mirror of https://github.com/lnis-uofu/SOFA.git
Merge remote-tracking branch 'origin/master' into ganesh_dev
This commit is contained in:
commit
89d42cc03d
|
@ -0,0 +1,250 @@
|
|||
<!-- Architecture annotation for OpenFPGA framework
|
||||
This annotation supports the k4_frac_cc_sky130nm.xml
|
||||
- General purpose logic block
|
||||
- K = 6, N = 10, I = 40
|
||||
- Single mode
|
||||
- Routing architecture
|
||||
- L = 4, fc_in = 0.15, fc_out = 0.1
|
||||
- Skywater 130nm PDK
|
||||
- circuit models are binded to the opensource skywater
|
||||
foundry middle-speed (ms) standard cell library
|
||||
-->
|
||||
<openfpga_architecture>
|
||||
<technology_library>
|
||||
<device_library>
|
||||
<device_model name="logic" type="transistor">
|
||||
<lib type="industry" corner="TOP_TT" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
|
||||
<design vdd="0.9" pn_ratio="2"/>
|
||||
<pmos name="pch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
|
||||
<nmos name="nch" chan_length="40e-9" min_width="140e-9" variation="logic_transistor_var"/>
|
||||
</device_model>
|
||||
<device_model name="io" type="transistor">
|
||||
<lib type="academia" ref="M" path="${OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.pm"/>
|
||||
<design vdd="2.5" pn_ratio="3"/>
|
||||
<pmos name="pch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
|
||||
<nmos name="nch_25" chan_length="270e-9" min_width="320e-9" variation="io_transistor_var"/>
|
||||
</device_model>
|
||||
</device_library>
|
||||
<variation_library>
|
||||
<variation name="logic_transistor_var" abs_deviation="0.1" num_sigma="3"/>
|
||||
<variation name="io_transistor_var" abs_deviation="0.1" num_sigma="3"/>
|
||||
</variation_library>
|
||||
</technology_library>
|
||||
<circuit_library>
|
||||
<circuit_model type="inv_buf" name="sky130_fd_sc_hd__inv_1" prefix="sky130_fd_sc_hd__inv_1" is_default="true" verilog_netlist="${SKYWATER_OPENFPGA_HOME}/PDK/skywater-pdk/libraries/sky130_fd_sc_hd/latest/cells/inv/sky130_fd_sc_hd__inv_1.v">
|
||||
<design_technology type="cmos" topology="inverter" size="1"/>
|
||||
<device_technology device_model_name="logic"/>
|
||||
<port type="input" prefix="in" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="out" lib_name="Y" size="1"/>
|
||||
<delay_matrix type="rise" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
<delay_matrix type="fall" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
</circuit_model>
|
||||
<circuit_model type="inv_buf" name="sky130_fd_sc_hd__buf_2" prefix="sky130_fd_sc_hd__buf_2" is_default="false" verilog_netlist="${SKYWATER_OPENFPGA_HOME}/PDK/skywater-pdk/libraries/sky130_fd_sc_hd/latest/cells/buf/sky130_fd_sc_hd__buf_2.v">
|
||||
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="2"/>
|
||||
<device_technology device_model_name="logic"/>
|
||||
<port type="input" prefix="in" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="out" lib_name="X" size="1"/>
|
||||
<delay_matrix type="rise" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
<delay_matrix type="fall" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
</circuit_model>
|
||||
<circuit_model type="inv_buf" name="sky130_fd_sc_hd__buf_4" prefix="sky130_fd_sc_hd__buf_4" is_default="false" verilog_netlist="${SKYWATER_OPENFPGA_HOME}/PDK/skywater-pdk/libraries/sky130_fd_sc_hd/latest/cells/buf/sky130_fd_sc_hd__buf_4.v">
|
||||
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
|
||||
<device_technology device_model_name="logic"/>
|
||||
<port type="input" prefix="in" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="out" lib_name="X" size="1"/>
|
||||
<delay_matrix type="rise" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
<delay_matrix type="fall" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
</circuit_model>
|
||||
<circuit_model type="inv_buf" name="sky130_fd_sc_hd__inv_2" prefix="sky130_fd_sc_hd__inv_2" is_default="false" verilog_netlist="${SKYWATER_OPENFPGA_HOME}/PDK/skywater-pdk/libraries/sky130_fd_sc_hd/latest/cells/inv/sky130_fd_sc_hd__inv_2.v">
|
||||
<design_technology type="cmos" topology="buffer" size="1"/>
|
||||
<device_technology device_model_name="logic"/>
|
||||
<port type="input" prefix="in" lib_name="A" size="1"/>
|
||||
<port type="output" prefix="out" lib_name="Y" size="1"/>
|
||||
<delay_matrix type="rise" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
<delay_matrix type="fall" in_port="in" out_port="out">
|
||||
10e-12
|
||||
</delay_matrix>
|
||||
</circuit_model>
|
||||
<circuit_model type="gate" name="sky130_fd_sc_hd__or2_1" prefix="sky130_fd_sc_hd__or2_1" is_default="true" verilog_netlist="${SKYWATER_OPENFPGA_HOME}/PDK/skywater-pdk/libraries/sky130_fd_sc_hd/latest/cells/or2/sky130_fd_sc_hd__or2_1.v">
|
||||
<design_technology type="cmos" topology="OR"/>
|
||||
<device_technology device_model_name="logic"/>
|
||||
<input_buffer exist="false"/>
|
||||
<output_buffer exist="false"/>
|
||||
<port type="input" prefix="a" lib_name="A" size="1"/>
|
||||
<port type="input" prefix="b" lib_name="B" size="1"/>
|
||||
<port type="output" prefix="out" lib_name="X" size="1"/>
|
||||
<delay_matrix type="rise" in_port="a b" out_port="out">
|
||||
10e-12 5e-12
|
||||
</delay_matrix>
|
||||
<delay_matrix type="fall" in_port="a b" out_port="out">
|
||||
10e-12 5e-12
|
||||
</delay_matrix>
|
||||
</circuit_model>
|
||||
<!-- Define a circuit model for the standard cell MUX2
|
||||
OpenFPGA requires the following truth table for the MUX2
|
||||
When the select signal sel is enabled, the first input, i.e., in0
|
||||
will be propagated to the output, i.e., out
|
||||
If your standard cell provider does not offer the exact truth table,
|
||||
you can simply swap the inputs as shown in the example below
|
||||
-->
|
||||
<circuit_model type="gate" name="sky130_fd_sc_hd__mux2_1" prefix="sky130_fd_sc_hd__mux2_1" verilog_netlist="${SKYWATER_OPENFPGA_HOME}/PDK/skywater-pdk/libraries/sky130_fd_sc_hd/latest/cells/mux2/sky130_fd_sc_hd__mux2_1.v">
|
||||
<design_technology type="cmos" topology="MUX2"/>
|
||||
<device_technology device_model_name="logic"/>
|
||||
<input_buffer exist="false"/>
|
||||
<output_buffer exist="false"/>
|
||||
<port type="input" prefix="in0" lib_name="A1" size="1"/>
|
||||
<port type="input" prefix="in1" lib_name="A0" size="1"/>
|
||||
<port type="input" prefix="sel" lib_name="S" size="1"/>
|
||||
<port type="output" prefix="out" lib_name="X" size="1"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="chan_wire" name="chan_segment" prefix="track_seg" is_default="true">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="false"/>
|
||||
<output_buffer exist="false"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<wire_param model_type="pi" R="101" C="22.5e-15" num_level="1"/>
|
||||
<!-- model_type could be T, res_val and cap_val DON'T CARE -->
|
||||
</circuit_model>
|
||||
<circuit_model type="wire" name="direct_interc" prefix="direct_interc" is_default="true">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="false"/>
|
||||
<output_buffer exist="false"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<wire_param model_type="pi" R="0" C="0" num_level="1"/>
|
||||
<!-- model_type could be T, res_val cap_val should be defined -->
|
||||
</circuit_model>
|
||||
<circuit_model type="mux" name="mux_tree" prefix="mux_tree" is_default="true" dump_structural_verilog="true">
|
||||
<design_technology type="cmos" structure="tree" add_const_input="true" const_input_val="1"/>
|
||||
<input_buffer exist="false"/>
|
||||
<output_buffer exist="false"/>
|
||||
<pass_gate_logic circuit_model_name="sky130_fd_sc_hd__mux2_1"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<port type="sram" prefix="sram" size="1"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="mux" name="mux_tree_tapbuf" prefix="mux_tree_tapbuf" dump_structural_verilog="true">
