attrs(cell);
|
||
|
f << indent << "// cell " << cell->name.str() << "\n";
|
||
|
// Unary cells
|
||
|
if (cell->type.in(
|
||
|
ID($not), ID($logic_not), ID($reduce_and), ID($reduce_or), ID($reduce_xor), ID($reduce_xnor), ID($reduce_bool),
|
||
|
ID($pos), ID($neg))) {
|
||
|
f << indent;
|
||
|
dump_sigspec_lhs(cell->getPort(ID(Y)));
|
||
|
f << " = " << cell->type.substr(1) << '_' <<
|
||
|
(cell->getParam(ID(A_SIGNED)).as_bool() ? 's' : 'u') <<
|
||
|
"<" << cell->getParam(ID(Y_WIDTH)).as_int() << ">(";
|
||
|
dump_sigspec_rhs(cell->getPort(ID(A)));
|
||
|
f << ");\n";
|
||
|
// Binary cells
|
||
|
} else if (cell->type.in(
|
||
|
ID($and), ID($or), ID($xor), ID($xnor), ID($logic_and), ID($logic_or),
|
||
|
ID($shl), ID($sshl), ID($shr), ID($sshr), ID($shift), ID($shiftx),
|
||
|
ID($eq), ID($ne), ID($eqx), ID($nex), ID($gt), ID($ge), ID($lt), ID($le),
|
||
|
ID($add), ID($sub), ID($mul), ID($div), ID($mod))) {
|
||
|
f << indent;
|
||
|
dump_sigspec_lhs(cell->getPort(ID(Y)));
|
||
|
f << " = " << cell->type.substr(1) << '_' <<
|
||
|
(cell->getParam(ID(A_SIGNED)).as_bool() ? 's' : 'u') <<
|
||
|
(cell->getParam(ID(B_SIGNED)).as_bool() ? 's' : 'u') <<
|
||
|
"<" << cell->getParam(ID(Y_WIDTH)).as_int() << ">(";
|
||
|
dump_sigspec_rhs(cell->getPort(ID(A)));
|
||
|
f << ", ";
|
||
|
dump_sigspec_rhs(cell->getPort(ID(B)));
|
||
|
f << ");\n";
|
||
|
// Muxes
|
||
|
} else if (cell->type == ID($mux)) {
|
||
|
f << indent;
|
||
|
dump_sigspec_lhs(cell->getPort(ID(Y)));
|
||
|
f << " = ";
|
||
|
dump_sigspec_rhs(cell->getPort(ID(S)));
|
||
|
f << " ? ";
|
||
|
dump_sigspec_rhs(cell->getPort(ID(B)));
|
||
|
f << " : ";
|
||
|
dump_sigspec_rhs(cell->getPort(ID(A)));
|
||
|
f << ";\n";
|
||
|
// Parallel (one-hot) muxes
|
||
|
} else if (cell->type == ID($pmux)) {
|
||
|
int width = cell->getParam(ID(WIDTH)).as_int();
|
||
|
int s_width = cell->getParam(ID(S_WIDTH)).as_int();
|
||
|
bool first = true;
|
||
|
for (int part = 0; part < s_width; part++) {
|
||
|
f << (first ? indent : " else ");
|
||
|
first = false;
|
||
|
f << "if (";
|
||
|
dump_sigspec_rhs(cell->getPort(ID(S)).extract(part));
|
||
|
f << ") {\n";
|
||
|
inc_indent();
|
||
|
f << indent;
|
||
|
dump_sigspec_lhs(cell->getPort(ID(Y)));
|
||
|
f << " = ";
|
||
|
dump_sigspec_rhs(cell->getPort(ID(B)).extract(part * width, width));
|
||
|
f << ";\n";
|
||
|
dec_indent();
|
||
|
f << indent << "}";
|
||
|
}
|
||
|
f << " else {\n";
|
||
|
inc_indent();
|
||
|
f << indent;
|
||
|
dump_sigspec_lhs(cell->getPort(ID(Y)));
|
||
|
f << " = ";
|
||
|
dump_sigspec_rhs(cell->getPort(ID(A)));
|
||
|
f << ";\n";
|
||
|
dec_indent();
|
||
|
f << indent << "}\n";
|
||
|
// Flip-flops
|
||
|
} else if (cell->type.in(ID($dff), ID($dffe), ID($adff), ID($dffsr))) {
|
||
|
if (cell->getPort(ID(CLK)).is_wire()) {
|
||
|
// Edge-sensitive logic
