* New: In cumulus.designflow: add yosysnp to manage Yosys without
Python support enabled.
Add klayout support for running scripts in batch mode.
Add generic system command support.
* Change: In cumulus.designflow.task.TaskFlow, systematically
convert pathes (str) into pathlib.Path in targets and depends.
* New: In cumulus.designflow.clean.Clean, add cleaning by glob.
* Change: In cumulus/plugins/__init__.py, new behavior for loading
plugins supplied as third party. In order to avoid messing up
with the "site-packages/coriolis/" main package tree (with
modules named "coriolis.<MODULE>", they have to be under
"site-packages/addons/coriolis/" (so modules will be named
"addons.coriolis.<MODULE>"). This should prevent *overwritting*
standard modules by third party ones.
Now uses pathlib for module loading.
Had a conflict between Hurricane.Path and pathlib.Path, now do
not import the Hurricane one into the module globals...
* Move all Python stuff under a common Python namespace "coriolis".
* Instead of having a series subtrees for each tool, integrate
everything in one common tree. So now, all components can be
located either with an absolute path from "coriolis" or, inside
cross-reference themselves through relatives imports.
* As a consequence, we only need to add ".../site-packages/coriolis/"
to the PYTHONPATH, and not a whole bunch of subdirectories.
And nothing, if installed in-system.
* The tree of free technologies configuration files is also moved
below "coriolis/technos" instead of "/etc".
* Supressed "cumulus" level for the plugins.
* All python modules are rewritten using relative imports except
for the configuration files that uses absolute import as they
can be cloned outside of the tree to serve as templates.
* Change: In boostrap/FindPythonSitePackages, include "/coriolis" in
Python_CORIOLISARCH and Python_CORIOLISLIB.
Provide a Python_SITELIB *without* "/coriolis" appended.
* Change: In cumulus/plugins/__init__.loadPlugins(), must prefix modules
read in the plugins directory by "coriolis.plugins.". No longer need
to add their path to sys.path.
* Change: In crlcore/python/technos/nodeX/*/devices.py, the scripts of
the layouts generators must be prefixed by "coriolis.oroshi.".
* Change: In CRL::System CTOR, no longer add the pathes of the various
plugins to sys.path. Only "site-packages/coriolis/".
* New: In Utilities::Path::toPyModePath(), new method to convert a
filesystem path into a python module path.
Examples:
"coriolis/plugins/block" --> "coriolis.plugins.block".
"coriolis/plugins/rsave.py" --> "coriolis.plugins.rsave".
* Change: In katanaEngine::_runKatanaEngine(), rename the hook script
initHook.py. No longer need to modify sys.path.
* Change: In BoraEngine::_runBoraEngine(), rename the hook script
initHook.py. No longer need to modify sys.path.
* Change: In UnicornGui::_runUnicornInit(), rename the hook script
initHook.py. No longer need to modify sys.path.
* Change: In cumulus.plugins.chip.constants, put the constants
outside __init__.py to avoid a loop at initialization.
* New: In cumulus/block.bigvia, add a getBoundingBox() method.
* New: In cumulus/block.configuration.GaugeConf.rpAccess(),
add a vertical strap segment in case the RP is not high enough to
accomodate the potential offset of the contact.
In case of gauge with only two routing layers, if the RP
is vertically accessed, do not put a VIA12 but just a METAL2
contact (there will be *no* turn).
* Change: In cumulus/chip.CoreWire.drawWire(), the wire at *chip level*
going to the pad was shrunk of 3 pitch when *not* in the preferred
routing direction. Removing it as it creates gaps in some cases.
This was likely needed for a specific kind of I/O pad so should
be re-enabled on targeted cases in the future.
* Change: In cumulus/chip.corona.VerticalRail, manage in a smarter way
the conflicts when a rail is accessed from both sides overlapping
on an Y position. That is, from the supply I/O pads *and* from the
*core* supply lines.
Formerly, we just didn't connect the core power line, which was
a mistake potentially leaving power rails unconnected (it it did
occur on both sides).
Also checks if the conflict really arise, that is, the power lines
are both on top or bottom.
* Change: In cumulus/chip.pads.Side._placePad(), manage I/O pads with
a bottom left corner of abutment box *not* at (0,0). Argh!
* Bug: In cumulus/chip.pads, create the filler pad instances in the
chip, not in the corona.
* Change: In cumulus/plugins.chip.configuration, do not add an extra
slice height to the minHCorona & minVCorona. Now seems a bit overkill
on small chips.
* New: In NetBuilderHybridVH::_do_1G_xM1_1PinM1(), added configuration
to manage pins on the north/south sides for VH,2RL.
* Bug: In NetBuilderHybridVH::doRp_xG_xM1_xM3(), correct misplaced
vertical creation (buildind invalid topologies).