|
||||
<design_technology type="cmos" structure="tree" add_const_input="true" const_input_val="1"/>
|
||||
<input_buffer exist="false"/>
|
||||
<output_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__buf_4"/>
|
||||
<pass_gate_logic circuit_model_name="sky130_fd_sc_hd__mux2_1"/>
|
||||
<port type="input" prefix="in" size="1"/>
|
||||
<port type="output" prefix="out" size="1"/>
|
||||
<port type="sram" prefix="sram" size="1"/>
|
||||
</circuit_model>
|
||||
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
|
||||
<circuit_model type="ff" name="sky130_fd_sc_hd__sdfxtp_1" prefix="sky130_fd_sc_hd__sdfxtp_1" verilog_netlist="${SKYWATER_OPENFPGA_HOME}/PDK/skywater-pdk/libraries/sky130_fd_sc_hd/latest/cells/sdfxtp/sky130_fd_sc_hd__sdfxtp_1.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__inv_1"/>
|
||||
<output_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__inv_1"/>
|
||||
<port type="input" prefix="D" size="1"/>
|
||||
<port type="input" prefix="DI" lib_name="SCD" size="1"/>
|
||||
<port type="input" prefix="Test_en" lib_name="SCE" size="1" is_global="true" default_val="0"/>
|
||||
<!-- <port type="input" prefix="reset" lib_name="RESET_B" size="1" is_global="true" default_val="1" is_reset="true"/> -->
|
||||
<port type="output" prefix="Q" size="1"/>
|
||||
<port type="clock" prefix="clk" lib_name="CLK" size="1" is_global="true" default_val="0" />
|
||||
</circuit_model>
|
||||
<circuit_model type="lut" name="frac_lut4" prefix="frac_lut4" dump_structural_verilog="true">
|
||||
<design_technology type="cmos" fracturable_lut="true"/>
|
||||
<input_buffer exist="false"/>
|
||||
<output_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__buf_2"/>
|
||||
<lut_input_inverter exist="true" circuit_model_name="sky130_fd_sc_hd__inv_1"/>
|
||||
<lut_input_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__buf_2"/>
|
||||
<lut_intermediate_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__buf_2" location_map="-1-"/>
|
||||
<pass_gate_logic circuit_model_name="sky130_fd_sc_hd__mux2_1"/>
|
||||
<port type="input" prefix="in" size="4" tri_state_map="---1" circuit_model_name="sky130_fd_sc_hd__or2_1"/>
|
||||
<port type="output" prefix="lut3_out" size="2" lut_frac_level="3" lut_output_mask="0,1"/>
|
||||
<port type="output" prefix="lut4_out" size="1" lut_output_mask="0"/>
|
||||
<port type="sram" prefix="sram" size="16"/>
|
||||
<port type="sram" prefix="mode" size="1" mode_select="true" circuit_model_name="sky130_fd_sc_hd__dfxbp_1" default_val="1"/>
|
||||
</circuit_model>
|
||||
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
|
||||
<circuit_model type="ccff" name="sky130_fd_sc_hd__dfxbp_1" prefix="sky130_fd_sc_hd__dfxbp_1" verilog_netlist="${SKYWATER_OPENFPGA_HOME}/PDK/skywater-pdk/libraries/sky130_fd_sc_hd/latest/cells/dfxbp/sky130_fd_sc_hd__dfxbp_1.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__inv_1"/>
|
||||
<output_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__inv_1"/>
|
||||
<port type="input" prefix="D" size="1"/>
|
||||
<port type="output" prefix="Q" size="1"/>
|
||||
<port type="output" prefix="Q_N" size="1"/>
|
||||
<port type="clock" prefix="prog_clk" lib_name="CLK" size="1" is_global="true" default_val="0" is_prog="true"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="iopad" name="GPIN" prefix="GPIN" is_default="true" verilog_netlist="${SKYWATER_OPENFPGA_HOME}/HDL/common/digital_io_hd.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__inv_1"/>
|
||||
<output_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__inv_1"/>
|
||||
<port type="inout" prefix="PAD" lib_name="A" size="1" is_global="true" is_io="true" />
|
||||
<port type="output" prefix="inpad" lib_name="Y" size="1"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="iopad" name="GPOUT" prefix="GPOUT" is_default="false" verilog_netlist="${SKYWATER_OPENFPGA_HOME}/HDL/common/digital_io_hd.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__inv_1"/>
|
||||
<output_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__inv_1"/>
|
||||
<port type="inout" prefix="PAD" lib_name="Y" size="1" is_global="true" is_io="true" />
|
||||
<port type="input" prefix="outpad" lib_name="A" size="1"/>
|
||||
</circuit_model>
|
||||
</circuit_library>
|
||||
<configuration_protocol>
|
||||
<organization type="scan_chain" circuit_model_name="sky130_fd_sc_hd__dfxbp_1" num_regions="1"/>
|
||||
</configuration_protocol>
|
||||
<connection_block>
|
||||
<switch name="ipin_cblock" circuit_model_name="mux_tree_tapbuf"/>
|
||||
</connection_block>
|
||||
<switch_block>
|
||||
<switch name="L1_mux" circuit_model_name="mux_tree_tapbuf"/>
|
||||
<switch name="L2_mux" circuit_model_name="mux_tree_tapbuf"/>
|
||||
<switch name="L4_mux" circuit_model_name="mux_tree_tapbuf"/>
|
||||
</switch_block>
|
||||
<routing_segment>
|
||||
<segment name="L1" circuit_model_name="chan_segment"/>
|
||||
<segment name="L2" circuit_model_name="chan_segment"/>
|
||||
<segment name="L4" circuit_model_name="chan_segment"/>
|
||||
</routing_segment>
|
||||
<direct_connection>
|
||||
<direct name="shift_register" circuit_model_name="direct_interc" type="column" x_dir="positive" y_dir="positive"/>
|
||||
<direct name="scan_chain" circuit_model_name="direct_interc" type="column" x_dir="positive" y_dir="positive"/>
|
||||
</direct_connection>
|
||||
<pb_type_annotations>
|
||||
<!-- physical pb_type binding in complex block IO -->
|
||||
<pb_type name="gp_inpad.inpad" circuit_model_name="GPIN"/>
|
||||
<pb_type name="gp_outpad.outpad" circuit_model_name="GPOUT"/>
|
||||
<!-- End physical pb_type binding in complex block IO -->
|
||||
|
||||
<!-- physical pb_type binding in complex block CLB -->
|
||||
<!-- physical mode will be the default mode if not specified -->
|
||||
<pb_type name="clb.fle" physical_mode_name="physical"/>
|
||||
<pb_type name="clb.fle[physical].fabric.frac_logic.frac_lut4" circuit_model_name="frac_lut4" mode_bits="0"/>
|
||||
<pb_type name="clb.fle[physical].fabric.ff" circuit_model_name="sky130_fd_sc_hd__sdfxtp_1"/>
|
||||
<!-- Binding operating pb_type to physical pb_type -->
|
||||
<pb_type name="clb.fle[n2_lut3].lut3inter.ble3.lut3" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut4" mode_bits="1" physical_pb_type_index_factor="0.5">
|
||||
<!-- Binding the lut3 to the first 3 inputs of fracturable lut4 -->
|
||||
<port name="in" physical_mode_port="in[0:2]"/>
|
||||
<port name="out" physical_mode_port="lut3_out[0:0]" physical_mode_pin_rotate_offset="1"/>
|
||||
</pb_type>
|
||||
<pb_type name="clb.fle[n2_lut3].lut3inter.ble3.ff" physical_pb_type_name="clb.fle[physical].fabric.ff"/>
|
||||
<!-- Binding operating pb_types in mode 'ble4' -->
|
||||
<pb_type name="clb.fle[n1_lut4].ble4.lut4" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut4" mode_bits="0">
|
||||
<!-- Binding the lut4 to the first 4 inputs of fracturable lut4 -->
|
||||
<port name="in" physical_mode_port="in[0:3]"/>
|
||||
<port name="out" physical_mode_port="lut4_out"/>
|
||||
</pb_type>
|
||||
<pb_type name="clb.fle[n1_lut4].ble4.ff" physical_pb_type_name="clb.fle[physical].fabric.ff" physical_pb_type_index_factor="2" physical_pb_type_index_offset="0"/>
|
||||
<!-- Binding operating pb_types in mode 'shift_register' -->
|
||||
<pb_type name="clb.fle[shift_register].shift_reg.ff" physical_pb_type_name="clb.fle[physical].fabric.ff"/>
|
||||
<!-- End physical pb_type binding in complex block IO -->
|
||||
</pb_type_annotations>
|
||||
</openfpga_architecture>
|
|
@ -31,7 +31,7 @@
|
|||
</variation_library>
|
||||
</technology_library>
|
||||
<circuit_library>
|
||||