|
||
|
RTLIL::SigBit clk_bit = cell->getPort(ID(CLK))[0];
|
||
|
clk_bit = sigmaps[clk_bit.wire->module](clk_bit);
|
||
|
f << indent << "if (" << (cell->getParam(ID(CLK_POLARITY)).as_bool() ? "posedge_" : "negedge_")
|
||
|
<< mangle(clk_bit) << ") {\n";
|
||
|
inc_indent();
|
||
|
if (cell->type == ID($dffe)) {
|
||
|
f << indent << "if (";
|
||
|
dump_sigspec_rhs(cell->getPort(ID(EN)));
|
||
|
f << " == value<1> {" << cell->getParam(ID(EN_POLARITY)).as_bool() << "}) {\n";
|
||
|
inc_indent();
|
||
|
}
|
||
|
f << indent;
|
||
|
dump_sigspec_lhs(cell->getPort(ID(Q)));
|
||
|
f << " = ";
|
||
|
dump_sigspec_rhs(cell->getPort(ID(D)));
|
||
|
f << ";\n";
|
||
|
if (cell->type == ID($dffe)) {
|
||
|
dec_indent();
|
||
|
f << indent << "}\n";
|
||
|
}
|
||
|
dec_indent();
|
||
|
f << indent << "}\n";
|
||
|
}
|
||
|
// Level-sensitive logic
|
||
|
if (cell->type == ID($adff)) {
|
||
|
f << indent << "if (";
|
||
|
dump_sigspec_rhs(cell->getPort(ID(ARST)));
|
||
|
f << " == value<1> {" << cell->getParam(ID(ARST_POLARITY)).as_bool() << "}) {\n";
|
||
|
inc_indent();
|
||
|
f << indent;
|
||
|
dump_sigspec_lhs(cell->getPort(ID(Q)));
|
||
|
f << " = ";
|
||
|
dump_const(cell->getParam(ID(ARST_VALUE)));
|
||
|
f << ";\n";
|
||
|
dec_indent();
|
||
|
f << indent << "}\n";
|
||
|
} else if (cell->type == ID($dffsr)) {
|
||
|
f << indent << "if (";
|
||
|
dump_sigspec_rhs(cell->getPort(ID(CLR)));
|
||
|
f << " == value<1> {" << cell->getParam(ID(CLR_POLARITY)).as_bool() << "}) {\n";
|
||
|
inc_indent();
|
||
|
f << indent;
|
||
|
dump_sigspec_lhs(cell->getPort(ID(Q)));
|
||
|
f << " = ";
|
||
|
dump_const(RTLIL::Const(RTLIL::S0, cell->getParam(ID(WIDTH)).as_int()));
|
||
|
f << ";\n";
|
||
|
dec_indent();
|
||
|
f << indent << "} else if (";
|
||
|
dump_sigspec_rhs(cell->getPort(ID(SET)));
|
||
|
f << " == value<1> {" << cell->getParam(ID(SET_POLARITY)).as_bool() << "}) {\n";
|
||
|
inc_indent();
|
||
|
f << indent;
|
||
|
dump_sigspec_lhs(cell->getPort(ID(Q)));
|
||
|
f << " = ";
|
||
|
dump_const(RTLIL::Const(RTLIL::S1, cell->getParam(ID(WIDTH)).as_int()));
|
||
|
f << ";\n";
|
||
|
dec_indent();
|
||
|
f << indent << "}\n";
|
||
|
}
|
||
|
// Memory ports
|
||
|
} else if (cell->type.in(ID($memrd), ID($memwr))) {
|
||
|
if (cell->getParam(ID(CLK_ENABLE)).as_bool()) {
|
||
|
RTLIL::SigBit clk_bit = cell->getPort(ID(CLK))[0];
|
||
|
clk_bit = sigmaps[clk_bit.wire->module](clk_bit);
|
||
|
f << indent << "if (" << (cell->getParam(ID(CLK_POLARITY)).as_bool() ? "posedge_" : "negedge_")
|
||
|
<< mangle(clk_bit) << ") {\n";
|
||
|
inc_indent();
|
||
|
}
|
||
|
RTLIL::Memory *memory = cell->module->memories[cell->getParam(ID(MEMID)).decode_string()];
|
||
|
if (cell->type == ID($memrd)) {
|
||
|
if (!cell->getPort(ID(EN)).is_fully_ones()) {
|
||
|
f << indent << "if (";
|
||
|
