OpenFPGA/vpr7_x2p/vpr/SRC/fpga_x2p/base/rr_blocks.cpp

3154 lines
101 KiB
C++

/**********************************************************
* MIT License
*
* Copyright (c) 2018 LNIS - The University of Utah
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
***********************************************************************/
/************************************************************************
* Filename: rr_blocks.cpp
* Created by: Xifan Tang
* Change history:
* +-------------------------------------+
* | Date | Author | Notes
* +-------------------------------------+
* | 2019/06/26 | Xifan Tang | Created
* +-------------------------------------+
***********************************************************************/
/************************************************************************
* This file contains member function for the data structures defined
* in rr_block.h
***********************************************************************/
#include <cassert>
#include <string.h>
#include <algorithm>
#include <sstream>
#include "rr_blocks_naming.h"
#include "rr_blocks.h"
#include "rr_graph_builder_utils.h"
/* Member Functions of Class RRChan */
/* Constructors */
/* Copy Constructor */
RRChan::RRChan(const RRChan& rr_chan) {
this->set(rr_chan);
return;
}
/* default constructor */
RRChan::RRChan() {
type_ = NUM_RR_TYPES;
nodes_.resize(0);
node_segments_.resize(0);
}
/* Accessors */
t_rr_type RRChan::get_type() const {
return type_;
}
/* get the number of tracks in this channel */
size_t RRChan::get_chan_width() const {
return nodes_.size();
}
/* get the track_id of a node */
int RRChan::get_node_track_id(t_rr_node* node) const {
/* if the given node is NULL, we return an invalid id */
if (NULL == node) {
return -1; /* FIXME: use a strong id!!! */
}
/* check each member and return if we find a match in content */
for (size_t inode = 0; inode < nodes_.size(); ++inode) {
if (node == nodes_[inode]) {
return inode;
}
}
return -1;
}
/* get the rr_node with the track_id */
t_rr_node* RRChan::get_node(size_t track_num) const {
if ( false == valid_node_id(track_num) ) {
return NULL;
}
return nodes_[track_num];
}
/* get the segment id of a node */
int RRChan::get_node_segment(t_rr_node* node) const {
int node_id = get_node_track_id(node);
if ( false == valid_node_id(node_id)) {
return -1;
}
return get_node_segment(node_id);
}
/* get the segment id of a node */
int RRChan::get_node_segment(size_t track_num) const {
if ( false == valid_node_id(track_num)) {
return -1;
}
return node_segments_[track_num];
}
/* evaluate if two RRChan is mirror to each other */
bool RRChan::is_mirror(const RRChan& cand) const {
/* If any following element does not match, it is not mirror */
/* 1. type */
if (this->get_type() != cand.get_type()) {
return false;
}
/* 2. track_width */
if (this->get_chan_width() != cand.get_chan_width()) {
return false;
}
/* 3. for each node */
for (size_t inode = 0; inode < this->get_chan_width(); ++inode) {
/* 3.1 check node type */
if (this->get_node(inode)->type != cand.get_node(inode)->type) {
return false;
}
/* 3.2 check node directionality */
if (this->get_node(inode)->direction != cand.get_node(inode)->direction) {
return false;
}
/* 3.3 check node segment */
if (this->get_node_segment(inode) != cand.get_node_segment(inode)) {
return false;
}
}
return true;
}
/* Get a list of segments used in this routing channel */
std::vector<size_t> RRChan::get_segment_ids() const {
std::vector<size_t> seg_list;
/* make sure a clean start */
seg_list.clear();
/* Traverse node_segments */
for (size_t inode = 0; inode < get_chan_width(); ++inode) {
std::vector<size_t>::iterator it;
/* Try to find the node_segment id in the list */
it = find(seg_list.begin(), seg_list.end(), node_segments_[inode]);
if ( it == seg_list.end() ) {
/* Not found, add it to the list */
seg_list.push_back(node_segments_[inode]);
}
}
return seg_list;
}
/* Get a list of nodes whose segment_id is specified */
std::vector<size_t> RRChan::get_node_ids_by_segment_ids(size_t seg_id) const {
std::vector<size_t> node_list;
/* make sure a clean start */
node_list.clear();
/* Traverse node_segments */
for (size_t inode = 0; inode < get_chan_width(); ++inode) {
/* Try to find the node_segment id in the list */
if ( seg_id == node_segments_[inode] ) {
node_list.push_back(inode);
}
}
return node_list;
}
/* Mutators */
void RRChan::set(const RRChan& rr_chan) {
/* Ensure a clean start */
this->clear();
/* Assign type of this routing channel */
this->type_ = rr_chan.get_type();
/* Copy node and node_segments */
this->nodes_.resize(rr_chan.get_chan_width());
this->node_segments_.resize(rr_chan.get_chan_width());
for (size_t inode = 0; inode < rr_chan.get_chan_width(); ++inode) {
this->nodes_[inode] = rr_chan.get_node(inode);
this->node_segments_[inode] = rr_chan.get_node_segment(inode);
}
return;
}
/* modify type */
void RRChan::set_type(t_rr_type type) {
assert(valid_type(type));
type_ = type;
return;
}
/* Reserve node list */
void RRChan::reserve_node(size_t node_size) {
nodes_.reserve(node_size); /* reserve to the maximum */
node_segments_.reserve(node_size); /* reserve to the maximum */
}
/* add a node to the array */
void RRChan::add_node(t_rr_node* node, size_t node_segment) {
/* fill the dedicated element in the vector */
nodes_.push_back(node);
node_segments_.push_back(node_segment);
assert(valid_node_type(node));
return;
}
/* rotate the nodes and node_segments with a given offset */
void RRChan::rotate(size_t offset) {
std::rotate(nodes_.begin(), nodes_.begin() + offset, nodes_.end());
std::rotate(node_segments_.begin(), node_segments_.begin() + offset, node_segments_.end());
return;
}
/* rotate all the channel nodes by a given offset:
* Routing Channel nodes are divided into different groups using segment ids
* each group is rotated separatedly
*/
void RRChan::rotate(size_t rotate_begin, size_t rotate_end, size_t offset) {
std::rotate(nodes_.begin() + rotate_begin, nodes_.begin() + rotate_begin + offset, nodes_.begin() + rotate_end);
std::rotate(node_segments_.begin() + rotate_begin, node_segments_.begin() + rotate_begin + offset, node_segments_.begin() + rotate_end);
return;
}
/* rotate all the channel nodes by a given offset:
* Routing Channel nodes are divided into different groups using segment ids
* each group should be rotated separatedly
*/
void RRChan::rotate_by_node_direction(enum e_direction node_direction, size_t offset) {
/* skip if there are no nodes */
if (0 == get_chan_width()) {
return;
}
/* get a list of segment_ids existing in the routing channel */
std::vector<size_t> seg_ids = get_segment_ids();
for (size_t iseg = 0; iseg < seg_ids.size(); ++iseg) {
/* Get the channel nodes of a given direction */
std::vector<t_rr_node*> nodes;
std::vector<size_t> node_segments;
for (size_t inode = 0; inode < get_chan_width(); ++inode) {
if ( (node_direction == get_node(inode)->direction)
&& (seg_ids[iseg] == (size_t)get_node_segment(inode)) ) {
nodes.push_back(get_node(inode));
node_segments.push_back(get_node_segment(inode));
}
}
size_t adapt_offset = offset % nodes.size();
assert(adapt_offset < nodes.size());
/* Rotate the chan_nodes */
std::rotate(nodes.begin(), nodes.begin() + adapt_offset, nodes.end());
std::rotate(node_segments.begin(), node_segments.begin() + adapt_offset, node_segments.end());
/* back-annotate to to the original chan nodes*/
for (size_t inode = 0; inode < get_chan_width(); ++inode) {
if ( (node_direction == get_node(inode)->direction)
&& (seg_ids[iseg] == (size_t)get_node_segment(inode)) ) {
nodes_[inode] = nodes.front();
node_segments_[inode] = node_segments.front();
/* pop up temp vectors */
nodes.erase(nodes.begin());
node_segments.erase(node_segments.begin());
}
}
/* Make sure temp vectors are all poped out */
assert ( 0 == nodes.size());
assert ( 0 == node_segments.size());
}
return;
}
/* rotate all the channel nodes by a given offset:
* Routing Channel nodes are divided into different groups using segment ids
* each group is rotated separatedly
*/
void RRChan::counter_rotate_by_node_direction(enum e_direction node_direction, size_t offset) {
/* skip if there are no nodes */
if (0 == get_chan_width()) {
return;
}
/* get a list of segment_ids existing in the routing channel */