<circuit_model type="inv_buf" name="sky130_fd_sc_hd__inv_1" prefix="sky130_fd_sc_hd__inv_1" is_default="true" verilog_netlist="${SKYWATER_OPENFPGA_HOME}/PDK/skywater/libraries/sky130_fd_sc_hd/latest/cells/inv/sky130_fd_sc_hd__inv_1.v">
|
||||
<circuit_model type="inv_buf" name="sky130_fd_sc_hd__inv_1" prefix="sky130_fd_sc_hd__inv_1" is_default="true" verilog_netlist="${SKYWATER_OPENFPGA_HOME}/PDK/skywater-pdk/libraries/sky130_fd_sc_hd/latest/cells/inv/sky130_fd_sc_hd__inv_1.v">
|
||||
<design_technology type="cmos" topology="inverter" size="1"/>
|
||||
<device_technology device_model_name="logic"/>
|
||||
<port type="input" prefix="in" lib_name="A" size="1"/>
|
||||
|
@ -43,7 +43,7 @@
|
|||
10e-12
|
||||
</delay_matrix>
|
||||
</circuit_model>
|
||||
<circuit_model type="inv_buf" name="sky130_fd_sc_hd__buf_2" prefix="sky130_fd_sc_hd__buf_2" is_default="false" verilog_netlist="${SKYWATER_OPENFPGA_HOME}/PDK/skywater/libraries/sky130_fd_sc_hd/latest/cells/buf/sky130_fd_sc_hd__buf_2.v">
|
||||
<circuit_model type="inv_buf" name="sky130_fd_sc_hd__buf_2" prefix="sky130_fd_sc_hd__buf_2" is_default="false" verilog_netlist="${SKYWATER_OPENFPGA_HOME}/PDK/skywater-pdk/libraries/sky130_fd_sc_hd/latest/cells/buf/sky130_fd_sc_hd__buf_2.v">
|
||||
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="2"/>
|
||||
<device_technology device_model_name="logic"/>
|
||||
<port type="input" prefix="in" lib_name="A" size="1"/>
|
||||
|
@ -55,7 +55,7 @@
|
|||
10e-12
|
||||
</delay_matrix>
|
||||
</circuit_model>
|
||||
<circuit_model type="inv_buf" name="sky130_fd_sc_hd__buf_4" prefix="sky130_fd_sc_hd__buf_4" is_default="false" verilog_netlist="${SKYWATER_OPENFPGA_HOME}/PDK/skywater/libraries/sky130_fd_sc_hd/latest/cells/buf/sky130_fd_sc_hd__buf_4.v">
|
||||
<circuit_model type="inv_buf" name="sky130_fd_sc_hd__buf_4" prefix="sky130_fd_sc_hd__buf_4" is_default="false" verilog_netlist="${SKYWATER_OPENFPGA_HOME}/PDK/skywater-pdk/libraries/sky130_fd_sc_hd/latest/cells/buf/sky130_fd_sc_hd__buf_4.v">
|
||||
<design_technology type="cmos" topology="buffer" size="1" num_level="2" f_per_stage="4"/>
|
||||
<device_technology device_model_name="logic"/>
|
||||
<port type="input" prefix="in" lib_name="A" size="1"/>
|
||||
|
@ -67,7 +67,7 @@
|
|||
10e-12
|
||||
</delay_matrix>
|
||||
</circuit_model>
|
||||
<circuit_model type="inv_buf" name="sky130_fd_sc_hd__inv_2" prefix="sky130_fd_sc_hd__inv_2" is_default="false" verilog_netlist="${SKYWATER_OPENFPGA_HOME}/PDK/skywater/libraries/sky130_fd_sc_hd/latest/cells/inv/sky130_fd_sc_hd__inv_2.v">
|
||||
<circuit_model type="inv_buf" name="sky130_fd_sc_hd__inv_2" prefix="sky130_fd_sc_hd__inv_2" is_default="false" verilog_netlist="${SKYWATER_OPENFPGA_HOME}/PDK/skywater-pdk/libraries/sky130_fd_sc_hd/latest/cells/inv/sky130_fd_sc_hd__inv_2.v">
|
||||
<design_technology type="cmos" topology="buffer" size="1"/>
|
||||
<device_technology device_model_name="logic"/>
|
||||
<port type="input" prefix="in" lib_name="A" size="1"/>
|
||||
|
@ -79,7 +79,7 @@
|
|||
10e-12
|
||||
</delay_matrix>
|
||||
</circuit_model>
|
||||
<circuit_model type="gate" name="sky130_fd_sc_hd__or2_1" prefix="sky130_fd_sc_hd__or2_1" is_default="true" verilog_netlist="${SKYWATER_OPENFPGA_HOME}/PDK/skywater/libraries/sky130_fd_sc_hd/latest/cells/or2/sky130_fd_sc_hd__or2_1.v">
|
||||
<circuit_model type="gate" name="sky130_fd_sc_hd__or2_1" prefix="sky130_fd_sc_hd__or2_1" is_default="true" verilog_netlist="${SKYWATER_OPENFPGA_HOME}/PDK/skywater-pdk/libraries/sky130_fd_sc_hd/latest/cells/or2/sky130_fd_sc_hd__or2_1.v">
|
||||
<design_technology type="cmos" topology="OR"/>
|
||||
<device_technology device_model_name="logic"/>
|
||||
<input_buffer exist="false"/>
|
||||
|
@ -101,7 +101,7 @@
|
|||
If your standard cell provider does not offer the exact truth table,
|
||||
you can simply swap the inputs as shown in the example below
|
||||
-->
|
||||
<circuit_model type="gate" name="sky130_fd_sc_hd__mux2_1" prefix="sky130_fd_sc_hd__mux2_1" verilog_netlist="${SKYWATER_OPENFPGA_HOME}/PDK/skywater/libraries/sky130_fd_sc_hd/latest/cells/mux2/sky130_fd_sc_hd__mux2_1.v">
|
||||
<circuit_model type="gate" name="sky130_fd_sc_hd__mux2_1" prefix="sky130_fd_sc_hd__mux2_1" verilog_netlist="${SKYWATER_OPENFPGA_HOME}/PDK/skywater-pdk/libraries/sky130_fd_sc_hd/latest/cells/mux2/sky130_fd_sc_hd__mux2_1.v">
|
||||
<design_technology type="cmos" topology="MUX2"/>
|
||||
<device_technology device_model_name="logic"/>
|
||||
<input_buffer exist="false"/>
|
||||
|
@ -148,7 +148,7 @@
|
|||
<port type="sram" prefix="sram" size="1"/>
|
||||
</circuit_model>
|
||||
<!--DFF subckt ports should be defined as <D> <Q> <CLK> <RESET> <SET> -->
|
||||
<circuit_model type="ff" name="sky130_fd_sc_hd__sdfxbp_1" prefix="sky130_fd_sc_hd__sdfxbp_1" verilog_netlist="${SKYWATER_OPENFPGA_HOME}/PDK/skywater/libraries/sky130_fd_sc_hd/latest/cells/sdfxbp/sky130_fd_sc_hd__sdfxbp_1.v">
|
||||
<circuit_model type="ff" name="sky130_fd_sc_hd__sdfxtp_1" prefix="sky130_fd_sc_hd__sdfxtp_1" verilog_netlist="${SKYWATER_OPENFPGA_HOME}/PDK/skywater-pdk/libraries/sky130_fd_sc_hd/latest/cells/sdfxtp/sky130_fd_sc_hd__sdfxtp_1.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__inv_1"/>
|
||||
<output_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__inv_1"/>
|
||||
|
@ -174,7 +174,7 @@
|
|||
<port type="sram" prefix="mode" size="1" mode_select="true" circuit_model_name="sky130_fd_sc_hd__dfxbp_1" default_val="1"/>
|
||||
</circuit_model>
|
||||
<!--Scan-chain DFF subckt ports should be defined as <D> <Q> <Qb> <CLK> <RESET> <SET> -->
|
||||
<circuit_model type="ccff" name="sky130_fd_sc_hd__dfxbp_1" prefix="sky130_fd_sc_hd__dfxbp_1" verilog_netlist="${SKYWATER_OPENFPGA_HOME}/PDK/skywater/libraries/sky130_fd_sc_hd/latest/cells/dfrbp/sky130_fd_sc_hd__dfxbp_1.v">
|
||||
<circuit_model type="ccff" name="sky130_fd_sc_hd__dfxbp_1" prefix="sky130_fd_sc_hd__dfxbp_1" verilog_netlist="${SKYWATER_OPENFPGA_HOME}/PDK/skywater-pdk/libraries/sky130_fd_sc_hd/latest/cells/dfxbp/sky130_fd_sc_hd__dfxbp_1.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__inv_1"/>
|
||||
<output_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__inv_1"/>
|
||||
|
@ -184,7 +184,7 @@
|
|||
<port type="output" prefix="Q_N" size="1"/>
|
||||
<port type="clock" prefix="prog_clk" lib_name="CLK" size="1" is_global="true" default_val="0" is_prog="true"/>
|
||||
</circuit_model>
|
||||
<circuit_model type="iopad" name="GPIO" prefix="GPIO" spice_netlist="${OPENFPGA_PATH}/openfpga_flow/openfpga_cell_library/spice/gpio.sp" verilog_netlist="${SKYWATER_OPENFPGA_HOME}/PDK/sc_verilog/std_cell_extract.v">
|
||||
<circuit_model type="iopad" name="GPIO" prefix="GPIO" verilog_netlist="${SKYWATER_OPENFPGA_HOME}/HDL/common/digital_io_hd.v">
|
||||
<design_technology type="cmos"/>
|
||||
<input_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__inv_1"/>
|
||||
<output_buffer exist="true" circuit_model_name="sky130_fd_sc_hd__inv_1"/>
|
||||
|
@ -233,7 +233,7 @@
|
|||
</pb_type>
|
||||
<pb_type name="clb.fle" physical_mode_name="physical"/>
|
||||
<pb_type name="clb.fle[physical].fabric.frac_logic.frac_lut4" circuit_model_name="frac_lut4" mode_bits="0"/>
|
||||
<pb_type name="clb.fle[physical].fabric.ff" circuit_model_name="sky130_fd_sc_hd__sdfxbp_1"/>
|
||||
<pb_type name="clb.fle[physical].fabric.ff" circuit_model_name="sky130_fd_sc_hd__sdfxtp_1"/>
|
||||
<!-- Binding operating pb_type to physical pb_type -->
|
||||
<pb_type name="clb.fle[n2_lut3].lut3inter.ble3.lut3" physical_pb_type_name="clb.fle[physical].fabric.frac_logic.frac_lut4" mode_bits="1" physical_pb_type_index_factor="0.5">
|
||||
<!-- Binding the lut3 to the first 3 inputs of fracturable lut4 -->
|
||||
|
|
|
@ -0,0 +1,646 @@
|
|||
<!--
|
||||
Low-cost homogeneous FPGA Architecture.