dump_sigspec_rhs(cell->getPort(ID(EN)));
|
||
|
f << ") {\n";
|
||
|
inc_indent();
|
||
|
}
|
||
|
f << indent;
|
||
|
dump_sigspec_lhs(cell->getPort(ID(DATA)));
|
||
|
f << " = " << mangle(memory) << "[";
|
||
|
dump_sigspec_rhs(cell->getPort(ID(ADDR)));
|
||
|
if (writable_memories[memory]) {
|
||
|
// FIXME: the handling of transparent read ports is a bit naughty: normally, nothing on RHS should ever
|
||
|
// read from `next`, since this can result in evaluation order nondeterminism, as well as issues with
|
||
|
// latches. However, for now this is the right tradeoff to make, since it allows to simplify $memrd/$memwr
|
||
|
// codegen dramatically.
|
||
|
f << "]." << (cell->getParam(ID(TRANSPARENT)).as_bool() ? "next" : "curr") << ";\n";
|
||
|
} else {
|
||
|
f << "];\n";
|
||
|
}
|
||
|
if (!cell->getPort(ID(EN)).is_fully_ones()) {
|
||
|
dec_indent();
|
||
|
f << indent << "}\n";
|
||
|
}
|
||
|
} else /*if (cell->type == ID($memwr))*/ {
|
||
|
log_assert(writable_memories[memory]);
|
||
|
// FIXME: handle write port priority.
|
||
|
int width = cell->getParam(ID(WIDTH)).as_int();
|
||
|
std::string lhs_temp = fresh_temporary();
|
||
|
f << indent << "wire<" << width << "> &" << lhs_temp << " = " << mangle(memory) << "[";
|
||
|
dump_sigspec_rhs(cell->getPort(ID(ADDR)));
|
||
|
f << "];\n";
|
||
|
int start = 0;
|
||
|
RTLIL::SigBit prev_en_bit = RTLIL::Sm;
|
||
|
for (int stop = 0; stop < width + 1; stop++) {
|
||
|
if (stop == width || (prev_en_bit != RTLIL::Sm && prev_en_bit != cell->getPort(ID(EN))[stop])) {
|
||
|
f << indent << "if (";
|
||
|
dump_sigspec_rhs(prev_en_bit);
|
||
|
f << ") {\n";
|
||
|
inc_indent();
|
||
|
f << indent << lhs_temp << ".next.slice<" << (stop - 1) << "," << start << ">() = ";
|
||
|
dump_sigspec_rhs(cell->getPort(ID(DATA)).extract(start, stop - start));
|
||
|
f << ";\n";
|
||
|
dec_indent();
|
||
|
f << indent << "}\n";
|
||
|
start = stop + 1;
|
||
|
}
|
||
|
if (stop != width)
|
||
|
prev_en_bit = cell->getPort(ID(EN))[stop];
|
||
|
}
|
||
|
}
|
||
|
if (cell->getParam(ID(CLK_ENABLE)).as_bool()) {
|
||
|
dec_indent();
|
||
|
f << indent << "}\n";
|
||
|
}
|
||
|
// Memory initializers
|
||
|
} else if (cell->type == ID($meminit)) {
|
||
|
// Handled elsewhere.
|
||
|
} else if (cell->type[0] == '$') {
|
||
|
log_cmd_error("Unsupported internal cell `%s'.\n", cell->type.c_str());
|
||
|
} else {
|
||
|
log_assert(false);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void dump_case_rule(const RTLIL::CaseRule *rule)
|
||
|
{
|
||
|
for (auto action : rule->actions)
|
||
|
dump_assign(action);
|
||
|
for (auto switch_ : rule->switches)
|
||
|
dump_switch_rule(switch_);
|
||
|
}
|
||
|
|
||
|
void dump_switch_rule(const RTLIL::SwitchRule *rule)
|
||
|
{
|
||
|
// The switch attributes are printed before the switch condition is captured.