std::vector<size_t> seg_ids = get_segment_ids();
for (size_t iseg = 0; iseg < seg_ids.size(); ++iseg) {
/* Get the channel nodes of a given direction */
std::vector<t_rr_node*> nodes;
std::vector<size_t> node_segments;
for (size_t inode = 0; inode < get_chan_width(); ++inode) {
if ( (node_direction == get_node(inode)->direction)
&& (seg_ids[iseg] == (size_t)get_node_segment(inode)) ) {
nodes.push_back(get_node(inode));
node_segments.push_back(get_node_segment(inode));
}
}
size_t adapt_offset = offset % nodes.size();
assert(adapt_offset < nodes.size());
/* Rotate the chan_nodes */
std::rotate(nodes.begin(), nodes.begin() + nodes.size() - adapt_offset, nodes.end());
std::rotate(node_segments.begin(), node_segments.begin() + node_segments.size() - adapt_offset, node_segments.end());
/* back-annotate to to the original chan nodes*/
for (size_t inode = 0; inode < get_chan_width(); ++inode) {
if ( (node_direction == get_node(inode)->direction)
&& (seg_ids[iseg] == (size_t)get_node_segment(inode)) ) {
nodes_[inode] = nodes.front();
node_segments_[inode] = node_segments.front();
/* pop up temp vectors */
nodes.erase(nodes.begin());
node_segments.erase(node_segments.begin());
}
}
/* Make sure temp vectors are all poped out */
assert ( 0 == nodes.size());
assert ( 0 == node_segments.size());
}
return;
}
/* Mirror the node direction of routing track nodes on a side */
void RRChan::mirror_node_direction() {
for (size_t inode = 0; inode < get_chan_width(); ++inode) {
if (INC_DIRECTION == get_node(inode)->direction) {
nodes_[inode]->direction = DEC_DIRECTION;
} else {
assert (DEC_DIRECTION == get_node(inode)->direction);
nodes_[inode]->direction = INC_DIRECTION;
}
}
return;
}
/* Clear content */
void RRChan::clear() {
nodes_.clear();
node_segments_.clear();
return;
}
/* Internal functions */
/* for type, only valid type is CHANX and CHANY */
bool RRChan::valid_type(t_rr_type type) const {
if ((CHANX == type) || (CHANY == type)) {
return true;
}
return false;
}
/* Check each node, see if the node type is consistent with the type */
bool RRChan::valid_node_type(t_rr_node* node) const {
valid_type(node->type);
if (NUM_RR_TYPES == type_) {
return true;
}
valid_type(type_);
if (type_ != node->type) {
return false;
}
return true;
}
/* check if the node id is valid */
bool RRChan::valid_node_id(size_t node_id) const {
if (node_id < nodes_.size()) {
return true;
}
return false;
}
/* Member Functions of Class DeviceRRChan */
/* accessors */
RRChan DeviceRRChan::get_module(t_rr_type chan_type, size_t module_id) const {
assert(valid_module_id(chan_type, module_id));
if (CHANX == chan_type) {
return chanx_modules_[module_id];
}
assert (CHANY == chan_type);
return chany_modules_[module_id];
}
RRChan DeviceRRChan::get_module_with_coordinator(t_rr_type chan_type, size_t x, size_t y) const {
assert(valid_coordinator(chan_type, x, y));
assert(valid_module_id(chan_type, get_module_id(chan_type, x, y)));
return get_module(chan_type, get_module_id(chan_type, x, y));
}
/* Get the number of RRChan modules in either X-channel or Y-channel */
size_t DeviceRRChan::get_num_modules(t_rr_type chan_type) const {
assert(valid_chan_type(chan_type));
if (CHANX == chan_type) {
return chanx_modules_.size();
}
assert (CHANY == chan_type);
return chany_modules_.size();
}
size_t DeviceRRChan::get_module_id(t_rr_type chan_type, size_t x, size_t y) const {
assert(valid_coordinator(chan_type, x, y));
if (CHANX == chan_type) {
return chanx_module_ids_[x][y];
}
assert (CHANY == chan_type);
return chany_module_ids_[x][y];
}
void DeviceRRChan::init_module_ids(size_t device_width, size_t device_height) {
init_chan_module_ids(CHANX, device_width, device_height);
init_chan_module_ids(CHANY, device_width, device_height);
return;
}
void DeviceRRChan::init_chan_module_ids(t_rr_type chan_type, size_t device_width, size_t device_height) {
assert(valid_chan_type(chan_type));
if (CHANX == chan_type) {
chanx_module_ids_.resize(device_width);
for (size_t x = 0; x < chanx_module_ids_.size(); ++x) {
chanx_module_ids_[x].resize(device_height);
}
} else if (CHANY == chan_type) {
chany_module_ids_.resize(device_width);
for (size_t x = 0; x < chany_module_ids_.size(); ++x) {
chany_module_ids_[x].resize(device_height);
}
}
return;
}
void DeviceRRChan::add_one_chan_module(t_rr_type chan_type, size_t x, size_t y, RRChan& rr_chan) {
assert(valid_coordinator(chan_type, x, y));
if (CHANX == chan_type) {
/* Find if the module is unique */
for (size_t i = 0; i < chanx_modules_.size(); ++i) {
if ( true == chanx_modules_[i].is_mirror(rr_chan)) {
/* Find a mirror in the list, assign ids and return */
chanx_module_ids_[x][y] = i;
return;
}
}
/* Reach here, it means this is a unique module */
/* add to the module list */
chanx_modules_.push_back(rr_chan);
chanx_module_ids_[x][y] = chanx_modules_.size() - 1;
} else if (CHANY == chan_type) {
/* Find if the module is unique */
for (size_t i = 0; i < chany_modules_.size(); ++i) {
if ( true == chany_modules_[i].is_mirror(rr_chan)) {
/* Find a mirror in the list, assign ids and return */
chany_module_ids_[x][y] = i;
return;
}
}
/* Reach here, it means this is a unique module */
/* add to the module list */
chany_modules_.push_back(rr_chan);
chany_module_ids_[x][y] = chany_modules_.size() - 1;
}
return;
}
void DeviceRRChan::clear() {
clear_chan(CHANX);
clear_chan(CHANY);
}
void DeviceRRChan::clear_chan(t_rr_type chan_type) {
assert(valid_chan_type(chan_type));
if (CHANX == chan_type) {
chanx_modules_.clear();
} else if (CHANY == chan_type) {
chany_modules_.clear();
}
return;
}
/* for type, only valid type is CHANX and CHANY */
bool DeviceRRChan::valid_chan_type(t_rr_type chan_type) const {
if ((CHANX == chan_type) || (CHANY == chan_type)) {
return true;
}
return false;
}
/* check if the coordinator is in range */
bool DeviceRRChan::valid_coordinator(t_rr_type chan_type, size_t x, size_t y) const {
assert(valid_chan_type(chan_type));
if (CHANX == chan_type) {
if (x > chanx_module_ids_.size() - 1 ) {
return false;
}
if (y > chanx_module_ids_[x].size() - 1) {
return false;
}
} else if (CHANY == chan_type) {
if (x > chany_module_ids_.size() - 1) {
return false;
}
if (y > chany_module_ids_[x].size() - 1) {
return false;
}
}
return true;
}
/* check if the node id is valid */
bool DeviceRRChan::valid_module_id(t_rr_type chan_type, size_t module_id) const {
assert(valid_chan_type(chan_type));
if (CHANX == chan_type) {
if (module_id < chanx_modules_.size()) {
return true;
}
} else if (CHANY == chan_type) {
if (module_id < chany_modules_.size()) {
return true;
}
}
return false;
}
/* Member Functions of Class RRGSB*/
/* Constructor for an empty object */
RRGSB::RRGSB() {
/* Set a clean start! */
coordinator_.set(0, 0);
chan_node_direction_.clear();
ipin_node_.clear();
ipin_node_grid_side_.clear();
opin_node_.clear();
opin_node_grid_side_.clear();
sb_conf_port_.reset();
cbx_conf_port_.reset();
cby_conf_port_.reset();
return;
}
/* Copy constructor */
RRGSB::RRGSB(const RRGSB& src) {
/* Copy coordinator */
this->set(src);
return;
}
/* Accessors */
/* Get the number of sides of this SB */
size_t RRGSB::get_num_sides() const {
assert (validate_num_sides());
return chan_node_direction_.size();
}
/* Get the number of routing tracks on a side */
size_t RRGSB::get_chan_width(enum e_side side) const {
Side side_manager(side);
assert(side_manager.validate());
return chan_node_[side_manager.to_size_t()].get_chan_width();
}
/* Get the maximum number of routing tracks on all sides */
size_t RRGSB::get_max_chan_width() const {
size_t max_chan_width = 0;
for (size_t side = 0; side < get_num_sides(); ++side) {
Side side_manager(side);
max_chan_width = std::max(max_chan_width, get_chan_width(side_manager.get_side()));
}
return max_chan_width;
}
/* Get the number of routing tracks of a X/Y-direction CB */
size_t RRGSB::get_cb_chan_width(t_rr_type cb_type) const {
return get_chan_width(get_cb_chan_side(cb_type));
}
/* Get the sides of ipin_nodes belong to the cb */
std::vector<enum e_side> RRGSB::get_cb_ipin_sides(t_rr_type cb_type) const {
assert (validate_cb_type(cb_type));
std::vector<enum e_side> ipin_sides;
/* Make sure a clean start */
ipin_sides.clear();
switch(cb_type) {
case CHANX:
ipin_sides.push_back(TOP);
ipin_sides.push_back(BOTTOM);
break;
case CHANY:
ipin_sides.push_back(RIGHT);
ipin_sides.push_back(LEFT);
break;
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s, [LINE%d])Invalid type of connection block!\n",
__FILE__, __LINE__);
exit(1);
}
return ipin_sides;
}
/* Get the direction of a rr_node at a given side and track_id */
enum PORTS RRGSB::get_chan_node_direction(enum e_side side, size_t track_id) const {
Side side_manager(side);
assert(side_manager.validate());
/* Ensure the side is valid in the context of this switch block */
assert( validate_side(side) );
/* Ensure the track is valid in the context of this switch block at a specific side */
assert( validate_track_id(side, track_id) );
return chan_node_direction_[side_manager.to_size_t()][track_id];
}
/* get a RRChan at a given side and track_id */
RRChan RRGSB::get_chan(enum e_side side) const {
Side side_manager(side);
assert(side_manager.validate());
/* Ensure the side is valid in the context of this switch block */
assert( validate_side(side) );
return chan_node_[side_manager.to_size_t()];
}
/* Get a list of segments used in this routing channel */
std::vector<size_t> RRGSB::get_chan_segment_ids(enum e_side side) const {
Side side_manager(side);
assert(side_manager.validate());
/* Ensure the side is valid in the context of this switch block */
assert( validate_side(side) );
return get_chan(side).get_segment_ids();
}
/* Get a list of rr_nodes whose sed_id is specified */
std::vector<size_t> RRGSB::get_chan_node_ids_by_segment_ids(enum e_side side, size_t seg_id) const {
return get_chan(side).get_node_ids_by_segment_ids(seg_id);
}
/* get a rr_node at a given side and track_id */
t_rr_node* RRGSB::get_chan_node(enum e_side side, size_t track_id) const {
Side side_manager(side);
assert(side_manager.validate());
/* Ensure the side is valid in the context of this switch block */
assert( validate_side(side) );
/* Ensure the track is valid in the context of this switch block at a specific side */
assert( validate_track_id(side, track_id) );
return chan_node_[side_manager.to_size_t()].get_node(track_id);
}
/* get the segment id of a channel rr_node */
size_t RRGSB::get_chan_node_segment(enum e_side side, size_t track_id) const {
Side side_manager(side);
assert(side_manager.validate());
/* Ensure the side is valid in the context of this switch block */
assert( validate_side(side) );
/* Ensure the track is valid in the context of this switch block at a specific side */
assert( validate_track_id(side, track_id) );
return chan_node_[side_manager.to_size_t()].get_node_segment(track_id);
}
/* Get the number of IPIN rr_nodes on a side */
size_t RRGSB::get_num_ipin_nodes(enum e_side side) const {
Side side_manager(side);
assert(side_manager.validate());
return ipin_node_[side_manager.to_size_t()].size();
}
/* get a opin_node at a given side and track_id */
t_rr_node* RRGSB::get_ipin_node(enum e_side side, size_t node_id) const {
Side side_manager(side);
assert(side_manager.validate());
/* Ensure the side is valid in the context of this switch block */
assert( validate_side(side) );
/* Ensure the track is valid in the context of this switch block at a specific side */
assert( validate_ipin_node_id(side, node_id) );
return ipin_node_[side_manager.to_size_t()][node_id];
}
/* get the grid_side of a opin_node at a given side and track_id */
enum e_side RRGSB::get_ipin_node_grid_side(enum e_side side, size_t node_id) const {
Side side_manager(side);
assert(side_manager.validate());
/* Ensure the side is valid in the context of this switch block */
assert( validate_side(side) );
/* Ensure the track is valid in the context of this switch block at a specific side */
assert( validate_ipin_node_id(side, node_id) );
return ipin_node_grid_side_[side_manager.to_size_t()][node_id];
}
/* get the grid side of a opin_rr_node */
enum e_side RRGSB::get_ipin_node_grid_side(t_rr_node* ipin_node) const {
enum e_side side;
int index;
/* Find the side and index */
get_node_side_and_index(ipin_node, OUT_PORT, &side, &index);
assert(-1 != index);
assert(validate_side(side));
return get_ipin_node_grid_side(side, index);
}
/* Get the number of OPIN rr_nodes on a side */
size_t RRGSB::get_num_opin_nodes(enum e_side side) const {
Side side_manager(side);
assert(side_manager.validate());
return opin_node_[side_manager.to_size_t()].size();
}
/* get a opin_node at a given side and track_id */
t_rr_node* RRGSB::get_opin_node(enum e_side side, size_t node_id) const {
Side side_manager(side);
assert(side_manager.validate());
/* Ensure the side is valid in the context of this switch block */
assert( validate_side(side) );
/* Ensure the track is valid in the context of this switch block at a specific side */
assert( validate_opin_node_id(side, node_id) );
return opin_node_[side_manager.to_size_t()][node_id];
}
/* get the grid_side of a opin_node at a given side and track_id */
enum e_side RRGSB::get_opin_node_grid_side(enum e_side side, size_t node_id) const {
Side side_manager(side);
assert(side_manager.validate());
/* Ensure the side is valid in the context of this switch block */
assert( validate_side(side) );
/* Ensure the track is valid in the context of this switch block at a specific side */
assert( validate_opin_node_id(side, node_id) );
return opin_node_grid_side_[side_manager.to_size_t()][node_id];
}
/* get the grid side of a opin_rr_node */
enum e_side RRGSB::get_opin_node_grid_side(t_rr_node* opin_node) const {
enum e_side side;
int index;
/* Find the side and index */
get_node_side_and_index(opin_node, IN_PORT, &side, &index);
assert(-1 != index);
assert(validate_side(side));
return get_opin_node_grid_side(side, index);
}
/* Get the node index of a routing track of a connection block, return -1 if not found */
int RRGSB::get_cb_chan_node_index(t_rr_type cb_type, t_rr_node* node) const {
enum e_side chan_side = get_cb_chan_side(cb_type);
return get_chan_node_index(chan_side, node);
}
/* Get the node index in the array, return -1 if not found */
int RRGSB::get_chan_node_index(enum e_side node_side, t_rr_node* node) const {
assert (validate_side(node_side));
return get_chan(node_side).get_node_track_id(node);
}
/* Get the node index in the array, return -1 if not found */
int RRGSB::get_node_index(t_rr_node* node,
enum e_side node_side,
enum PORTS node_direction) const {
size_t cnt;
int ret;
Side side_manager(node_side);
cnt = 0;
ret = -1;
/* Depending on the type of rr_node, we search different arrays */
switch (node->type) {
case CHANX:
case CHANY:
for (size_t inode = 0; inode < get_chan_width(node_side); ++inode){
if ((node == chan_node_[side_manager.to_size_t()].get_node(inode))
/* Check if direction meets specification */
&&(node_direction == chan_node_direction_[side_manager.to_size_t()][inode])) {
cnt++;
ret = inode;
}
}
break;
case IPIN:
for (size_t inode = 0; inode < get_num_ipin_nodes(node_side); ++inode) {
if (node == ipin_node_[side_manager.to_size_t()][inode]) {
cnt++;
ret = inode;
}
}
break;
case OPIN:
for (size_t inode = 0; inode < get_num_opin_nodes(node_side); ++inode) {
if (node == opin_node_[side_manager.to_size_t()][inode]) {
cnt++;
ret = inode;
}
}
break;
default:
vpr_printf(TIO_MESSAGE_ERROR, "(File:%s, [LINE%d])Invalid cur_rr_node type! Should be [CHANX|CHANY|IPIN|OPIN]\n", __FILE__, __LINE__);
exit(1);
}
assert((0 == cnt)||(1 == cnt));
return ret; /* Return an invalid value: nonthing is found*/
}
/* Check if the node exist in the opposite side of this Switch Block */
bool RRGSB::is_sb_node_exist_opposite_side(t_rr_node* node,
enum e_side node_side) const {
Side side_manager(node_side);
int index;
assert((CHANX == node->type) || (CHANY == node->type));
/* See if we can find the same src_rr_node in the opposite chan_side
* if there is one, it means a shorted wire across the SB
*/
index = get_node_index(node, side_manager.get_opposite(), IN_PORT);
if (-1 != index) {
return true;
}
return false;
}
/* Get the side of a node in this SB */
void RRGSB::get_node_side_and_index(t_rr_node* node,
enum PORTS node_direction,
enum e_side* node_side,
int* node_index) const {
size_t side;
Side side_manager;
/* Count the number of existence of cur_rr_node in cur_sb_info
* It could happen that same cur_rr_node appears on different sides of a SB
* For example, a routing track go vertically across the SB.