|
||||
|
||||
- Skywater 130 nm technology
|
||||
- General purpose logic block:
|
||||
K = 4, N = 8, fracturable 4 LUTs (can operate as one 4-LUT or two 3-LUTs with all 3 inputs shared)
|
||||
with optionally registered outputs
|
||||
- Routing architecture:
|
||||
- 10% L = 1, fc_in = 0.15, Fc_out = 0.10
|
||||
- 10% L = 2, fc_in = 0.15, Fc_out = 0.10
|
||||
- 80% L = 4, fc_in = 0.15, Fc_out = 0.10
|
||||
- 100 routing tracks per channel
|
||||
|
||||
Authors: Xifan Tang
|
||||
-->
|
||||
<architecture>
|
||||
<!--
|
||||
ODIN II specific config begins
|
||||
Describes the types of user-specified netlist blocks (in blif, this corresponds to
|
||||
".model [type_of_block]") that this architecture supports.
|
||||
|
||||
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
|
||||
already special structures in blif (.names, .input, .output, and .latch)
|
||||
that describe them.
|
||||
-->
|
||||
<models>
|
||||
<!-- A virtual model for I/O to be used in the physical mode of io block -->
|
||||
<model name="frac_lut4">
|
||||
<input_ports>
|
||||
<port name="in"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="lut3_out"/>
|
||||
<port name="lut4_out"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
<!-- A virtual model for scan-chain flip-flop to be used in the physical mode of FF -->
|
||||
<model name="scff">
|
||||
<input_ports>
|
||||
<port name="D" clock="clk"/>
|
||||
<port name="DI" clock="clk"/>
|
||||
<port name="clk" is_clock="1"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="Q" clock="clk"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
</models>
|
||||
<tiles>
|
||||
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
|
||||
If you need to register the I/O, define clocks in the circuit models
|
||||
These clocks can be handled in back-end
|
||||
-->
|
||||
<tile name="gp_inpad" capacity="8" area="0">
|
||||
<equivalent_sites>
|
||||
<site pb_type="gp_inpad"/>
|
||||
</equivalent_sites>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="left">gp_inpad.inpad</loc>
|
||||
<loc side="top">gp_inpad.inpad</loc>
|
||||
<loc side="right">gp_inpad.inpad</loc>
|
||||
<loc side="bottom">gp_inpad.inpad</loc>
|
||||
</pinlocations>
|
||||
</tile>
|
||||
<tile name="gp_outpad" capacity="8" area="0">
|
||||
<equivalent_sites>
|
||||
<site pb_type="gp_outpad"/>
|
||||
</equivalent_sites>
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="left">gp_outpad.outpad</loc>
|
||||
<loc side="top">gp_outpad.outpad</loc>
|
||||
<loc side="right">gp_outpad.outpad</loc>
|
||||
<loc side="bottom">gp_outpad.outpad</loc>
|
||||
</pinlocations>
|
||||
</tile>
|
||||
<tile name="clb" area="53894">
|
||||
<equivalent_sites>
|
||||
<site pb_type="clb"/>
|
||||
</equivalent_sites>
|
||||
<input name="I0" num_pins="3" equivalent="full"/>
|
||||
<input name="I0i" num_pins="1" equivalent="none"/>
|
||||
<input name="I1" num_pins="3" equivalent="full"/>
|
||||
<input name="I1i" num_pins="1" equivalent="none"/>
|
||||
<input name="I2" num_pins="3" equivalent="full"/>
|
||||
<input name="I2i" num_pins="1" equivalent="none"/>
|
||||
<input name="I3" num_pins="3" equivalent="full"/>
|
||||
<input name="I3i" num_pins="1" equivalent="none"/>
|
||||
<input name="I4" num_pins="3" equivalent="full"/>
|
||||
<input name="I4i" num_pins="1" equivalent="none"/>
|
||||
<input name="I5" num_pins="3" equivalent="full"/>
|
||||
<input name="I5i" num_pins="1" equivalent="none"/>
|
||||
<input name="I6" num_pins="3" equivalent="full"/>
|
||||
<input name="I6i" num_pins="1" equivalent="none"/>
|
||||
<input name="I7" num_pins="3" equivalent="full"/>
|
||||
<input name="I7i" num_pins="1" equivalent="none"/>
|
||||
<input name="regin" num_pins="1"/>
|
||||
<input name="scin" num_pins="1"/>
|
||||
<output name="O" num_pins="16" equivalent="none"/>
|
||||
<output name="regout" num_pins="1"/>
|
||||
<output name="scout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10">
|
||||
<fc_override port_name="regin" fc_type="frac" fc_val="0"/>
|
||||
<fc_override port_name="regout" fc_type="frac" fc_val="0"/>
|
||||
<fc_override port_name="scin" fc_type="frac" fc_val="0"/>
|
||||
<fc_override port_name="scout" fc_type="frac" fc_val="0"/>
|
||||
</fc>
|
||||
<!--pinlocations pattern="spread"/-->
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="left">clb.clk</loc>
|
||||
<loc side="top">clb.regin clb.scin</loc>
|
||||
<loc side="right">clb.O[7:0] clb.I0 clb.I0i clb.I1 clb.I1i clb.I2 clb.I2i clb.I3 clb.I3i </loc>
|
||||
<loc side="bottom">clb.regout clb.scout clb.O[15:8] clb.I4 clb.I4i clb.I5 clb.I5i clb.I6 clb.I6i clb.I7 clb.I7i</loc>
|
||||
</pinlocations>
|
||||
</tile>
|
||||
</tiles>
|
||||
<!-- ODIN II specific config ends -->
|
||||
<!-- Physical descriptions begin -->
|
||||
<layout tileable="true">
|
||||
<auto_layout aspect_ratio="1.0">
|
||||
<!-- On each side, general-purpose inpad and outpad are interleaved -->
|
||||
<!-- On top side, I/Os are organized as inpad, outpad, inpad, outpad, ... -->
|
||||
<region type="gp_inpad" priority="100" startx="1" endx="W-1" incrx="2" starty="H-1" endy="H-1"/>
|
||||
<region type="gp_outpad" priority="100" startx="2" endx="W-1" incrx="2" starty="H-1" endy="H-1"/>
|
||||
<!-- On right side, I/Os are organized as
|
||||
inpad
|
||||
outpad
|
||||
...
|
||||
inpad
|
||||
outpad
|
||||
This is to avoid unroutable conditions when FPGA size is too small (only gp_inpad is available)
|
||||
-->
|
||||
<region type="gp_outpad" priority="100" startx="W-1" endx="W-1" starty="1" endy="H-1" incry="2"/>
|
||||
<region type="gp_inpad" priority="100" startx="W-1" endx="W-1" starty="2" endy="H-1" incry="2"/>
|
||||
<!-- On top side, I/Os are organized as inpad, outpad, inpad, outpad, ... -->
|
||||
<region type="gp_inpad" priority="100" startx="1" endx="W-1" incrx="2" starty="0" endy="0"/>
|
||||
<region type="gp_outpad" priority="100" startx="2" endx="W-1" incrx="2" starty="0" endy="0"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!-- On left side, I/Os are organized as
|
||||
inpad
|
||||
outpad
|
||||
...
|
||||
inpad
|
||||
outpad
|
||||
This is to avoid unroutable conditions when FPGA size is too small (only gp_inpad is available)
|
||||
-->
|
||||
<region type="gp_outpad" priority="100" startx="0" endx="0" starty="1" endy="H-1" incry="2"/>
|
||||
<region type="gp_inpad" priority="100" startx="0" endx="0" starty="2" endy="H-1" incry="2"/>
|
||||
<!--Fill with 'clb'-->
|
||||
<fill type="clb" priority="10"/>
|
||||
</auto_layout>
|
||||
<fixed_layout name="2x2" width="4" height="4">
|
||||
<!-- On each side, general-purpose inpad and outpad are interleaved -->
|
||||
<!-- On top side, I/Os are organized as inpad, outpad, inpad, outpad, ... -->
|
||||
<region type="gp_inpad" priority="100" startx="1" endx="W-1" incrx="2" starty="H-1" endy="H-1"/>
|
||||
<region type="gp_outpad" priority="100" startx="2" endx="W-1" incrx="2" starty="H-1" endy="H-1"/>
|
||||
<!-- On right side, I/Os are organized as
|
||||
inpad
|
||||
outpad
|
||||
...
|
||||
inpad
|
||||
outpad
|
||||
This is to avoid unroutable conditions when FPGA size is too small (only gp_inpad is available)
|
||||
-->
|
||||
<region type="gp_outpad" priority="100" startx="W-1" endx="W-1" starty="1" endy="H-1" incry="2"/>
|
||||
<region type="gp_inpad" priority="100" startx="W-1" endx="W-1" starty="2" endy="H-1" incry="2"/>
|
||||
<!-- On top side, I/Os are organized as inpad, outpad, inpad, outpad, ... -->
|
||||
<region type="gp_inpad" priority="100" startx="1" endx="W-1" incrx="2" starty="0" endy="0"/>
|
||||
<region type="gp_outpad" priority="100" startx="2" endx="W-1" incrx="2" starty="0" endy="0"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!-- On left side, I/Os are organized as
|
||||
inpad
|
||||
outpad
|
||||
...