* New: EtesianEngine::toColoquinte(), display histograms of the cells
widths (in pitch) before and after bloating to get a better feeling
of the behavior.
* New: In EtesianEngine, add support for track avoidance. Portions of
tracks to avoid are specified by a Box, which should flat and on
the axis of the request track. This feature is used by the H-Tree
to clear the vertical tracks under the tree from any terminal.
* New: In Etesian::Area, Slice and SubSlice, add support for track
avoidance. Exported to the Python wrapper.
* New: SubSlice::getUsedVTracks() to get a set of tracks blocked by
the cell.
* New: SubSlice::trackAvoid(), shift left/rigth the cell under the
requested vertical track. Try only to move the cell under the
track and not it's neighbor, so it assume that there is sufficient
space left or right of the cell.
* Bug: In cumulus/plugins.block.configuration.BlockConf, the Cfg
parameters may be read too early from the Cfg space into the
various sub-conf objects (like FeedsConf). Delay the reading
of the parameters in a _postInit() functions.
Modify Block and CoreToChip to call _postInit().
* New: In cumulus/plugins.block.configuration.BlockConf._loadRoutingGauge,
allow the cell gauge name to differ from the routing gauge name.
* New: In cumulus/plugins.block.configuration.FeedsConf, allow to
select the default feed to be used with 'etesian.defaultFeed'
parameter.
* New: In cumulus/plugins.block.spares.BufferPool, allow to control
whether or not we want tie to either side of the pool.
(for latch up).
* New: In cumulus/plugins.block.HTree._connectLeaf(), add support
for track avoidance.
* Bug: In cumulus/plugins.block.HTree._connectLeaf(), the TL2 contact,
the one on the *top* auxiliary buffer seemed to have been badly
positioned until now (too low, not using tl2Y).
This is strange because it should have caused disconnections,
but I didn't see it in the wiring and the regressions tests didn't
flag anything wrong. Still a bit weird and worrying.
Previously, the relevant NetBuilder and routing strategies where
directly guessed from the RoutingGauge traits. This is no longer
doable as the combinations increases. Now to configure both the
global and detailed router we need three "parameters" :
1. The routing gauge itself (tells which layers are in which
directions) and how to make the VIAs.
2. The NetBuilder to use, they are identified by strings.
Currently we support:
* "HV,3RL+", for all SxLib derived standard cells.
* "VH,2RL", for hybrid routing (over the cell, but terminals
are also in the first RL).
* "2RL-", for strict channel routing.
* "VH,3RL+", an attempt for FreePDK 45, not optimized enough
to be considered as usable.
3. The routing style, mostly affect the way the GCell grid will be
built.
* VH : first RL is V.
* HV : first RL is H.
* OTH : Run in full over-the-cell mode (needs at least 3RL).
* Channel : Run in *strict* channel routing mode (no routing over
the standard cells).
* Hybrid : Create channels, but can use H tracks over the
standard cells.
Thoses three parameters are partly overlapping and must be sets in
a consistent manner, otherwise strange results may occurs.
* New: CRL::RoutingGauge::getFirstRoutingGauge(), to get the lowest
layer available for routing (not a PinOnly, not a PowerSupply).
* Change: In CRL::RoutingGauge::isHV() and isVH(), were previously
always returning false when the gauge was 2RL only. Now, check
on the first usable RL.
* Bug: In cumulus/plugins.block.configuration._loadRoutingGauge(),
there was a bad computation of the deep RLs when the top layer
was not defined. Occured for 2RL gauges only.
* Bug: In Anabatic::RpsInRow::slacken() (LayerAssign), forgotten curly braces
in the test to skip METAL2 terminals.
* Change: In Etestian::BloatChannel::getDx(), adjust the bloating
policy to converge on Arlet6502. Always ensure that there is
a 50% ratio between terminal used V-tracks and free ones.
If there is more than 80% of terminals, add one more track.
* Bug: In AnabaticEngine & KatanaEngine, KatanaEngine is a derived
class of AnabaticEngine. They uses Anabatic::Configuration
and Katana::Configuration that also derives from each other.
I though I had made one configuration attribute in the base
class that was using the right Configuration. But no. I did
have two configurations attributes, one in AnabaticEngine and
one in KatanaEngine, the later "shadowing" the former. As a
results, parameters modified in AnabaticEngine, *after* the
initial creation of the tool *where never seen* at Katana
level (due to it's own duplicate). What a mess.
Now there is only one attribute in the *base* class Anabatic,
which is created through a new virtual function _createConfiguration()
called in _postCreate() which allocate the right Configuration
according to the dynamic type of the tool (KatanaEngine).
In KatanaEngine, access the configuration through the
attribute (_configuration) and not the accessor (getConfiguration()).
* Bug: In KatanaEngine, no longer directly use the _configuration attribute
(which is not accessible anyway) but the getConfiguration() accessor.