|
||
|
dump_attrs(rule);
|
||
|
std::string signal_temp = fresh_temporary();
|
||
|
f << indent << "const value<" << rule->signal.size() << "> &" << signal_temp << " = ";
|
||
|
dump_sigspec(rule->signal, /*is_lhs=*/false);
|
||
|
f << ";\n";
|
||
|
|
||
|
bool first = true;
|
||
|
for (auto case_ : rule->cases) {
|
||
|
// The case attributes (for nested cases) are printed before the if/else if/else statement.
|
||
|
dump_attrs(rule);
|
||
|
f << indent;
|
||
|
if (!first)
|
||
|
f << "} else ";
|
||
|
first = false;
|
||
|
if (!case_->compare.empty()) {
|
||
|
f << "if (";
|
||
|
bool first = true;
|
||
|
for (auto &compare : case_->compare) {
|
||
|
if (!first)
|
||
|
f << " || ";
|
||
|
first = false;
|
||
|
if (compare.is_fully_def()) {
|
||
|
f << signal_temp << " == ";
|
||
|
dump_sigspec(compare, /*is_lhs=*/false);
|
||
|
} else if (compare.is_fully_const()) {
|
||
|
RTLIL::Const compare_mask, compare_value;
|
||
|
for (auto bit : compare.as_const()) {
|
||
|
switch (bit) {
|
||
|
case RTLIL::S0:
|
||
|
case RTLIL::S1:
|
||
|
compare_mask.bits.push_back(RTLIL::S1);
|
||
|
compare_value.bits.push_back(bit);
|
||
|
break;
|
||
|
|
||
|
case RTLIL::Sx:
|
||
|
case RTLIL::Sz:
|
||
|
case RTLIL::Sa:
|
||
|
compare_mask.bits.push_back(RTLIL::S0);
|
||
|
compare_value.bits.push_back(RTLIL::S0);
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
log_assert(false);
|
||
|
}
|
||
|
}
|
||
|
f << "and_uu<" << compare.size() << ">(" << signal_temp << ", ";
|
||
|
dump_const(compare_mask);
|
||
|
f << ") == ";
|
||
|
dump_const(compare_value);
|
||
|
} else {
|
||
|
log_assert(false);
|
||
|
}
|
||
|
}
|
||
|
f << ") ";
|
||
|
}
|
||
|
f << "{\n";
|
||
|
inc_indent();
|
||
|
dump_case_rule(case_);
|
||
|
dec_indent();
|
||
|
}
|
||
|
f << indent << "}\n";
|
||
|
}
|
||
|
|
||
|
void dump_process(const RTLIL::Process *proc)
|
||
|
{
|
||
|
dump_attrs(proc);
|
||
|
f << indent << "// process " << proc->name.str() << "\n";
|
||
|
// The case attributes (for root case) are always empty.
|
||
|
log_assert(proc->root_case.attributes.empty());
|
||
|
dump_case_rule(&proc->root_case);
|
||
|
for (auto sync : proc->syncs) {
|
||
|
RTLIL::SigBit sync_bit = sync->signal[0];
|
||
|
sync_bit = sigmaps[sync_bit.wire->module](sync_bit);
|
||
|
|
||
|
pool<std::string> events;
|
||
|
switch (sync->type) {
|
||
|
case RTLIL::STp:
|
||
|
events.insert("posedge_" + mangle(sync_bit));
|
||
|
break;
|
||
|
case RTLIL::STn:
|
||
|
events.insert("negedge_" + mangle(sync_bit));
|
||
|
case RTLIL::STe:
|
||
|
events.insert("posedge_" + mangle(sync_bit));
|
||
|
events.insert("negedge_" + mangle(sync_bit));
|
||
|
break;
|
||
|
|
||
|
case RTLIL::ST0:
|
||
|
case RTLIL::ST1:
|
||
|
case RTLIL::STa:
|
||
|
case RTLIL::STg:
|
||
|
case RTLIL::STi:
|
||
|
log_assert(false);
|
||
|
}
|
||
|
if (!events.empty()) {
|
||
|
f << indent << "if (";
|
||
|
bool first = true;
|
||
|
for (auto &event : events) {
|
||
|
if (!first)
|
||
|
f << " || ";
|
||
|
first = false;
|
||
|
f << event;
|
||
|
}
|
||
|
f << ") {\n";
|
||
|
inc_indent();
|
||
|
for (auto action : sync->actions)
|
||
|
dump_assign(action);
|
||
|
dec_indent();
|
||
|
f << indent << "}\n";
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void dump_wire(const RTLIL::Wire *wire)
|
||
|
{
|
||
|
dump_attrs(wire);
|
||
|