|
||||
inpad
|
||||
outpad
|
||||
This is to avoid unroutable conditions when FPGA size is too small (only gp_inpad is available)
|
||||
-->
|
||||
<region type="gp_outpad" priority="100" startx="0" endx="0" starty="1" endy="H-1" incry="2"/>
|
||||
<region type="gp_inpad" priority="100" startx="0" endx="0" starty="2" endy="H-1" incry="2"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!--Fill with 'clb'-->
|
||||
<fill type="clb" priority="10"/>
|
||||
</fixed_layout>
|
||||
</layout>
|
||||
<device>
|
||||
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
|
||||
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
|
||||
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
|
||||
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
|
||||
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
|
||||
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
|
||||
lined up with Stratix IV.
|
||||
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
|
||||
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
|
||||
by 2.5x when looking up in Jeff's tables.
|
||||
The delay values are lined up with Stratix IV, which has an architecture similar to this
|
||||
proposed FPGA, and which is also 40 nm
|
||||
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
|
||||
4x minimum drive strength buffer. -->
|
||||
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
|
||||
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
|
||||
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
|
||||
-->
|
||||
<area grid_logic_tile_area="0"/>
|
||||
<chan_width_distr>
|
||||
<x distr="uniform" peak="1.000000"/>
|
||||
<y distr="uniform" peak="1.000000"/>
|
||||
</chan_width_distr>
|
||||
<switch_block type="wilton" fs="3" sub_type="subset" sub_fs="3"/>
|
||||
<connection_block input_switch_name="ipin_cblock"/>
|
||||
</device>
|
||||
<switchlist>
|
||||
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
|
||||
book area formula. This means the mux transistors are about 5x minimum drive strength.
|
||||
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
|
||||
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
|
||||
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
|
||||
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
|
||||
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
|
||||
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
|
||||
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
|
||||
2.5x when looking up in Jeff's tables.
|
||||
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
|
||||
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
|
||||
<switch type="mux" name="L1_mux" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
|
||||
<switch type="mux" name="L2_mux" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
|
||||
<switch type="mux" name="L4_mux" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
|
||||
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
|
||||
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
|
||||
</switchlist>
|
||||
<segmentlist>
|
||||
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
|
||||
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
|
||||
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
|
||||
<!-- GIVE a specific name for the segment! OpenFPGA appreciate that! -->
|
||||
<segment name="L1" freq="0.10" length="1" type="unidir" Rmetal="101" Cmetal="22.5e-15">
|
||||
<mux name="L1_mux"/>
|
||||
<sb type="pattern">1 1</sb>
|
||||
<cb type="pattern">1</cb>
|
||||
</segment>
|
||||
<segment name="L2" freq="0.10" length="2" type="unidir" Rmetal="101" Cmetal="22.5e-15">
|
||||
<mux name="L2_mux"/>
|
||||
<sb type="pattern">1 1 1</sb>
|
||||
<cb type="pattern">1 1</cb>
|
||||
</segment>
|
||||
<segment name="L4" freq="0.80" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
|
||||
<mux name="L4_mux"/>
|
||||
<sb type="pattern">1 1 1 1 1</sb>
|
||||
<cb type="pattern">1 1 1 1</cb>
|
||||
</segment>
|
||||
</segmentlist>
|
||||
<directlist>
|
||||
<direct name="shift_register" from_pin="clb.regout" to_pin="clb.regin" x_offset="0" y_offset="-1" z_offset="0"/>
|
||||
<direct name="scan_chain" from_pin="clb.scout" to_pin="clb.scin" x_offset="0" y_offset="-1" z_offset="0"/>
|
||||
</directlist>
|
||||
<complexblocklist>
|
||||
<!-- Different from GPIOs, embedded I/O interfaces can afford splitting
|
||||
input and output pin. Therefore, the input pad and output pad are defined
|
||||
as different blocks
|
||||
-->
|
||||
<!-- Define input pads begin -->
|
||||
<pb_type name="gp_inpad">
|
||||
<output name="inpad" num_pins="1"/>
|
||||
<pb_type name="inpad" blif_model=".input" num_pb="1">
|
||||
<output name="inpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="inpad" input="inpad.inpad" output="gp_inpad.inpad">
|
||||
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="gp_inpad.inpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
<power method="ignore"/>
|
||||
</pb_type>
|
||||
<!-- Define input pads end -->
|
||||
<!-- Define output pads begin -->
|
||||
<pb_type name="gp_outpad">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<pb_type name="outpad" blif_model=".output" num_pb="1">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="outpad" input="gp_outpad.outpad" output="outpad.outpad">
|
||||
<delay_constant max="1.394e-11" in_port="gp_outpad.outpad" out_port="outpad.outpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
<power method="ignore"/>
|
||||
</pb_type>
|
||||
<!-- Define output pads end -->
|
||||
<!-- Define general purpose logic block (CLB) begin -->
|
||||
<!-- -Due to the absence of local routing,
|
||||
the 4 inputs of fracturable LUT4 are no longer equivalent,
|
||||
because the 4th input can not be switched when the dual-LUT3 modes are used.
|
||||
So pin equivalence should be applied to the first 3 inputs only
|
||||
-->
|
||||
<pb_type name="clb">
|
||||
<input name="I0" num_pins="3" equivalent="full"/>
|
||||
<input name="I0i" num_pins="1" equivalent="none"/>
|
||||
<input name="I1" num_pins="3" equivalent="full"/>
|
||||
<input name="I1i" num_pins="1" equivalent="none"/>
|
||||
<input name="I2" num_pins="3" equivalent="full"/>
|
||||
<input name="I2i" num_pins="1" equivalent="none"/>
|
||||
<input name="I3" num_pins="3" equivalent="full"/>
|
||||
<input name="I3i" num_pins="1" equivalent="none"/>
|
||||
<input name="I4" num_pins="3" equivalent="full"/>
|
||||
<input name="I4i" num_pins="1" equivalent="none"/>
|
||||
<input name="I5" num_pins="3" equivalent="full"/>
|
||||
<input name="I5i" num_pins="1" equivalent="none"/>
|
||||
<input name="I6" num_pins="3" equivalent="full"/>
|
||||
<input name="I6i" num_pins="1" equivalent="none"/>
|
||||
<input name="I7" num_pins="3" equivalent="full"/>
|
||||
<input name="I7i" num_pins="1" equivalent="none"/>
|
||||
<input name="regin" num_pins="1"/>
|
||||
<input name="scin" num_pins="1"/>
|
||||
<output name="O" num_pins="16" equivalent="none"/>
|
||||
<output name="regout" num_pins="1"/>
|
||||
<output name="scout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Describe fracturable logic element.