* Then its corresponding rr_node appears on both TOP and BOTTOM sides of this SB.
* We need to ensure that the found rr_node has the same direction as user want.
* By specifying the direction of rr_node, There should be only one rr_node can satisfy!
*/
for (side = 0; side < get_num_sides(); ++side) {
side_manager.set_side(side);
(*node_index) = get_node_index(node, side_manager.get_side(), node_direction);
if (-1 != (*node_index)) {
break;
}
}
if (side == get_num_sides()) {
/* we find nothing, return NUM_SIDES, and a OPEN node (-1) */
(*node_side) = NUM_SIDES;
assert(-1 == (*node_index));
return;
}
(*node_side) = side_manager.get_side();
assert(-1 != (*node_index));
return;
}
/* Get Switch Block configuration port information */
size_t RRGSB::get_sb_num_reserved_conf_bits() const {
return sb_conf_port_.get_reserved_port_width();
}
size_t RRGSB::get_sb_reserved_conf_bits_lsb() const {
return sb_conf_port_.get_reserved_port_lsb();
}
size_t RRGSB::get_sb_reserved_conf_bits_msb() const {
return sb_conf_port_.get_reserved_port_msb();
}
size_t RRGSB::get_sb_num_conf_bits() const {
return sb_conf_port_.get_regular_port_width();
}
size_t RRGSB::get_sb_conf_bits_lsb() const {
return sb_conf_port_.get_regular_port_lsb();
}
size_t RRGSB::get_sb_conf_bits_msb() const {
return sb_conf_port_.get_regular_port_msb();
}
/* Get X-direction Connection Block configuration port information */
size_t RRGSB::get_cb_num_reserved_conf_bits(t_rr_type cb_type) const {
assert (validate_cb_type(cb_type));
switch(cb_type) {
case CHANX:
return cbx_conf_port_.get_reserved_port_width();
case CHANY:
return cby_conf_port_.get_reserved_port_width();
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s, [LINE%d])Invalid type of connection block!\n",
__FILE__, __LINE__);
exit(1);
}
}
size_t RRGSB::get_cb_reserved_conf_bits_lsb(t_rr_type cb_type) const {
assert (validate_cb_type(cb_type));
switch(cb_type) {
case CHANX:
return cbx_conf_port_.get_reserved_port_lsb();
case CHANY:
return cby_conf_port_.get_reserved_port_lsb();
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s, [LINE%d])Invalid type of connection block!\n",
__FILE__, __LINE__);
exit(1);
}
}
size_t RRGSB::get_cb_reserved_conf_bits_msb(t_rr_type cb_type) const {
assert (validate_cb_type(cb_type));
switch(cb_type) {
case CHANX:
return cbx_conf_port_.get_reserved_port_msb();
case CHANY:
return cby_conf_port_.get_reserved_port_msb();
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s, [LINE%d])Invalid type of connection block!\n",
__FILE__, __LINE__);
exit(1);
}
}
size_t RRGSB::get_cb_num_conf_bits(t_rr_type cb_type) const {
assert (validate_cb_type(cb_type));
switch(cb_type) {
case CHANX:
return cbx_conf_port_.get_regular_port_width();
case CHANY:
return cby_conf_port_.get_regular_port_width();
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s, [LINE%d])Invalid type of connection block!\n",
__FILE__, __LINE__);
exit(1);
}
}
size_t RRGSB::get_cb_conf_bits_lsb(t_rr_type cb_type) const {
assert (validate_cb_type(cb_type));
switch(cb_type) {
case CHANX:
return cbx_conf_port_.get_regular_port_lsb();
case CHANY:
return cby_conf_port_.get_regular_port_lsb();
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s, [LINE%d])Invalid type of connection block!\n",
__FILE__, __LINE__);
exit(1);
}
}
size_t RRGSB::get_cb_conf_bits_msb(t_rr_type cb_type) const {
assert (validate_cb_type(cb_type));
switch(cb_type) {
case CHANX:
return cbx_conf_port_.get_regular_port_msb();
case CHANY:
return cby_conf_port_.get_regular_port_msb();
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s, [LINE%d])Invalid type of connection block!\n",
__FILE__, __LINE__);
exit(1);
}
}
/************************************************************************
* Check if the node indicates a passing wire across the Switch Block part of the GSB
* Therefore, we actually do the following check
* Check if a track starts from this GSB or not
* For INC_DIRECTION
* (xlow, ylow) should be same as the GSB side coordinator
* For DEC_DIRECTION
* (xhigh, yhigh) should be same as the GSB side coordinator
***********************************************************************/
bool RRGSB::is_sb_node_passing_wire(const enum e_side node_side,
const size_t track_id) const {
/* Get the rr_node */
t_rr_node* track_node = get_chan_node(node_side, track_id);
/* Get the coordinators */
DeviceCoordinator side_coordinator = get_side_block_coordinator(node_side);
/* Get the coordinator of where the track starts */
DeviceCoordinator track_start = get_track_rr_node_start_coordinator(track_node);
/* INC_DIRECTION start_track: (xlow, ylow) should be same as the GSB side coordinator */
/* DEC_DIRECTION start_track: (xhigh, yhigh) should be same as the GSB side coordinator */
if ( (track_start.get_x() == side_coordinator.get_x())
&& (track_start.get_y() == side_coordinator.get_y())
&& (OUT_PORT == get_chan_node_direction(node_side, track_id)) ) {
/* Double check: start track should be an OUTPUT PORT of the GSB */
return false; /* This is a starting point */
}
/* Get the coordinator of where the track ends */
DeviceCoordinator track_end = get_track_rr_node_end_coordinator(track_node);
/* INC_DIRECTION end_track: (xhigh, yhigh) should be same as the GSB side coordinator */
/* DEC_DIRECTION end_track: (xlow, ylow) should be same as the GSB side coordinator */
if ( (track_end.get_x() == side_coordinator.get_x())
&& (track_end.get_y() == side_coordinator.get_y())
&& (IN_PORT == get_chan_node_direction(node_side, track_id)) ) {
/* Double check: end track should be an INPUT PORT of the GSB */
return false; /* This is an ending point */
}
/* Reach here it means that this will be a passing wire,
* we should be able to find the node on the opposite side of the GSB!
*/
assert (true == is_sb_node_exist_opposite_side(track_node, node_side));
return true;
}
/* check if the candidate SB satisfy the basic requirements on being a mirror of the current one */
/* Idenify mirror Switch blocks
* Check each two switch blocks:
* Number of channel/opin/ipin rr_nodes are same
* If all above are satisfied, the two switch blocks may be mirrors !