f << indent << "wire<" << wire->width << "> " << mangle(wire);
|
||
|
if (wire->attributes.count(ID(init))) {
|
||
|
f << " ";
|
||
|
dump_const_init(wire->attributes.at(ID(init)));
|
||
|
}
|
||
|
f << ";\n";
|
||
|
if (sync_wires[wire]) {
|
||
|
for (auto sync_type : sync_types) {
|
||
|
if (sync_type.first.wire == wire) {
|
||
|
if (sync_type.second != RTLIL::STn)
|
||
|
f << indent << "bool posedge_" << mangle(sync_type.first) << " = false;\n";
|
||
|
if (sync_type.second != RTLIL::STp)
|
||
|
f << indent << "bool negedge_" << mangle(sync_type.first) << " = false;\n";
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void dump_memory(RTLIL::Module *module, const RTLIL::Memory *memory)
|
||
|
{
|
||
|
vector<const RTLIL::Cell*> init_cells;
|
||
|
for (auto cell : module->cells())
|
||
|
if (cell->type == ID($meminit) && cell->getParam(ID(MEMID)).decode_string() == memory->name.str())
|
||
|
init_cells.push_back(cell);
|
||
|
|
||
|
std::sort(init_cells.begin(), init_cells.end(), [](const RTLIL::Cell *a, const RTLIL::Cell *b) {
|
||
|
int a_addr = a->getPort(ID(ADDR)).as_int(), b_addr = b->getPort(ID(ADDR)).as_int();
|
||
|
int a_prio = a->getParam(ID(PRIORITY)).as_int(), b_prio = b->getParam(ID(PRIORITY)).as_int();
|
||
|
return a_prio > b_prio || (a_prio == b_prio && a_addr < b_addr);
|
||
|
});
|
||
|
|
||
|
dump_attrs(memory);
|
||
|
f << indent << "memory_" << (writable_memories[memory] ? "rw" : "ro")
|
||
|
<< "<" << memory->width << "> " << mangle(memory)
|
||
|
<< " { " << memory->size << "u";
|
||
|
if (init_cells.empty()) {
|
||
|
f << " };\n";
|
||
|
} else {
|
||
|
f << ",\n";
|
||
|
inc_indent();
|
||
|
for (auto cell : init_cells) {
|
||
|
dump_attrs(cell);
|
||
|
RTLIL::Const data = cell->getPort(ID(DATA)).as_const();
|
||
|
size_t width = cell->getParam(ID(WIDTH)).as_int();
|
||
|
size_t words = cell->getParam(ID(WORDS)).as_int();
|
||
|
f << indent << "memory_" << (writable_memories[memory] ? "rw" : "ro")
|
||
|
<< "<" << memory->width << ">::init<" << words << "> { "
|
||
|
<< stringf("%#x", cell->getPort(ID(ADDR)).as_int()) << ", {";
|
||
|
inc_indent();
|
||
|
for (size_t n = 0; n < words; n++) {
|
||
|
if (n % 4 == 0)
|
||
|
f << "\n" << indent;
|
||
|
else
|
||
|
f << " ";
|
||
|
dump_const(data, width, n * width, /*fixed_width=*/true);
|
||
|
f << ",";
|
||
|
}
|
||
|
dec_indent();
|
||
|
f << "\n" << indent << "}},\n";
|
||
|
}
|
||
|
dec_indent();
|
||
|
f << indent << "};\n";
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void dump_module(RTLIL::Module *module)
|
||
|
{
|
||
|
dump_attrs(module);
|
||
|
f << "struct " << mangle(module) << " : public module {\n";
|
||
|
inc_indent();
|
||
|
for (auto wire : module->wires())
|
||
|
dump_wire(wire);
|
||
|
f << "\n";
|
||
|
for (auto memory : module->memories)
|
||
|
dump_memory(module, memory.second);
|
||
|
if (!module->memories.empty())
|
||
|
f << "\n";
|
||
|
f << indent << "void eval() override;\n";
|
||
|
f << indent << "bool commit() override;\n";
|
||
|
dec_indent();
|
||
|
f << "}; // struct " << mangle(module) << "\n";
|
||
|
f << "\n";
|
||
|
|
||
|
f << "void " << mangle(module) << "::eval() {\n";
|
||
|
inc_indent();
|
||
|
for (auto cell : module->cells())
|
||
|
dump_cell(cell);
|
||
|
f << indent << "// connections\n";
|
||
|
for (auto conn : module->connections())
|
||
|
dump_assign(conn);
|
||
|