|
||||
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
|
||||
The outputs of the fracturable logic element can be optionally registered
|
||||
-->
|
||||
<pb_type name="fle" num_pb="8">
|
||||
<input name="in" num_pins="4"/>
|
||||
<input name="regin" num_pins="1"/>
|
||||
<input name="scin" num_pins="1"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<output name="regout" num_pins="1"/>
|
||||
<output name="scout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Physical mode definition begin (physical implementation of the fle) -->
|
||||
<mode name="physical" disabled_in_pack="true">
|
||||
<pb_type name="fabric" num_pb="1">
|
||||
<input name="in" num_pins="4"/>
|
||||
<input name="regin" num_pins="1"/>
|
||||
<input name="scin" num_pins="1"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<output name="regout" num_pins="1"/>
|
||||
<output name="scout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<pb_type name="frac_logic" num_pb="1">
|
||||
<input name="in" num_pins="4"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<!-- Define LUT -->
|
||||
<pb_type name="frac_lut4" blif_model=".subckt frac_lut4" num_pb="1">
|
||||
<input name="in" num_pins="4"/>
|
||||
<output name="lut3_out" num_pins="2"/>
|
||||
<output name="lut4_out" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="frac_logic.in" output="frac_lut4.in"/>
|
||||
<direct name="direct2" input="frac_lut4.lut3_out[1]" output="frac_logic.out[1]"/>
|
||||
<!-- Xifan Tang: I use out[0] because the output of lut6 in lut6 mode is wired to the out[0] -->
|
||||
<mux name="mux1" input="frac_lut4.lut4_out frac_lut4.lut3_out[0]" output="frac_logic.out[0]"/>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<!-- Define flip-flop with scan-chain capability, DI is the scan-chain data input -->
|
||||
<pb_type name="ff" blif_model=".subckt scff" num_pb="2">
|
||||
<input name="D" num_pins="1"/>
|
||||
<input name="DI" num_pins="1"/>
|
||||
<output name="Q" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_setup value="66e-12" port="ff.DI" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fabric.in" output="frac_logic.in"/>
|
||||
<direct name="direct2" input="fabric.scin" output="ff[0].DI"/>
|
||||
<direct name="direct3" input="ff[0].Q" output="ff[1].DI"/>
|
||||
<direct name="direct4" input="ff[1].Q" output="fabric.scout"/>
|
||||
<direct name="direct5" input="ff[1].Q" output="fabric.regout"/>
|
||||
<direct name="direct6" input="frac_logic.out[1:1]" output="ff[1:1].D"/>
|
||||
<complete name="complete1" input="fabric.clk" output="ff[1:0].clk"/>
|
||||
<mux name="mux1" input="frac_logic.out[0:0] fabric.regin" output="ff[0:0].D">
|
||||
<delay_constant max="25e-12" in_port="frac_logic.out[0:0]" out_port="ff[0:0].D"/>
|
||||
<delay_constant max="45e-12" in_port="fabric.regin" out_port="ff[0:0].D"/>
|
||||
</mux>
|
||||
<mux name="mux2" input="ff[0].Q frac_logic.out[0]" output="fabric.out[0]">
|
||||
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||
<delay_constant max="25e-12" in_port="frac_logic.out[0]" out_port="fabric.out[0]"/>
|
||||
<delay_constant max="45e-12" in_port="ff[0].Q" out_port="fabric.out[0]"/>
|
||||
</mux>
|
||||
<mux name="mux3" input="ff[1].Q frac_logic.out[1]" output="fabric.out[1]">
|
||||
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||
<delay_constant max="25e-12" in_port="frac_logic.out[1]" out_port="fabric.out[1]"/>
|
||||
<delay_constant max="45e-12" in_port="ff[1].Q" out_port="fabric.out[1]"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in" output="fabric.in"/>
|
||||
<direct name="direct3" input="fle.regin" output="fabric.regin"/>
|
||||
<direct name="direct4" input="fle.scin" output="fabric.scin"/>
|
||||
<direct name="direct5" input="fabric.out" output="fle.out"/>
|
||||
<direct name="direct7" input="fabric.regout" output="fle.regout"/>
|
||||
<direct name="direct8" input="fabric.scout" output="fle.scout"/>
|
||||
<direct name="direct9" input="fle.clk" output="fabric.clk"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- Physical mode definition end (physical implementation of the fle) -->
|
||||
<!-- Dual 3-LUT mode definition begin -->
|
||||
<mode name="n2_lut3">
|
||||
<pb_type name="lut3inter" num_pb="1">
|
||||
<input name="in" num_pins="3"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<pb_type name="ble3" num_pb="2">
|
||||
<input name="in" num_pins="3"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Define the LUT -->
|
||||
<pb_type name="lut3" blif_model=".names" num_pb="1" class="lut">
|
||||
<input name="in" num_pins="3" port_class="lut_in"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out"/>
|
||||
<!-- LUT timing using delay matrix -->
|
||||
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
|
||||
we instead take the average of these numbers to get more stable results
|
||||
82e-12
|
||||
173e-12
|
||||
261e-12
|
||||
263e-12
|
||||
398e-12
|
||||
-->
|
||||
<delay_matrix type="max" in_port="lut3.in" out_port="lut3.out">
|
||||
235e-12
|
||||
235e-12
|
||||
235e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
<!-- Define the flip-flop -->
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ble3.in[2:0]" output="lut3[0:0].in[2:0]"/>
|
||||
<direct name="direct2" input="lut3[0:0].out" output="ff[0:0].D">
|
||||
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
|
||||
<pack_pattern name="ble3" in_port="lut3[0:0].out" out_port="ff[0:0].D"/>
|
||||
</direct>
|
||||
<direct name="direct3" input="ble3.clk" output="ff[0:0].clk"/>
|
||||
<mux name="mux1" input="ff[0:0].Q lut3.out[0:0]" output="ble3.out[0:0]">
|
||||
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||
<delay_constant max="25e-12" in_port="lut3.out[0:0]" out_port="ble3.out[0:0]"/>
|
||||
<delay_constant max="45e-12" in_port="ff[0:0].Q" out_port="ble3.out[0:0]"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="lut3inter.in" output="ble3[0:0].in"/>
|
||||
<direct name="direct2" input="lut3inter.in" output="ble3[1:1].in"/>
|
||||
<direct name="direct3" input="ble3[1:0].out" output="lut3inter.out"/>
|
||||
<complete name="complete1" input="lut3inter.clk" output="ble3[1:0].clk"/>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in[2:0]" output="lut3inter.in"/>
|
||||
<direct name="direct2" input="lut3inter.out" output="fle.out"/>
|
||||
<direct name="direct3" input="fle.clk" output="lut3inter.clk"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- Dual 3-LUT mode definition end -->
|
||||
<!-- 4-LUT mode definition begin -->
|
||||
<mode name="n1_lut4">
|
||||
<!-- Define 4-LUT mode -->
|
||||
<pb_type name="ble4" num_pb="1">
|
||||
<input name="in" num_pins="4"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Define LUT -->
|
||||
<pb_type name="lut4" blif_model=".names" num_pb="1" class="lut">
|
||||
<input name="in" num_pins="4" port_class="lut_in"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out"/>
|
||||
<!-- LUT timing using delay matrix -->
|
||||
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
|
||||
we instead take the average of these numbers to get more stable results
|
||||
82e-12
|
||||
173e-12
|
||||
261e-12
|
||||
263e-12
|
||||
398e-12
|
||||
397e-12
|
||||
-->
|
||||
<delay_matrix type="max" in_port="lut4.in" out_port="lut4.out">
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
<!-- Define flip-flop -->
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ble4.in" output="lut4[0:0].in"/>
|
||||
<direct name="direct2" input="lut4.out" output="ff.D">
|
||||
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
|
||||
<pack_pattern name="ble4" in_port="lut4.out" out_port="ff.D"/>
|
||||
</direct>
|
||||
<direct name="direct3" input="ble4.clk" output="ff.clk"/>
|
||||
<mux name="mux1" input="ff.Q lut4.out" output="ble4.out">
|
||||
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||
<delay_constant max="25e-12" in_port="lut4.out" out_port="ble4.out"/>
|
||||
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble4.out"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in" output="ble4.in"/>
|
||||
<direct name="direct2" input="ble4.out" output="fle.out[0:0]"/>
|
||||
<direct name="direct3" input="fle.clk" output="ble4.clk"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- 4-LUT mode definition end -->
|
||||
<!-- Define shift register begin -->
|
||||
<mode name="shift_register">
|
||||
<pb_type name="shift_reg" num_pb="1">
|
||||
<input name="regin" num_pins="1"/>
|
||||
<output name="regout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="2" class="flipflop">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="shift_reg.regin" output="ff[0].D"/>
|
||||
<direct name="direct2" input="ff[0].Q" output="ff[1].D"/>
|
||||
<direct name="direct3" input="ff[1].Q" output="shift_reg.regout"/>
|
||||
<complete name="complete1" input="shift_reg.clk" output="ff.clk"/>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.regin" output="shift_reg.regin"/>
|
||||
<direct name="direct2" input="shift_reg.regout" output="fle.regout"/>
|
||||
<direct name="direct3" input="fle.clk" output="shift_reg.clk"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- Define shift register end -->
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<!-- We use direct connections to reduce the area to the most
|
||||
The global local routing is going to compensate the loss in routability
|
||||
-->
|
||||
<direct name="direct_fle0" input="clb.I0" output="fle[0:0].in[0:2]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle0i" input="clb.I0i" output="fle[0:0].in[3]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle1" input="clb.I1" output="fle[1:1].in[0:2]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle1i" input="clb.I1i" output="fle[1:1].in[3]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle2" input="clb.I2" output="fle[2:2].in[0:2]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle2i" input="clb.I2i" output="fle[2:2].in[3]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle3" input="clb.I3" output="fle[3:3].in[0:2]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle3i" input="clb.I3i" output="fle[3:3].in[3]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle4" input="clb.I4" output="fle[4:4].in[0:2]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle4i" input="clb.I4i" output="fle[4:4].in[3]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle5" input="clb.I5" output="fle[5:5].in[0:2]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle5i" input="clb.I5i" output="fle[5:5].in[3]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle6" input="clb.I6" output="fle[6:6].in[0:2]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle6i" input="clb.I6i" output="fle[6:6].in[3]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle7" input="clb.I7" output="fle[7:7].in[0:2]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle7i" input="clb.I7i" output="fle[7:7].in[3]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<complete name="clks" input="clb.clk" output="fle[7:0].clk">
|
||||
</complete>
|
||||
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
|
||||
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
|
||||
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
|
||||
naive specification).