*/
bool RRGSB::is_sb_mirrorable(const RRGSB& cand) const {
/* check the numbers of sides */
if (get_num_sides() != cand.get_num_sides()) {
return false;
}
/* check the numbers/directionality of channel rr_nodes */
for (size_t side = 0; side < get_num_sides(); ++side) {
Side side_manager(side);
/* Ensure we have the same channel width on this side */
if (get_chan_width(side_manager.get_side()) != cand.get_chan_width(side_manager.get_side())) {
return false;
}
if ( ((size_t(-1) == get_track_id_first_short_connection(side_manager.get_side()))
&& (size_t(-1) != cand.get_track_id_first_short_connection(side_manager.get_side())))
|| ((size_t(-1) != get_track_id_first_short_connection(side_manager.get_side()) )
&& ( size_t(-1) == cand.get_track_id_first_short_connection(side_manager.get_side()))) ) {
return false;
}
}
/* check the numbers of opin_rr_nodes */
for (size_t side = 0; side < get_num_sides(); ++side) {
Side side_manager(side);
if (get_num_opin_nodes(side_manager.get_side()) != cand.get_num_opin_nodes(side_manager.get_side())) {
return false;
}
}
/* Make sure the number of conf bits are the same */
if ( ( get_sb_num_conf_bits() != cand.get_sb_num_conf_bits() )
|| ( get_sb_num_reserved_conf_bits() != cand.get_sb_num_reserved_conf_bits() ) ) {
return false;
}
return true;
}
/* check if the candidate CB is a mirror of the current one */
bool RRGSB::is_cb_mirror(const RRGSB& cand, t_rr_type cb_type) const {
/* Check if channel width is the same */
if ( get_cb_chan_width(cb_type) != cand.get_cb_chan_width(cb_type) ) {
return false;
}
enum e_side chan_side = get_cb_chan_side(cb_type);
/* check the numbers/directionality of channel rr_nodes */
if ( false == get_chan(chan_side).is_mirror(cand.get_chan(chan_side)) ) {
return false;
}
/* check the equivalence of ipins */
std::vector<enum e_side> ipin_side = get_cb_ipin_sides(cb_type);
for (size_t side = 0; side < ipin_side.size(); ++side) {
/* Ensure we have the same number of IPINs on this side */
if ( get_num_ipin_nodes(ipin_side[side]) != cand.get_num_ipin_nodes(ipin_side[side]) ) {
return false;
}
for (size_t inode = 0; inode < get_num_ipin_nodes(ipin_side[side]); ++inode) {
if (false == is_cb_node_mirror(cand, cb_type, ipin_side[side], inode)) {
return false;
}
}
}
/* Make sure the number of conf bits are the same */
if ( ( get_cb_num_conf_bits(cb_type) != cand.get_cb_num_conf_bits(cb_type) )
|| ( get_cb_num_reserved_conf_bits(cb_type) != cand.get_cb_num_reserved_conf_bits(cb_type) ) ) {
return false;
}
return true;
}
/* check if the CB exist in this GSB */
bool RRGSB::is_cb_exist(t_rr_type cb_type) const {
/* if channel width is zero, there is no CB */
if ( 0 == get_cb_chan_width(cb_type)) {
return false;
}
return true;
}
/* Determine an initial offset in rotating the candidate Switch Block to find a mirror matching
* We try to find the offset in track_id where the two Switch Blocks have their first short connections
*/
size_t RRGSB::get_hint_rotate_offset(const RRGSB& cand) const {
size_t offset_hint = size_t(-1);
assert (get_num_sides() == cand.get_num_sides());
/* check the numbers/directionality of channel rr_nodes */
for (size_t side = 0; side < get_num_sides(); ++side) {
Side side_manager(side);
/* Ensure we have the same channel width on this side */
assert (get_chan_width(side_manager.get_side()) == cand.get_chan_width(side_manager.get_side()));
/* Find the track id of the first short connection */
size_t src_offset = get_track_id_first_short_connection(side_manager.get_side());
size_t des_offset = cand.get_track_id_first_short_connection(side_manager.get_side());
if ( size_t(-1) == src_offset || size_t(-1) == des_offset ) {
return 0; /* default we give zero */
}
size_t temp_hint = abs( (int)(src_offset - des_offset));
offset_hint = std::min(temp_hint, offset_hint);
}
return offset_hint;
}
/* check if all the routing segments of a side of candidate SB is a mirror of the current one */
bool RRGSB::is_sb_side_segment_mirror(const RRGSB& cand, enum e_side side, size_t seg_id) const {
/* Create a side manager */
Side side_manager(side);
/* Make sure both Switch blocks has this side!!! */
assert ( side_manager.to_size_t() < get_num_sides() );
assert ( side_manager.to_size_t() < cand.get_num_sides() );
/* check the numbers/directionality of channel rr_nodes */
/* Ensure we have the same channel width on this side */
if (get_chan_width(side) != cand.get_chan_width(side)) {
return false;
}
for (size_t itrack = 0; itrack < get_chan_width(side); ++itrack) {
/* Bypass unrelated segments */
if (seg_id != get_chan_node_segment(side, itrack)) {
continue;
}
/* Check the directionality of each node */
if (get_chan_node_direction(side, itrack) != cand.get_chan_node_direction(side, itrack)) {
return false;
}
/* Check the track_id of each node
* ptc is not necessary, we care the connectivity!
if (get_chan_node(side_manager.get_side(), itrack)->ptc_num != cand.get_chan_node(side_manager.get_side(), itrack)->ptc_num) {
eturn false;
}
*/
/* For OUT_PORT rr_node, we need to check fan-in */
if (OUT_PORT != get_chan_node_direction(side, itrack)) {
continue; /* skip IN_PORT */
}
if (false == is_sb_node_mirror(cand, side, itrack)) {
return false;
}
}
/* check the numbers of opin_rr_nodes */
if (get_num_opin_nodes(side) != cand.get_num_opin_nodes(side)) {
return false;
}
/* check the numbers of ipin_rr_nodes */
if (get_num_ipin_nodes(side) != cand.get_num_ipin_nodes(side)) {
return false;
}
return true;
}
/* check if a side of candidate SB is a mirror of the current one
* Check the specified side of two switch blocks:
* 1. Number of channel/opin/ipin rr_nodes are same
* For channel rr_nodes
* 2. check if their track_ids (ptc_num) are same
* 3. Check if the switches (ids) are same
* For opin/ipin rr_nodes,
* 4. check if their parent type_descriptors same,
* 5. check if pin class id and pin id are same
* If all above are satisfied, the side of the two switch blocks are mirrors!
*/
bool RRGSB::is_sb_side_mirror(const RRGSB& cand, enum e_side side) const {
/* get a list of segments */
std::vector<size_t> seg_ids = get_chan(side).get_segment_ids();
for (size_t iseg = 0; iseg < seg_ids.size(); ++iseg) {
if (false == is_sb_side_segment_mirror(cand, side, seg_ids[iseg])) {
return false;
}
}
return true;
}
/* check if the candidate SB is a mirror of the current one */
/* Idenify mirror Switch blocks
* Check each two switch blocks:
* 1. Number of channel/opin/ipin rr_nodes are same
* For channel rr_nodes
* 2. check if their track_ids (ptc_num) are same
* 3. Check if the switches (ids) are same
* For opin/ipin rr_nodes,
* 4. check if their parent type_descriptors same,
* 5. check if pin class id and pin id are same
* If all above are satisfied, the two switch blocks are mirrors!
*/
bool RRGSB::is_sb_mirror(const RRGSB& cand) const {
/* check the numbers of sides */
if (get_num_sides() != cand.get_num_sides()) {
return false;
}
/* check the numbers/directionality of channel rr_nodes */
for (size_t side = 0; side < get_num_sides(); ++side) {
Side side_manager(side);
if (false == is_sb_side_mirror(cand, side_manager.get_side())) {
return false;
}
}
/* Make sure the number of conf bits are the same */
if ( ( get_sb_num_conf_bits() != cand.get_sb_num_conf_bits() )
|| ( get_sb_num_reserved_conf_bits() != cand.get_sb_num_reserved_conf_bits() ) ) {
return false;
}
return true;
}
/* Public Accessors: Cooridinator conversion */
/* get the x coordinator of this GSB */
size_t RRGSB::get_x() const {
return coordinator_.get_x();
}
/* get the y coordinator of this GSB */
size_t RRGSB::get_y() const {
return coordinator_.get_y();
}
/* get the x coordinator of this switch block */
size_t RRGSB::get_sb_x() const {
return coordinator_.get_x();
}
/* get the y coordinator of this switch block */
size_t RRGSB::get_sb_y() const {
return coordinator_.get_y();
}
/* Get the number of sides of this SB */
DeviceCoordinator RRGSB::get_sb_coordinator() const {
return coordinator_;
}
/* get the x coordinator of this X/Y-direction block */