for (auto proc : module->processes)
|
||
|
dump_process(proc.second);
|
||
|
for (auto sync_type : sync_types) {
|
||
|
if (sync_type.first.wire->module == module) {
|
||
|
if (sync_type.second != RTLIL::STn)
|
||
|
f << indent << "posedge_" << mangle(sync_type.first) << " = false;\n";
|
||
|
if (sync_type.second != RTLIL::STp)
|
||
|
f << indent << "negedge_" << mangle(sync_type.first) << " = false;\n";
|
||
|
}
|
||
|
}
|
||
|
dec_indent();
|
||
|
f << "}\n";
|
||
|
|
||
|
f << "\n";
|
||
|
f << "bool " << mangle(module) << "::commit() {\n";
|
||
|
inc_indent();
|
||
|
f << indent << "bool changed = false;\n";
|
||
|
for (auto wire : module->wires()) {
|
||
|
if (sync_wires[wire]) {
|
||
|
std::string wire_prev = mangle(wire) + "_prev";
|
||
|
std::string wire_curr = mangle(wire) + ".curr";
|
||
|
std::string wire_edge = mangle(wire) + "_edge";
|
||
|
f << indent << "value<" << wire->width << "> " << wire_prev << " = " << wire_curr << ";\n";
|
||
|
f << indent << "if (" << mangle(wire) << ".commit()) {\n";
|
||
|
inc_indent();
|
||
|
f << indent << "value<" << wire->width << "> " << wire_edge << " = "
|
||
|
<< wire_prev << ".bit_xor(" << wire_curr << ");\n";
|
||
|
for (auto sync_type : sync_types) {
|
||
|
if (sync_type.first.wire != wire)
|
||
|
continue;
|
||
|
if (sync_type.second != RTLIL::STn) {
|
||
|
f << indent << "if (" << wire_edge << ".slice<" << sync_type.first.offset << ">().val() && "
|
||
|
<< wire_curr << ".slice<" << sync_type.first.offset << ">().val())\n";
|
||
|
inc_indent();
|
||
|
f << indent << "posedge_" << mangle(sync_type.first) << " = true;\n";
|
||
|
dec_indent();
|
||
|
}
|
||
|
if (sync_type.second != RTLIL::STp) {
|
||
|
f << indent << "if (" << wire_edge << ".slice<" << sync_type.first.offset << ">().val() && "
|
||
|
<< "!" << wire_curr << ".slice<" << sync_type.first.offset << ">().val())\n";
|
||
|
inc_indent();
|
||
|
f << indent << "negedge_" << mangle(sync_type.first) << " = true;\n";
|
||
|
dec_indent();
|
||
|
}
|
||
|
f << indent << "changed = true;\n";
|
||
|
}
|
||
|
dec_indent();
|
||
|
f << indent << "}\n";
|
||
|
} else {
|
||
|
f << indent << "changed |= " << mangle(wire) << ".commit();\n";
|
||
|
}
|
||
|
}
|
||
|
for (auto memory : module->memories) {
|
||
|
if (!writable_memories[memory.second])
|
||
|
continue;
|
||
|
f << indent << "for (size_t i = 0; i < " << memory.second->size << "u; i++)\n";
|
||
|
inc_indent();
|
||
|
f << indent << "changed |= " << mangle(memory.second) << "[i].commit();\n";
|
||
|
dec_indent();
|
||
|
}
|
||
|
f << indent << "return changed;\n";
|
||
|
dec_indent();
|
||
|
f << "}\n";
|
||
|
}
|
||
|
|
||
|
void dump_design(RTLIL::Design *design)
|
||
|
{
|
||
|
f << "#include <cxxrtl.h>\n";
|
||
|
f << "\n";
|
||
|
f << "using namespace cxxrtl_yosys;\n";
|
||
|
f << "\n";
|
||
|
f << "namespace cxxrtl_design {\n";
|
||
|
for (auto module : design->modules()) {
|
||
|
if (module->get_blackbox_attribute())
|
||
|
continue;
|
||
|
|
||
|
if (!design->selected_module(module))
|
||
|
continue;
|
||
|
|
||
|
f << "\n";
|
||
|
dump_module(module);
|
||
|
}
|
||
|
f << "\n";
|
||
|
f << "} // namespace cxxrtl_design\n";
|
||
|
}
|
||
|
|
||
|
// Edge-type sync rules require us to emit edge detectors, which require coordination between
|
||
|
// eval and commit phases. To do this we need to collect them upfront.