The accessor perform a static_cast from the Super::getConfiguration()
into Katana::Configuration.
Complete cleanup of the various configuration accessors.
* New: AnabaticEngine::setupNetBuilder(), perform an early check
of the requested NetBuilderStyle. The NetBuilderStyle is just a
string that will be matched against the (hard-coded) supported
NetBuilders. Then check the topological characteristics against
the capabilities of the gauge (HV, VH and so on).
Still a bit too hard-coded for now.
This function has been split from AnabaticEngine::_loadGrByNet().
* Change: AnabaticEngine::isChannelStyle() renamed from isChannelMode().
* New: In Anabatic::Configuration, two new attributes to select the
topology and routing style:
- _netBuilderStyle to explicitely select the NetBuilder to use.
It's a string, which is provided by each NetBuilder.
- _routingStyle to define how the overall routing will work.
It's a set of flags (StyleFlags):
* VH : first RL is V.
* HV : first RL is H.
* OTH : Run in full over-the-cell mode (needs at least 3RL).
* Channel : Run in *strict* channel routing mode (no routing over
the standard cells).
* Hybrid : Create channels, but can use H tracks over the
standard cells.
* New: In anabatic/Constants, add StyleFlags to define how the router
should operate (see above).
* Bug: In Anabatic::GCell, in CTOR, no reason to set up the HChannelGCell flag.
* Bug: In Anabatic::GCell::updateDensity(), when computing layers non contiguous
saturation, do not systematically skip RL 0, but only if it's PinOnly.
* Change: In Anabatic::NetBuilder, rename isTwoMetal by isStrictChannel.
* Change: In Anabatic::NetBuilderHV, rename doRp_AccessNorthPin() in
doRp_AccessNorthSouthPin(). More accurate.
* Bug: In NetBuilderHV::_do_1G_xM1_1PinM2(), the wires to connect the M1
terminals where created *twice*. Uterly stupid, there where placed in
overlap by the router!
* New: In AnabaticEngine, new accessors to the NetBuilderStyle and
RoutingStyle, proxies towards Configuration.
* Bug: In Manipulator::relax(), if there are two doglegs to be done, but
they are in the same GCell, only do one (the conflicting interval)
is short.
* Change: In Katana::Session, rename isChannelMode() into isChannelStyle().
* Change: In TrackSegment::isUnbreakable() and isStrap(), return false
when the base segment is a *weak global* (aligned with a global one).
* Change: In Katana::Row::createChannel(), correctly distinguish between
*strict channel* style and *hybrid* style. Tag the GCells as std cells
row or channels only in the former case.
* New: Hurricane::ErrorWidget, new widget exported to Python to replace
helpers.io.ErrorWidget.
* New: Hurricane::AboutWindow, new window exported to Python to replace
cumulus/plugins.aboutwindow.AboutWidget.
* Change: In cumulus/plugins.sram.sram_256x32, add a new parameter to
__init__() so the user can choose the model name of the generated
SRAM.
* Change: In cumulus/plugins.sram.sram.BaseSRAM.placeInstance(),
placement status must be FIXED instead of PLACED so the placer do
not "unplace" them.
The Cell.updatePlacedFlag() method must also be called once
the model if fully built.
* Change: In CRL/helpers.io, the ErrorWidget requires PyQt5 to execute but
is not mandatory to run Coriolis/cgt. In order to be more portable,
if it is not availble just evert to text display on the console.
This widget will be directly supplied by Coriolis in the future
completely removing the need for PyQt.
*Change: In cumulus/plugins/aboutwindow, same as above.
* New: In cumulus/plugins/sram_256x32.py, build the output mux using a
NAND2/NOR2 binary tree instead of mux2/mux3. Use more, but much
smaller cells. The reduction of wirelength (from Yosys) goes
from 4% to 15% for the non-folded variant.
Uses a specially placed tree to minimize wire length.
* New: In cumulus/plugins/sram.py, extend StdCellConf to convert names
accross library flavors (FlexLib_TSMC_C180, FlexLib_Sky130 and
generic SxLib).
The generator as been build in two parts:
1. A genereric sram.BaseSRAM class to provides support for all kind of
SRAM (grouping column tree, headers, folding).
2. The specific SRAM_256x32 (256 words of 32 bits) suited for the
ethmac.
The sram has been simulated with genpat+asimut and gives identical
results to the Yosys one (at gate level). No timing though.
* Bug: In cumulus/plugins.block.htree.HTree._connectLeaf(), the stacked
contact to connect the top left buffer amplifier was not forcibly
aligned on the vertical METAL5. In some configuaration it was
leading to gaps at METAL5 level.
* Bug: In cumulus/plugins/rsave.py, the Cells where saveds each time
one instance of was encountered. Resulting in multiple saves.