size_t RRGSB::get_cb_x(t_rr_type cb_type) const {
assert (validate_cb_type(cb_type));
switch(cb_type) {
case CHANX:
return get_side_block_coordinator(LEFT).get_x();
case CHANY:
return get_side_block_coordinator(TOP).get_x();
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s, [LINE%d])Invalid type of connection block!\n",
__FILE__, __LINE__);
exit(1);
}
}
/* get the y coordinator of this X/Y-direction block */
size_t RRGSB::get_cb_y(t_rr_type cb_type) const {
assert (validate_cb_type(cb_type));
switch(cb_type) {
case CHANX:
return get_side_block_coordinator(LEFT).get_y();
case CHANY:
return get_side_block_coordinator(TOP).get_y();
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s, [LINE%d])Invalid type of connection block!\n",
__FILE__, __LINE__);
exit(1);
}
}
/* Get the coordinator of the X/Y-direction CB */
DeviceCoordinator RRGSB::get_cb_coordinator(t_rr_type cb_type) const {
assert (validate_cb_type(cb_type));
switch(cb_type) {
case CHANX:
return get_side_block_coordinator(LEFT);
case CHANY:
return get_side_block_coordinator(TOP);
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s, [LINE%d])Invalid type of connection block!\n",
__FILE__, __LINE__);
exit(1);
}
}
enum e_side RRGSB::get_cb_chan_side(t_rr_type cb_type) const {
assert (validate_cb_type(cb_type));
switch(cb_type) {
case CHANX:
return LEFT;
case CHANY:
return TOP;
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s, [LINE%d])Invalid type of connection block!\n",
__FILE__, __LINE__);
exit(1);
}
}
/* Get the side of routing channel in the GSB according to the side of IPIN */
enum e_side RRGSB::get_cb_chan_side(enum e_side ipin_side) const {
switch(ipin_side) {
case TOP:
return LEFT;
case RIGHT:
return TOP;
case BOTTOM:
return LEFT;
case LEFT:
return TOP;
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s, [LINE%d])Invalid type of ipin_side!\n",
__FILE__, __LINE__);
exit(1);
}
}
DeviceCoordinator RRGSB::get_side_block_coordinator(enum e_side side) const {
Side side_manager(side);
assert(side_manager.validate());
DeviceCoordinator ret(get_sb_x(), get_sb_y());
switch (side_manager.get_side()) {
case TOP:
/* (0 == side) */
/* 1. Channel Y [x][y+1] inputs */
ret.set_y(ret.get_y() + 1);
break;
case RIGHT:
/* 1 == side */
/* 2. Channel X [x+1][y] inputs */
ret.set_x(ret.get_x() + 1);
break;
case BOTTOM:
/* 2 == side */
/* 3. Channel Y [x][y] inputs */
break;
case LEFT:
/* 3 == side */
/* 4. Channel X [x][y] inputs */
break;
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File: %s [LINE%d]) Invalid side!\n",
__FILE__, __LINE__);
exit(1);
}
return ret;
}
DeviceCoordinator RRGSB::get_grid_coordinator() const {
DeviceCoordinator ret(get_sb_x(), get_sb_y());
ret.set_y(ret.get_y() + 1);
return ret;
}
/* Public Accessors Verilog writer */
const char* RRGSB::gen_cb_verilog_routing_track_name(t_rr_type cb_type,
size_t track_id) const {
std::string cb_name(convert_chan_type_to_string(cb_type));
std::string x_str = std::to_string(get_cb_x(cb_type));
std::string y_str = std::to_string(get_cb_y(cb_type));
std::string track_id_str = std::to_string(track_id);
char* ret = (char*)my_malloc(sizeof(char)*
( cb_name.length() + 1
+ x_str.length() + 2
+ y_str.length() + 9
+ track_id_str.length() + 1
+ 1));
sprintf (ret, "%s_%s__%s__midout_%s_",
cb_name.c_str(), x_str.c_str(), y_str.c_str(), track_id_str.c_str());
return ret;
}
const char* RRGSB::gen_sb_verilog_module_name() const {
std::string x_str = std::to_string(get_sb_x());
std::string y_str = std::to_string(get_sb_y());
char* ret = (char*)my_malloc(sizeof(char)*
( 2 + 1
+ x_str.length() + 2
+ y_str.length() + 1
+ 1));
sprintf (ret, "sb_%s__%s_",
x_str.c_str(), y_str.c_str());
return ret;
}
const char* RRGSB::gen_gsb_verilog_module_name() const {
std::string x_str = std::to_string(get_sb_x());
std::string y_str = std::to_string(get_sb_y());
char* ret = (char*)my_malloc(sizeof(char)*
( 3 + 1
+ x_str.length() + 2
+ y_str.length() + 1
+ 1));
sprintf (ret, "gsb_%s__%s_",
x_str.c_str(), y_str.c_str());
return ret;
}
const char* RRGSB::gen_sb_verilog_instance_name() const {
char* ret = (char*)my_malloc(sizeof(char)*
( strlen(gen_sb_verilog_module_name()) + 3
+ 1));
sprintf (ret, "%s_0_",
gen_sb_verilog_module_name());
return ret;
}
const char* RRGSB::gen_gsb_verilog_instance_name() const {
char* ret = (char*)my_malloc(sizeof(char)*
( strlen(gen_gsb_verilog_module_name()) + 3
+ 1));
sprintf (ret, "%s_0_",
gen_gsb_verilog_module_name());
return ret;
}
/* Public Accessors Verilog writer */
const char* RRGSB::gen_sb_verilog_side_module_name(enum e_side side, size_t seg_id) const {
Side side_manager(side);
std::string prefix_str(gen_sb_verilog_module_name());
std::string seg_id_str(std::to_string(seg_id));
std::string side_str(side_manager.to_string());
char* ret = (char*)my_malloc(sizeof(char)*
( prefix_str.length() + 1
+ side_str.length() + 5
+ seg_id_str.length() + 1
+ 1));
sprintf (ret, "%s_%s_seg_%s_",
prefix_str.c_str(), side_str.c_str(), seg_id_str.c_str());
return ret;
}
const char* RRGSB::gen_sb_verilog_side_instance_name(enum e_side side, size_t seg_id) const {
std::string prefix_str = gen_sb_verilog_side_module_name(side, seg_id);
char* ret = (char*)my_malloc(sizeof(char)*
( prefix_str.length() + 3
+ 1));
sprintf (ret, "%s_0_",
prefix_str.c_str());
return ret;
}
/* Public Accessors Verilog writer */
const char* RRGSB::gen_cb_verilog_module_name(t_rr_type cb_type) const {
/* check */
assert (validate_cb_type(cb_type));
std::string prefix_str = convert_cb_type_to_string(cb_type);
std::string x_str = std::to_string(get_cb_x(cb_type));
std::string y_str = std::to_string(get_cb_y(cb_type));
char* ret = (char*)my_malloc(sizeof(char)*
( prefix_str.length() + 1
+ x_str.length() + 2
+ y_str.length() + 1
+ 1));
sprintf (ret, "%s_%s__%s_",
prefix_str.c_str(), x_str.c_str(), y_str.c_str());
return ret;
}
const char* RRGSB::gen_cb_verilog_instance_name(t_rr_type cb_type) const {
/* check */
assert (validate_cb_type(cb_type));
std::string prefix_str = gen_cb_verilog_module_name(cb_type);
char* ret = (char*)my_malloc(sizeof(char)*
(prefix_str.length() + 3
+ 1));
sprintf (ret, "%s_0_",
prefix_str.c_str());
return ret;
}
/* Public mutators */
/* get a copy from a source */
void RRGSB::set(const RRGSB& src) {
/* Copy coordinator */
this->set_coordinator(src.get_sb_coordinator().get_x(), src.get_sb_coordinator().get_y());
/* Initialize sides */
this->init_num_sides(src.get_num_sides());
/* Copy vectors */
for (size_t side = 0; side < src.get_num_sides(); ++side) {
Side side_manager(side);
/* Copy chan_nodes */
/* skip if there is no channel width */
if ( 0 < src.get_chan_width(side_manager.get_side()) ) {
this->chan_node_[side_manager.get_side()].set(src.get_chan(side_manager.get_side()));
/* Copy chan_node_direction_*/
this->chan_node_direction_[side_manager.get_side()].clear();
for (size_t inode = 0; inode < src.get_chan_width(side_manager.get_side()); ++inode) {
this->chan_node_direction_[side_manager.get_side()].push_back(src.get_chan_node_direction(side_manager.get_side(), inode));
}
}
/* Copy opin_node and opin_node_grid_side_ */
this->opin_node_[side_manager.get_side()].clear();
this->opin_node_grid_side_[side_manager.get_side()].clear();
for (size_t inode = 0; inode < src.get_num_opin_nodes(side_manager.get_side()); ++inode) {
this->opin_node_[side_manager.get_side()].push_back(src.get_opin_node(side_manager.get_side(), inode));
this->opin_node_grid_side_[side_manager.get_side()].push_back(src.get_opin_node_grid_side(side_manager.get_side(), inode));
}
/* Copy ipin_node and ipin_node_grid_side_ */
this->ipin_node_[side_manager.get_side()].clear();
this->ipin_node_grid_side_[side_manager.get_side()].clear();
for (size_t inode = 0; inode < src.get_num_ipin_nodes(side_manager.get_side()); ++inode) {
this->ipin_node_[side_manager.get_side()].push_back(src.get_ipin_node(side_manager.get_side(), inode));
this->ipin_node_grid_side_[side_manager.get_side()].push_back(src.get_ipin_node_grid_side(side_manager.get_side(), inode));
}
}
/* Copy conf_bits
*/