|
||||
-->
|
||||
<direct name="clbouts1" input="fle[3:0].out[0:1]" output="clb.O[7:0]"/>
|
||||
<direct name="clbouts2" input="fle[7:4].out[0:1]" output="clb.O[15:8]"/>
|
||||
<!-- Shift register chain links -->
|
||||
<direct name="shift_register_in" input="clb.regin" output="fle[0:0].regin">
|
||||
<!-- Put all inter-block carry chain delay on this one edge -->
|
||||
<delay_constant max="0.16e-9" in_port="clb.regin" out_port="fle[0:0].regin"/>
|
||||
<!--pack_pattern name="chain" in_port="clb.regin" out_port="fle[0:0].regin"/-->
|
||||
</direct>
|
||||
<direct name="shift_register_out" input="fle[7:7].regout" output="clb.regout">
|
||||
<!--pack_pattern name="chain" in_port="fle[7:7].regout" out_port="clb.regout"/-->
|
||||
</direct>
|
||||
<direct name="shift_register_link" input="fle[6:0].regout" output="fle[7:1].regin">
|
||||
<!--pack_pattern name="chain" in_port="fle[6:0].regout" out_port="fle[7:1].regin"/-->
|
||||
</direct>
|
||||
<!-- Scan chain links -->
|
||||
<direct name="scan_chain_in" input="clb.scin" output="fle[0:0].scin">
|
||||
<!-- Put all inter-block carry chain delay on this one edge -->
|
||||
<delay_constant max="0.16e-9" in_port="clb.scin" out_port="fle[0:0].scin"/>
|
||||
</direct>
|
||||
<direct name="scan_chain_out" input="fle[7:7].scout" output="clb.scout">
|
||||
</direct>
|
||||
<direct name="scan_chain_link" input="fle[6:0].scout" output="fle[7:1].scin">
|
||||
</direct>
|
||||
</interconnect>
|
||||
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
|
||||
<!-- Place this general purpose logic block in any unspecified column -->
|
||||
</pb_type>
|
||||
<!-- Define general purpose logic block (CLB) ends -->
|
||||
</complexblocklist>
|
||||
</architecture>
|
|
@ -78,14 +78,22 @@
|
|||
<equivalent_sites>
|
||||
<site pb_type="clb"/>
|
||||
</equivalent_sites>
|
||||
<input name="I0" num_pins="4" equivalent="full"/>
|
||||
<input name="I1" num_pins="4" equivalent="full"/>
|
||||
<input name="I2" num_pins="4" equivalent="full"/>
|
||||
<input name="I3" num_pins="4" equivalent="full"/>
|
||||
<input name="I4" num_pins="4" equivalent="full"/>
|
||||
<input name="I5" num_pins="4" equivalent="full"/>
|
||||
<input name="I6" num_pins="4" equivalent="full"/>
|
||||
<input name="I7" num_pins="4" equivalent="full"/>
|
||||
<input name="I0" num_pins="3" equivalent="full"/>
|
||||
<input name="I0i" num_pins="1" equivalent="none"/>
|
||||
<input name="I1" num_pins="3" equivalent="full"/>
|
||||
<input name="I1i" num_pins="1" equivalent="none"/>
|
||||
<input name="I2" num_pins="3" equivalent="full"/>
|
||||
<input name="I2i" num_pins="1" equivalent="none"/>
|
||||
<input name="I3" num_pins="3" equivalent="full"/>
|
||||
<input name="I3i" num_pins="1" equivalent="none"/>
|
||||
<input name="I4" num_pins="3" equivalent="full"/>
|
||||
<input name="I4i" num_pins="1" equivalent="none"/>
|
||||
<input name="I5" num_pins="3" equivalent="full"/>
|
||||
<input name="I5i" num_pins="1" equivalent="none"/>
|
||||
<input name="I6" num_pins="3" equivalent="full"/>
|
||||
<input name="I6i" num_pins="1" equivalent="none"/>
|
||||
<input name="I7" num_pins="3" equivalent="full"/>
|
||||
<input name="I7i" num_pins="1" equivalent="none"/>
|
||||
<input name="regin" num_pins="1"/>
|
||||
<input name="scin" num_pins="1"/>
|
||||
<output name="O" num_pins="16" equivalent="none"/>
|
||||
|
@ -102,8 +110,8 @@
|
|||
<pinlocations pattern="custom">
|
||||
<loc side="left">clb.clk</loc>
|
||||
<loc side="top">clb.regin clb.scin</loc>
|
||||
<loc side="right">clb.O[7:0] clb.I0 clb.I1 clb.I2 clb.I3</loc>
|
||||
<loc side="bottom">clb.regout clb.scout clb.O[15:8] clb.I4 clb.I5 clb.I6 clb.I7</loc>
|
||||
<loc side="right">clb.O[7:0] clb.I0 clb.I0i clb.I1 clb.I1i clb.I2 clb.I2i clb.I3 clb.I3i </loc>
|
||||
<loc side="bottom">clb.regout clb.scout clb.O[15:8] clb.I4 clb.I4i clb.I5 clb.I5i clb.I6 clb.I6i clb.I7 clb.I7i</loc>
|
||||
</pinlocations>
|
||||
</tile>
|
||||
</tiles>
|
||||
|
@ -276,24 +284,28 @@
|
|||
</pb_type>
|
||||
<!-- Define I/O pads ends -->
|
||||
<!-- Define general purpose logic block (CLB) begin -->
|
||||
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
|
||||
area is 60 L^2 yields a tile area of 84375 MWTAs.
|
||||
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
|
||||
This means that only 37% of our area is in the general routing, and 63% is inside the logic
|
||||
block. Note that the crossbar / local interconnect is considered part of the logic block
|
||||
area in this analysis. That is a lower proportion of of routing area than most academics
|
||||
assume, but note that the total routing area really includes the crossbar, which would push
|
||||
routing area up significantly, we estimate into the ~70% range.
|
||||
-->
|
||||
<!-- -Due to the absence of local routing,
|
||||
the 4 inputs of fracturable LUT4 are no longer equivalent,
|
||||
because the 4th input can not be switched when the dual-LUT3 modes are used.
|
||||
So pin equivalence should be applied to the first 3 inputs only
|
||||
-->
|
||||
<pb_type name="clb">
|
||||
<input name="I0" num_pins="4" equivalent="full"/>
|
||||
<input name="I1" num_pins="4" equivalent="full"/>
|
||||
<input name="I2" num_pins="4" equivalent="full"/>
|
||||
<input name="I3" num_pins="4" equivalent="full"/>
|
||||
<input name="I4" num_pins="4" equivalent="full"/>
|
||||
<input name="I5" num_pins="4" equivalent="full"/>
|
||||
<input name="I6" num_pins="4" equivalent="full"/>
|
||||
<input name="I7" num_pins="4" equivalent="full"/>
|
||||
<input name="I0" num_pins="3" equivalent="full"/>
|
||||
<input name="I0i" num_pins="1" equivalent="none"/>
|
||||
<input name="I1" num_pins="3" equivalent="full"/>
|
||||
<input name="I1i" num_pins="1" equivalent="none"/>
|
||||
<input name="I2" num_pins="3" equivalent="full"/>
|
||||
<input name="I2i" num_pins="1" equivalent="none"/>
|
||||
<input name="I3" num_pins="3" equivalent="full"/>
|
||||
<input name="I3i" num_pins="1" equivalent="none"/>
|
||||
<input name="I4" num_pins="3" equivalent="full"/>
|
||||
<input name="I4i" num_pins="1" equivalent="none"/>
|
||||
<input name="I5" num_pins="3" equivalent="full"/>
|
||||
<input name="I5i" num_pins="1" equivalent="none"/>
|
||||
<input name="I6" num_pins="3" equivalent="full"/>
|
||||
<input name="I6i" num_pins="1" equivalent="none"/>
|
||||
<input name="I7" num_pins="3" equivalent="full"/>
|
||||
<input name="I7i" num_pins="1" equivalent="none"/>
|
||||
<input name="regin" num_pins="1"/>
|
||||
<input name="scin" num_pins="1"/>
|
||||
<output name="O" num_pins="16" equivalent="none"/>
|
||||
|
@ -534,30 +546,56 @@
|
|||
<!-- Define shift register end -->
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<!-- We use a full crossbar to get logical equivalence at inputs of CLB
|
||||
The delays below come from Stratix IV. the delay through a connection block
|
||||
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
|
||||
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
|
||||
delay within the crossbar is 95 ps.
|
||||
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
|
||||
Since all our outputs LUT outputs go to a BLE output, and have a delay of
|
||||
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
|
||||
to get the part that should be marked on the crossbar. -->
|
||||
<direct name="direct_fle0" input="clb.I0" output="fle[0:0].in">
|
||||
<!-- We use direct connections to reduce the area to the most
|
||||
The global local routing is going to compensate the loss in routability
|
||||
-->
|
||||
<direct name="direct_fle0" input="clb.I0" output="fle[0:0].in[0:2]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle1" input="clb.I1" output="fle[1:1].in">
|
||||
<direct name="direct_fle0i" input="clb.I0i" output="fle[0:0].in[3]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle2" input="clb.I2" output="fle[2:2].in">
|
||||
<direct name="direct_fle1" input="clb.I1" output="fle[1:1].in[0:2]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle3" input="clb.I3" output="fle[3:3].in">
|
||||
<direct name="direct_fle1i" input="clb.I1i" output="fle[1:1].in[3]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle4" input="clb.I4" output="fle[4:4].in">
|
||||
<direct name="direct_fle2" input="clb.I2" output="fle[2:2].in[0:2]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle5" input="clb.I5" output="fle[5:5].in">
|
||||
<direct name="direct_fle2i" input="clb.I2i" output="fle[2:2].in[3]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle6" input="clb.I6" output="fle[6:6].in">
|
||||
<direct name="direct_fle3" input="clb.I3" output="fle[3:3].in[0:2]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle7" input="clb.I7" output="fle[7:7].in">
|
||||
<direct name="direct_fle3i" input="clb.I3i" output="fle[3:3].in[3]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle4" input="clb.I4" output="fle[4:4].in[0:2]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle4i" input="clb.I4i" output="fle[4:4].in[3]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle5" input="clb.I5" output="fle[5:5].in[0:2]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle5i" input="clb.I5i" output="fle[5:5].in[3]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle6" input="clb.I6" output="fle[6:6].in[0:2]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle6i" input="clb.I6i" output="fle[6:6].in[3]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle7" input="clb.I7" output="fle[7:7].in[0:2]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<direct name="direct_fle7i" input="clb.I7i" output="fle[7:7].in[3]">
|
||||
<!-- TODO: Timing should be backannotated from post-PnR results -->
|
||||
</direct>
|
||||
<complete name="clks" input="clb.clk" output="fle[7:0].clk">
|
||||
</complete>
|
||||
|
|
|
@ -0,0 +1,4 @@
|
|||
# Skywater PDK
|
||||
This directory contains the HDL netlists for FPGA fabrics that are automatically generated by OpenFPGA.