|
||
|
//
|
||
|
// Note that the simulator commit phase operates at wire granularity but edge-type sync rules
|
||
|
// operate at wire bit granularity; it is possible to have code similar to:
|
||
|
// wire [3:0] clocks;
|
||
|
// always @(posedge clocks[0]) ...
|
||
|
// To handle this we track edge sensitivity both for wires and wire bits.
|
||
|
void register_edge_signal(SigMap &sigmap, RTLIL::SigSpec signal, RTLIL::SyncType type)
|
||
|
{
|
||
|
signal = sigmap(signal);
|
||
|
log_assert(signal.is_wire() && signal.is_bit());
|
||
|
log_assert(type == RTLIL::STp || type == RTLIL::STn || type == RTLIL::STe);
|
||
|
|
||
|
RTLIL::SigBit sigbit = signal[0];
|
||
|
if (!sync_types.count(sigbit))
|
||
|
sync_types[sigbit] = type;
|
||
|
else if (sync_types[sigbit] != type)
|
||
|
sync_types[sigbit] = RTLIL::STe;
|
||
|
sync_wires.insert(signal.as_wire());
|
||
|
}
|
||
|
|
||
|
void analyze_design(RTLIL::Design *design)
|
||
|
{
|
||
|
for (auto module : design->modules()) {
|
||
|
SigMap &sigmap = sigmaps[module];
|
||
|
sigmap.set(module);
|
||
|
|
||
|
for (auto cell : module->cells()) {
|
||
|
// Various DFF cells are treated like posedge/negedge processes, see above for details.
|
||
|
if (cell->type.in(ID($dff), ID($dffe), ID($adff), ID($dffsr))) {
|
||
|
if (cell->getPort(ID(CLK)).is_wire())
|
||
|
register_edge_signal(sigmap, cell->getPort(ID(CLK)),
|
||
|
cell->parameters[ID(CLK_POLARITY)].as_bool() ? RTLIL::STp : RTLIL::STn);
|
||
|
// The $adff and $dffsr cells are level-sensitive, not edge-sensitive (in spite of the fact that they
|
||
|
// are inferred from an edge-sensitive Verilog process) and do not correspond to an edge-type sync rule.
|
||
|
}
|
||
|
// Similar for memory port cells.
|
||
|
if (cell->type.in(ID($memrd), ID($memwr))) {
|
||
|
if (cell->getParam(ID(CLK_ENABLE)).as_bool()) {
|
||
|
if (cell->getPort(ID(CLK)).is_wire())
|
||
|
register_edge_signal(sigmap, cell->getPort(ID(CLK)),
|
||
|
cell->parameters[ID(CLK_POLARITY)].as_bool() ? RTLIL::STp : RTLIL::STn);
|
||
|
}
|
||
|
}
|
||
|
// Optimize access to read-only memories.
|
||
|
if (cell->type == ID($memwr))
|
||
|
writable_memories.insert(module->memories[cell->getParam(ID(MEMID)).decode_string()]);
|
||
|
// Handling of packed memories is delegated to the `memory_unpack` pass, so we can rely on the presence
|
||
|
// of RTLIL memory objects and $memrd/$memwr/$meminit cells.