this->set_sb_num_reserved_conf_bits(src.get_sb_num_reserved_conf_bits());
this->set_sb_conf_bits_lsb(src.get_sb_conf_bits_lsb());
this->set_sb_conf_bits_msb(src.get_sb_conf_bits_msb());
this->set_cb_num_reserved_conf_bits(CHANX, src.get_cb_num_reserved_conf_bits(CHANX));
this->set_cb_conf_bits_lsb(CHANX, src.get_cb_conf_bits_lsb(CHANX));
this->set_cb_conf_bits_msb(CHANX, src.get_cb_conf_bits_msb(CHANX));
this->set_cb_num_reserved_conf_bits(CHANY, src.get_cb_num_reserved_conf_bits(CHANY));
this->set_cb_conf_bits_lsb(CHANY, src.get_cb_conf_bits_lsb(CHANY));
this->set_cb_conf_bits_msb(CHANY, src.get_cb_conf_bits_msb(CHANY));
return;
}
/* Set the coordinator (x,y) for the switch block */
void RRGSB::set_coordinator(size_t x, size_t y) {
coordinator_.set(x, y);
return;
}
/* Allocate the vectors with the given number of sides */
void RRGSB::init_num_sides(size_t num_sides) {
/* Initialize the vectors */
chan_node_.resize(num_sides);
chan_node_direction_.resize(num_sides);
ipin_node_.resize(num_sides);
ipin_node_grid_side_.resize(num_sides);
opin_node_.resize(num_sides);
opin_node_grid_side_.resize(num_sides);
return;
}
/* Add a node to the chan_node_ list and also assign its direction in chan_node_direction_ */
void RRGSB::add_chan_node(enum e_side node_side, RRChan& rr_chan, std::vector<enum PORTS> rr_chan_dir) {
Side side_manager(node_side);
/* Validate: 1. side is valid, the type of node is valid */
assert(validate_side(node_side));
/* fill the dedicated element in the vector */
chan_node_[side_manager.to_size_t()].set(rr_chan);
chan_node_direction_[side_manager.to_size_t()].resize(rr_chan_dir.size());
for (size_t inode = 0; inode < rr_chan_dir.size(); ++inode) {
chan_node_direction_[side_manager.to_size_t()][inode] = rr_chan_dir[inode];
}
return;
}
/* Add a node to the chan_node_ list and also assign its direction in chan_node_direction_ */
void RRGSB::add_ipin_node(t_rr_node* node, const enum e_side node_side, const enum e_side grid_side) {
Side side_manager(node_side);
assert(validate_side(node_side));
/* push pack the dedicated element in the vector */
ipin_node_[side_manager.to_size_t()].push_back(node);
ipin_node_grid_side_[side_manager.to_size_t()].push_back(grid_side);
return;
}
/* Add a node to the chan_node_ list and also assign its direction in chan_node_direction_ */
void RRGSB::add_opin_node(t_rr_node* node, const enum e_side node_side, const enum e_side grid_side) {
Side side_manager(node_side);
assert(validate_side(node_side));
/* push pack the dedicated element in the vector */
opin_node_[side_manager.to_size_t()].push_back(node);
opin_node_grid_side_[side_manager.to_size_t()].push_back(grid_side);
return;
}
void RRGSB::set_sb_num_reserved_conf_bits(size_t num_reserved_conf_bits) {
return sb_conf_port_.set_reserved_port(num_reserved_conf_bits);
}
void RRGSB::set_sb_conf_bits_lsb(size_t conf_bits_lsb) {
return sb_conf_port_.set_regular_port_lsb(conf_bits_lsb);
}
void RRGSB::set_sb_conf_bits_msb(size_t conf_bits_msb) {
return sb_conf_port_.set_regular_port_msb(conf_bits_msb);
}
void RRGSB::set_cb_num_reserved_conf_bits(t_rr_type cb_type, size_t num_reserved_conf_bits) {
assert (validate_cb_type(cb_type));
switch(cb_type) {
case CHANX:
return cbx_conf_port_.set_reserved_port(num_reserved_conf_bits);
case CHANY:
return cby_conf_port_.set_reserved_port(num_reserved_conf_bits);
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s, [LINE%d])Invalid type of connection block!\n",
__FILE__, __LINE__);
exit(1);
}
}
void RRGSB::set_cb_conf_bits_lsb(t_rr_type cb_type, size_t conf_bits_lsb) {
assert (validate_cb_type(cb_type));
switch(cb_type) {
case CHANX:
return cbx_conf_port_.set_regular_port_lsb(conf_bits_lsb);
case CHANY:
return cby_conf_port_.set_regular_port_lsb(conf_bits_lsb);
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s, [LINE%d])Invalid type of connection block!\n",
__FILE__, __LINE__);
exit(1);
}
}
void RRGSB::set_cb_conf_bits_msb(t_rr_type cb_type, size_t conf_bits_msb) {
assert (validate_cb_type(cb_type));
switch(cb_type) {
case CHANX:
return cbx_conf_port_.set_regular_port_msb(conf_bits_msb);
case CHANY:
return cby_conf_port_.set_regular_port_msb(conf_bits_msb);
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s, [LINE%d])Invalid type of connection block!\n",
__FILE__, __LINE__);
exit(1);
}
}
/* rotate the channel nodes with the same direction on one side by a given offset */
void RRGSB::rotate_side_chan_node_by_direction(enum e_side side, enum e_direction chan_dir, size_t offset) {
Side side_manager(side);
assert(validate_side(side));
/* Partition the chan nodes on this side, depending on its length */
/* skip this side if there is no nodes */
if (0 == get_chan_width(side)) {
return;
}
/* Rotate the chan_nodes */
chan_node_[side_manager.to_size_t()].rotate_by_node_direction(chan_dir, offset);
return;
}
/* rotate the channel nodes with the same direction on one side by a given offset */
void RRGSB::counter_rotate_side_chan_node_by_direction(enum e_side side, enum e_direction chan_dir, size_t offset) {
Side side_manager(side);
assert(validate_side(side));
/* Partition the chan nodes on this side, depending on its length */
/* skip this side if there is no nodes */
if (0 == get_chan_width(side)) {
return;
}
/* Rotate the chan_nodes */
chan_node_[side_manager.to_size_t()].counter_rotate_by_node_direction(chan_dir, offset);
return;
}
/* rotate all the channel nodes by a given offset */
void RRGSB::rotate_side_chan_node(enum e_side side, size_t offset) {
Side side_manager(side);
/* Partition the chan nodes on this side, depending on its length */
/* skip this side if there is no nodes */
if (0 == get_chan_width(side)) {
return;
}
size_t adapt_offset = offset % get_chan_width(side);
assert(adapt_offset < get_chan_width(side));
/* Find a group split, rotate */
chan_node_[side_manager.to_size_t()].rotate(adapt_offset);
std::rotate(chan_node_direction_[side_manager.to_size_t()].begin(),
chan_node_direction_[side_manager.to_size_t()].begin() + adapt_offset,
chan_node_direction_[side_manager.to_size_t()].end());
return;
}
/* rotate all the channel nodes by a given offset */
void RRGSB::rotate_chan_node(size_t offset) {
/* Rotate chan nodes on each side */
for (size_t side = 0; side < get_num_sides(); ++side) {
Side side_manager(side);
rotate_side_chan_node(side_manager.get_side(), offset);
}
return;
}
/* rotate all the channel nodes by a given offset:
* Routing Channel nodes are divided into different groups using segment ids
* each group is rotated separatedly
*/
void RRGSB::rotate_chan_node_in_group(size_t offset) {
/* Rotate chan nodes on each side */
for (size_t side = 0; side < get_num_sides(); ++side) {
Side side_manager(side);
size_t rotate_begin = 0;
size_t rotate_end = 0;
/* Partition the chan nodes on this side, depending on its length */
/* skip this side if there is no nodes */
if (0 == get_chan_width(side_manager.get_side())) {
continue;
}
for (size_t inode = 0; inode < get_chan_width(side_manager.get_side()) - 1; ++inode) {
if ( (get_chan_node_segment(side_manager.get_side(), inode) != get_chan_node_segment(side_manager.get_side(), inode + 1))
|| ( inode == get_chan_width(side_manager.get_side()) - 2) ) {
/* Record the upper bound */
if ( inode == get_chan_width(side_manager.get_side()) - 2) {
rotate_end = get_chan_width(side_manager.get_side()) - 1;
} else {
rotate_end = inode;
}
/* Make sure offset is in range */
/* skip this side if there is no nodes */
if (0 >= rotate_end - rotate_begin) {
/* Update the lower bound */
rotate_begin = inode + 1;
continue;
}
assert(offset < rotate_end - rotate_begin + 1);
/* Find a group split, rotate */
chan_node_[side].rotate(rotate_begin, rotate_end, offset);
std::rotate(chan_node_direction_[side].begin() + rotate_begin,
chan_node_direction_[side].begin() + rotate_begin + offset,
chan_node_direction_[side].begin() + rotate_end);
/* Update the lower bound */
rotate_begin = inode + 1;
}
}
}
return;
}
/* rotate one side of the opin nodes by a given offset