It was, of course, ineficient, but it also triggers a bug
that seems to happen after multiple save : the VHDL additional
property was deleted *before* the full hierarchical dump was
finished.
Now, we save each Cell only once so it does not occur, but
should make a deeper investigation later.
* Bug: In cumulus/plugins.block.HTree._rrouteHTree(), the RoutingPads
for the input and output of the buffer where sometimes put too
close from each others, giving the pitch of the vertical tracks.
Now shift one pitch left the vertical branchs of the H-Tree.
* Bug: In cumulus/plugins.block.HTree._rrouteHTree(), also shift down
one pitch the horizontal branch, due to track rounding they *may*
end up on the same track, generating a short.
* Change: In cumulus/plugins/core2chip, instead of the user providing
an explicit mapping towards the harness I/O pins, we expect that
the core block must have I/O pins with names matching thoses of
the harness. That way, connections are automatically made.
* Change: In cumulus/plugins/block/htree, if the root signal of the
H-Tree is a bit from a vector (like "io_in(0)"), then remove the
vector index notation on all the stem name of all the sub-nets.
Done by the unbitify() function: "io_in(0)" => "io_in_bit0".
* Change: In AnabaticEngine::setupPrerouteds(), take into account the
number of Pins. Now consider a net containing multiple Pins and, at most,
one segment as *non-routed".
This case may specifically happens for nets with pins on the north
and east side, which are slightly *inside* the abutment box (to be
seen by the router) and draw with them their *outside* direct
connection wire.
* Bug: In cumulus/plugins.chip.CoreWire, no longer put the north or
east side external Pin *exacyly* on the abutment box but *one pitch*
inside so they are correctly seens by the P&R (must be *inside*
the area of a GCell).
It is now possible to automatically nest a core block inside a harness
frame, like we do for an ordinary chip whith I/O pads. The DEF harness
file "user_project_wrapper.def" must be made available though the block
configuration variable:
conf.cfg.harness.path = './user_project_wrapper.def'
A first small example is given in:
alliance-check-toolkit/benchs/counter/sky130_c4m
The harness layout is stripped from it's native power grid (but keep
the power ring). I/O pad information in block/configuration is
slightly "bent* to manage pins instead of complete I/O pads.
* Bug: In cumulus/plugins.block.Block.setupAb(), the routingBb was not
set up when working in chip mode. Now set (to the corona AB).
* Change: In cumulus/plugins.chip.__init__, move there the CoreWire
class (from chip/pads.py) so it can be shared with the harness
version of pads.py.
* Change: In cumulus/plugins.chip.powerplane, compute the intersection
between the vertical supply stripes and the deep horizontal power
lines in a smarter fashion, so two (or more) vertically contiguous
BigVias are merged into one (two BigVia side by side where causing
mimimal spacing distance violation on the cut in Sky130).
* New: In cumulus/plugins.block.congiguration: New PowersConf config
sub-object to store characteristics of the "powmid_x0" cell.
The name of the Cell with which to build the vertical power
rails is given though the cfg parameter:
"cfg.etesian.cell.power"
* New: In cumulus/plugins.block.spares, add support for creating
vertical power lines along with the buffers pools of the H-Trees.
At most, one vertical power rail will be put exactly at the right
edge of the buffer pool of each leaf QuadTree. We can reduce that
number, using the parameter:
"cfg.block.vRailsPeriod = N"
Which give the ratio to use (one over N QuadTree leaf).
WARNING: This may not work if the QuadTree is "dented" not in a
corner but in the *middle* of the side. Needs to be
improved and/or checked.
* New: In AnabaticEngine::printMeasures(), re-enable runtime & memory
footprint in measurements.
* Bug: In Anabatic::AutoSegment CTOR, correct computation of the initial
number of global segments. We were relying on the "global" flag,
which is *not* set at this stage. Now compare source and target
GCells.
* New: In KatanaEngine::runGlobalRouter(), store H-ovE & V-ovE in
measurements.
* New: In KatanaEngine CTOR, add the number of gates (flattened) to
the measurments.
* New: In KatanaEngine::runNegociate(), add the number of GCells to
the measurements.
* Change: In KatanaEngine::printCompletion(), compute the wirelengths
in either lambdas (symbolic) or *nanometers* (real).
* New: In cumulus/plugins.block.Block, add a setting to request the
Katana measurements dumping: "cfg.katana.dumpMeasures"
* Change: In cumulus/plugins.block.HTree._rrouteHTree(), make the
non-routing of the root net the default policy. Straight routing
can still be activated with the use of Spares.ROUTE_ROOT_NET.
* Bug: In cumulus/plugins.block.HTree._rrouteHTree(), on the top level
H-Tree, draw a wire to the north side of the abutment box *only*
if the root (usually clock) signal is *external*. It may be that
it is *internal*, so must be routed as a normal one to the root of
the tree.