|
||||
It also includes necessary wrappers to enable the netlist generation.
|
||||
The custom netlists are place in the `common` directory.
|
|
@ -0,0 +1,44 @@
|
|||
`timescale 1ns/1ps
|
||||
|
||||
module GPIO (A, IE, OE, Y, in, out, mem_out);
|
||||
output A;
|
||||
output IE;
|
||||
output OE;
|
||||
output Y;
|
||||
input in;
|
||||
output out;
|
||||
input mem_out;
|
||||
|
||||
assign A = in;
|
||||
assign out = Y;
|
||||
assign IE = mem_out;
|
||||
sky130_fd_sc_hd__inv_1 ie_oe_inv (
|
||||
.A (mem_out),
|
||||
.Y (OE) );
|
||||
endmodule
|
||||
|
||||
//-----------------------------------------------------
|
||||
// Function : A minimum input pad
|
||||
//-----------------------------------------------------
|
||||
module GPIN (
|
||||
inout A, // External PAD signal
|
||||
output Y // Data input
|
||||
);
|
||||
// Assume a 4x buf is enough to drive the global routing
|
||||
sky130_fd_sc_hd__buf_4 in_buf (
|
||||
.A (A),
|
||||
.X (Y) );
|
||||
endmodule
|
||||
|
||||
//-----------------------------------------------------
|
||||
// Function : A minimum output pad
|
||||
//-----------------------------------------------------
|
||||
module GPOUT (
|
||||
inout Y, // External PAD signal
|
||||
input A // Data output
|
||||
);
|
||||
// Assume a 4x buf is enough to drive the block outside FPGA
|
||||
sky130_fd_sc_hd__buf_4 in_buf (
|
||||
.A (A),
|
||||
.X (Y) );
|
||||
endmodule
|
|
@ -0,0 +1,37 @@
|
|||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# Configuration file for running experiments
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
|
||||
# Each job execute fpga_flow script on combination of architecture & benchmark
|
||||
# timeout_each_job is timeout for each job
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
|
||||
[GENERAL]
|
||||
run_engine=openfpga_shell
|
||||
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
|
||||
power_analysis = true
|
||||
spice_output=false
|
||||
verilog_output=true
|
||||
timeout_each_job = 1*60
|
||||
fpga_flow=yosys_vpr
|
||||
|
||||
[OpenFPGA_SHELL]
|
||||
openfpga_shell_template=${SKYWATER_OPENFPGA_HOME}/SCRIPT/openfpga_shell_script/skywater_generate_fabric_example_script.openfpga
|
||||
openfpga_arch_file=${SKYWATER_OPENFPGA_HOME}/ARCH/openfpga_arch/k4_frac_N8_register_scan_chain_embedded_io_skywater130nm_fdhd_cc_openfpga.xml
|
||||
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
|
||||
openfpga_vpr_device_layout=2x2
|
||||
openfpga_vpr_route_chan_width=40
|
||||
openfpga_verilog_output_dir=${SKYWATER_OPENFPGA_HOME}/HDL/k4_non_adder_embedded_io_FPGA_2x2_fdhd_cc
|
||||
openfpga_sdc_output_dir=${SKYWATER_OPENFPGA_HOME}/SDC/k4_non_adder_embedded_io_FPGA_2x2_fdhd_cc
|
||||
|
||||
[ARCHITECTURES]
|
||||
arch0=${SKYWATER_OPENFPGA_HOME}/ARCH/vpr_arch/k4_frac_N8_tileable_register_scan_chain_nonLR_embedded_io_skywater130nm.xml
|
||||
|
||||
[BENCHMARKS]
|
||||
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.v
|
||||
|
||||
[SYNTHESIS_PARAM]
|
||||
bench0_top = and2
|
||||
|
||||
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
|
||||
#end_flow_with_test=
|
|
@ -0,0 +1,36 @@
|
|||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# Configuration file for running experiments
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
|
||||
# Each job execute fpga_flow script on combination of architecture & benchmark
|
||||
# timeout_each_job is timeout for each job
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
|
||||
[GENERAL]
|
||||
run_engine=openfpga_shell
|
||||
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
|
||||
power_analysis = true
|
||||
spice_output=false
|
||||
verilog_output=true
|
||||
timeout_each_job = 1*60
|
||||
fpga_flow=yosys_vpr
|
||||
|
||||
[OpenFPGA_SHELL]
|
||||
openfpga_shell_template=${SKYWATER_OPENFPGA_HOME}/SCRIPT/openfpga_shell_script/skywater_generate_sdc_example_script.openfpga
|
||||
openfpga_arch_file=${SKYWATER_OPENFPGA_HOME}/ARCH/openfpga_arch/k4_frac_N8_register_scan_chain_embedded_io_skywater130nm_fdhd_cc_openfpga.xml
|
||||
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
|
||||
openfpga_vpr_device_layout=2x2
|
||||
openfpga_vpr_route_chan_width=40
|
||||
openfpga_sdc_output_dir=${SKYWATER_OPENFPGA_HOME}/SDC/k4_non_adder_embedded_io_FPGA_2x2_fdhd_cc
|
||||
|
||||
[ARCHITECTURES]
|
||||
arch0=${SKYWATER_OPENFPGA_HOME}/ARCH/vpr_arch/k4_frac_N8_tileable_register_scan_chain_nonLR_embedded_io_skywater130nm.xml
|
||||
|
||||
[BENCHMARKS]
|
||||
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.v
|
||||
|
||||
[SYNTHESIS_PARAM]
|
||||
bench0_top = and2
|
||||
|
||||
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
|
||||
#end_flow_with_test=
|
|
@ -0,0 +1,37 @@
|
|||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# Configuration file for running experiments
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
# timeout_each_job : FPGA Task script splits fpga flow into multiple jobs
|
||||
# Each job execute fpga_flow script on combination of architecture & benchmark
|
||||
# timeout_each_job is timeout for each job
|
||||
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
|
||||
|
||||
[GENERAL]
|
||||
run_engine=openfpga_shell
|
||||
power_tech_file = ${PATH:OPENFPGA_PATH}/openfpga_flow/tech/PTM_45nm/45nm.xml
|
||||
power_analysis = true
|
||||
spice_output=false
|
||||
verilog_output=true
|
||||
timeout_each_job = 1*60
|
||||
fpga_flow=yosys_vpr
|
||||
|
||||
[OpenFPGA_SHELL]
|
||||
openfpga_shell_template=${SKYWATER_OPENFPGA_HOME}/SCRIPT/openfpga_shell_script/skywater_generate_testbench_example_script.openfpga
|
||||
openfpga_arch_file=${SKYWATER_OPENFPGA_HOME}/ARCH/openfpga_arch/k4_frac_N8_register_scan_chain_embedded_io_skywater130nm_fdhd_cc_openfpga.xml
|
||||
openfpga_sim_setting_file=${PATH:OPENFPGA_PATH}/openfpga_flow/openfpga_simulation_settings/auto_sim_openfpga.xml
|
||||
openfpga_vpr_device_layout=2x2
|
||||
openfpga_vpr_route_chan_width=40
|
||||
openfpga_verilog_output_dir=${SKYWATER_OPENFPGA_HOME}/TESTBENCH/k4_non_adder_embedded_io_FPGA_2x2_fdhd_cc
|
||||
openfpga_fabric_verilog_netlist=${SKYWATER_OPENFPGA_HOME}/HDL/k4_non_adder_embedded_io_FPGA_2x2_fdhd_cc/SRC/fabric_netlists.v
|
||||
|
||||
[ARCHITECTURES]
|
||||
arch0=${SKYWATER_OPENFPGA_HOME}/ARCH/vpr_arch/k4_frac_N8_tileable_register_scan_chain_nonLR_embedded_io_skywater130nm.xml
|
||||
|
||||
[BENCHMARKS]
|
||||
bench0=${PATH:OPENFPGA_PATH}/openfpga_flow/benchmarks/micro_benchmark/and2/and2.v
|
||||
|
||||
[SYNTHESIS_PARAM]
|
||||
bench0_top = and2
|
||||
|
||||
[SCRIPT_PARAM_MIN_ROUTE_CHAN_WIDTH]
|
||||
#end_flow_with_test=
|
|
@ -0,0 +1,5 @@
|
|||
# Skywater PDK
|
||||
This directory contains the design constraints for FPGA fabrics that are automatically generated by OpenFPGA or tuned for a specific FPGA fabric.
|
||||
Please keep this directory clean and organize as follows:
|
||||
- Each set of design constraints should be placed in a separated directory
|
||||
- READMD is the only file allowed in the directory, others should be sub-directories.
|
|
@ -0,0 +1,5 @@
|
|||
# Skywater PDK
|
||||
This directory contains the testbenches for FPGA fabrics that are automatically generated by OpenFPGA or tuned for a specific FPGA fabric.
|
||||
Please keep this directory clean and organize as follows:
|
||||
- Each testbench should be placed in a separated directory
|
||||
- READMD is the only file allowed in the directory, others should be sub-directories.
|
Loading…
Reference in New Issue