|
||
|
if (cell->type.in(ID($mem)))
|
||
|
log_assert(false);
|
||
|
}
|
||
|
|
||
|
for (auto proc : module->processes)
|
||
|
for (auto sync : proc.second->syncs)
|
||
|
switch (sync->type) {
|
||
|
// Edge-type sync rules require pre-registration.
|
||
|
case RTLIL::STp:
|
||
|
case RTLIL::STn:
|
||
|
case RTLIL::STe:
|
||
|
register_edge_signal(sigmap, sync->signal, sync->type);
|
||
|
break;
|
||
|
|
||
|
// Level-type sync rules require no special handling.
|
||
|
case RTLIL::ST0:
|
||
|
case RTLIL::ST1:
|
||
|
case RTLIL::STa:
|
||
|
break;
|
||
|
|
||
|
// Handling of init-type sync rules is delegated to the `proc_init` pass, so we can use the wire
|
||
|
// attribute regardless of input.
|
||
|
case RTLIL::STi:
|
||
|
log_assert(false);
|
||
|
|
||
|
case RTLIL::STg:
|
||
|
log_cmd_error("Global clock is not supported.\n");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void check_design(RTLIL::Design *design, bool &has_sync_init, bool &has_packed_mem)
|
||
|
{
|
||
|
has_sync_init = has_packed_mem = false;
|
||
|
|
||
|
for (auto module : design->modules()) {
|
||
|
if (module->get_blackbox_attribute())
|
||
|
continue;
|
||
|
|
||
|
if (!design->selected_whole_module(module))
|
||
|
if (design->selected_module(module))
|
||
|
log_cmd_error("Can't handle partially selected module %s!\n", id2cstr(module->name));
|
||
|
|
||
|
for (auto proc : module->processes)
|
||
|
for (auto sync : proc.second->syncs)
|
||
|
if (sync->type == RTLIL::STi)
|
||
|
has_sync_init = true;
|
||
|
|
||
|
for (auto cell : module->cells())
|
||
|
if (cell->type == ID($mem))
|
||
|
has_packed_mem = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void prepare_design(RTLIL::Design *design)
|
||
|
{
|
||
|
bool has_sync_init, has_packed_mem;
|
||
|
check_design(design, has_sync_init, has_packed_mem);
|
||
|
if (has_sync_init)
|
||
|
Pass::call(design, "proc_init");
|
||
|
if (has_packed_mem)
|
||
|
Pass::call(design, "memory_unpack");
|
||
|
// Recheck the design if it was modified.
|
||
|
if (has_sync_init || has_packed_mem)
|
||
|
check_design(design, has_sync_init, has_packed_mem);
|
||
|
|
||
|
log_assert(!(has_sync_init || has_packed_mem));
|
||
|
analyze_design(design);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
struct CxxrtlBackend : public Backend {
|
||
|
CxxrtlBackend() : Backend("cxxrtl", "convert design to C++ RTL simulation") { }
|
||
|
void help() YS_OVERRIDE
|
||
|
{
|
||
|
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
|
||
|
log("\n");
|
||
|
log(" write_cxxrtl [options] [filename]\n");
|
||
|
log("\n");
|
||
|
log("Write C++ code for simulating the design.\n");
|
||
|
log("\n");
|
||
|
}
|
||
|
void execute(std::ostream *&f, std::string filename, std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
|
||
|
{
|
||
|
log_header(design, "Executing CXXRTL backend.\n");
|
||
|
|
||
|
size_t argidx;
|
||
|
for (argidx = 1; argidx < args.size(); argidx++)
|
||
|
{
|
||
|
// if (args[argidx] == "-top" && argidx+1 < args.size()) {
|
||
|
// top_module_name = args[++argidx];
|
||
|
// continue;
|
||
|
// }
|
||
|
break;
|
||
|
}
|
||
|
extra_args(f, filename, args, argidx);
|
||
|
|
||
|
CxxrtlWorker worker(*f);
|
||
|
worker.prepare_design(design);
|
||
|
worker.dump_design(design);
|
||
|
}
|
||
|
} CxxrtlBackend;
|
||
|
|
||
|
PRIVATE_NAMESPACE_END
|