* OPIN nodes are divided into different groups depending on their grid
* each group is rotated separatedly
*/
void RRGSB::rotate_side_opin_node_in_group(enum e_side side, size_t offset) {
/* Rotate opin nodes on each side */
Side side_manager(side);
size_t rotate_begin = 0;
size_t rotate_end = 0;
/* skip this side if there is no nodes */
if (0 == get_num_opin_nodes(side)) {
return;
}
/* Partition the opin nodes on this side, depending on grids */
for (size_t inode = 0; inode < get_num_opin_nodes(side) - 1; ++inode) {
if ( ( (opin_node_[side_manager.to_size_t()][inode]->xlow != opin_node_[side_manager.to_size_t()][inode + 1]->xlow)
|| (opin_node_[side_manager.to_size_t()][inode]->ylow != opin_node_[side_manager.to_size_t()][inode + 1]->ylow)
|| (opin_node_[side_manager.to_size_t()][inode]->xhigh != opin_node_[side_manager.to_size_t()][inode + 1]->xhigh)
|| (opin_node_[side_manager.to_size_t()][inode]->yhigh != opin_node_[side_manager.to_size_t()][inode + 1]->yhigh)
|| (opin_node_grid_side_[side_manager.to_size_t()][inode] != opin_node_grid_side_[side_manager.to_size_t()][inode + 1]))
|| ( inode == get_num_opin_nodes(side) - 2) ) {
/* Record the upper bound */
if ( inode == get_num_opin_nodes(side) - 2) {
rotate_end = get_num_opin_nodes(side) - 1;
} else {
rotate_end = inode;
}
/* skip this side if there is no nodes */
if (0 >= rotate_end - rotate_begin) {
/* Update the lower bound */
rotate_begin = inode + 1;
continue;
}
size_t adapt_offset = offset % (rotate_end - rotate_begin + 1);
/* Make sure offset is in range */
assert (adapt_offset < rotate_end - rotate_begin + 1);
/* Find a group split, rotate */
std::rotate(opin_node_[side_manager.to_size_t()].begin() + rotate_begin,
opin_node_[side_manager.to_size_t()].begin() + rotate_begin + adapt_offset,
opin_node_[side_manager.to_size_t()].begin() + rotate_end);
std::rotate(opin_node_grid_side_[side_manager.to_size_t()].begin() + rotate_begin,
opin_node_grid_side_[side_manager.to_size_t()].begin() + rotate_begin + adapt_offset,
opin_node_grid_side_[side_manager.to_size_t()].begin() + rotate_end);
/* Update the lower bound */
rotate_begin = inode + 1;
}
}
return;
}
/* rotate all the opin nodes by a given offset
* OPIN nodes are divided into different groups depending on their grid
* each group is rotated separatedly
*/
void RRGSB::rotate_opin_node_in_group(size_t offset) {
/* Rotate opin nodes on each side */
for (size_t side = 0; side < get_num_sides(); ++side) {
Side side_manager(side);
rotate_side_opin_node_in_group(side_manager.get_side(), offset);
}
return;
}
/* rotate all the channel and opin nodes by a given offset */
void RRGSB::rotate(size_t offset) {
rotate_chan_node(offset);
rotate_opin_node_in_group(offset);
return;
}
/* rotate one side of the channel and opin nodes by a given offset */
void RRGSB::rotate_side(enum e_side side, size_t offset) {
rotate_side_chan_node(side, offset);
rotate_side_opin_node_in_group(side, offset);
return;
}
/* Mirror the node direction and port direction of routing track nodes on a side */
void RRGSB::mirror_side_chan_node_direction(enum e_side side) {
assert(validate_side(side));
Side side_manager(side);
chan_node_[side_manager.to_size_t()].mirror_node_direction();
return;
}
/* swap the chan rr_nodes on two sides */
void RRGSB::swap_chan_node(enum e_side src_side, enum e_side des_side) {
Side src_side_manager(src_side);
Side des_side_manager(des_side);
std::swap(chan_node_[src_side_manager.to_size_t()],
chan_node_[des_side_manager.to_size_t()]);
std::swap(chan_node_direction_[src_side_manager.to_size_t()],
chan_node_direction_[des_side_manager.to_size_t()]);
return;
}
/* swap the OPIN rr_nodes on two sides */
void RRGSB::swap_opin_node(enum e_side src_side, enum e_side des_side) {
Side src_side_manager(src_side);
Side des_side_manager(des_side);
std::swap(opin_node_[src_side_manager.to_size_t()],
opin_node_[des_side_manager.to_size_t()]);
std::swap(opin_node_grid_side_[src_side_manager.to_size_t()],
opin_node_grid_side_[des_side_manager.to_size_t()]);
return;
}
/* swap the IPIN rr_nodes on two sides */
void RRGSB::swap_ipin_node(enum e_side src_side, enum e_side des_side) {
Side src_side_manager(src_side);
Side des_side_manager(des_side);
std::swap(ipin_node_[src_side_manager.to_size_t()],
ipin_node_[des_side_manager.to_size_t()]);
std::swap(ipin_node_grid_side_[src_side_manager.to_size_t()],
ipin_node_grid_side_[des_side_manager.to_size_t()]);
return;
}
/* Reverse the vector of the OPIN rr_nodes on a side */
void RRGSB::reverse_opin_node(enum e_side side) {
Side side_manager(side);
std::reverse(opin_node_[side_manager.to_size_t()].begin(),
opin_node_[side_manager.to_size_t()].end());
std::reverse(opin_node_grid_side_[side_manager.to_size_t()].begin(),
opin_node_grid_side_[side_manager.to_size_t()].end());
return;
}
/* Reverse the vector of the OPIN rr_nodes on a side */
void RRGSB::reverse_ipin_node(enum e_side side) {
Side side_manager(side);
std::reverse(ipin_node_[side_manager.to_size_t()].begin(),
ipin_node_[side_manager.to_size_t()].end());
std::reverse(ipin_node_grid_side_[side_manager.to_size_t()].begin(),
ipin_node_grid_side_[side_manager.to_size_t()].end());
return;
}
/* Reset the RRGSB to pristine state */
void RRGSB::clear() {
/* Clean all the vectors */
assert(validate_num_sides());
/* Clear the inner vector of each matrix */
for (size_t side = 0; side < get_num_sides(); ++side) {
chan_node_direction_[side].clear();
chan_node_[side].clear();
ipin_node_[side].clear();
ipin_node_grid_side_[side].clear();
opin_node_[side].clear();
opin_node_grid_side_[side].clear();
}
chan_node_direction_.clear();
chan_node_.clear();
ipin_node_.clear();
ipin_node_grid_side_.clear();
opin_node_.clear();
opin_node_grid_side_.clear();
/* Just to make the lsb and msb invalidate */
sb_conf_port_.reset();
cbx_conf_port_.reset();
cby_conf_port_.reset();
return;
}
/* Clean the chan_width of a side */
void RRGSB::clear_chan_nodes(enum e_side node_side) {
Side side_manager(node_side);
assert(validate_side(node_side));
chan_node_[side_manager.to_size_t()].clear();
chan_node_direction_[side_manager.to_size_t()].clear();
return;
}
/* Clean the number of IPINs of a side */
void RRGSB::clear_ipin_nodes(enum e_side node_side) {
Side side_manager(node_side);
assert(validate_side(node_side));
ipin_node_[side_manager.to_size_t()].clear();
ipin_node_grid_side_[side_manager.to_size_t()].clear();
return;
}
/* Clean the number of OPINs of a side */
void RRGSB::clear_opin_nodes(enum e_side node_side) {
Side side_manager(node_side);
assert(validate_side(node_side));
opin_node_[side_manager.to_size_t()].clear();
opin_node_grid_side_[side_manager.to_size_t()].clear();
return;
}
/* Clean chan/opin/ipin nodes at one side */
void RRGSB::clear_one_side(enum e_side node_side) {
clear_chan_nodes(node_side);
clear_ipin_nodes(node_side);
clear_opin_nodes(node_side);
return;
}
/* Internal functions for validation */
/* check if two rr_nodes have a similar set of drive_rr_nodes
* for each drive_rr_node:
* 1. CHANX or CHANY: should have the same side and index
* 2. OPIN or IPIN: should have the same side and index
* 3. each drive_rr_switch should be the same
*/
bool RRGSB::is_sb_node_mirror(const RRGSB& cand,
enum e_side node_side,
size_t track_id) const {
/* Ensure rr_nodes are either the output of short-connection or multiplexer */
t_rr_node* node = this->get_chan_node(node_side, track_id);
t_rr_node* cand_node = cand.get_chan_node(node_side, track_id);
bool is_short_conkt = this->is_sb_node_passing_wire(node_side, track_id);
if (is_short_conkt != cand.is_sb_node_passing_wire(node_side, track_id)) {
return false;
}
if (true == is_short_conkt) {
/* Since, both are pass wires,
* The two node should be equivalent
* we can return here
*/
return true;
}
/* For non-passing wires, check driving rr_nodes */
if ( node->num_drive_rr_nodes != cand_node->num_drive_rr_nodes ) {
return false;
}
for (size_t inode = 0; inode < size_t(node->num_drive_rr_nodes); ++inode) {
/* node type should be the same */
if ( node->drive_rr_nodes[inode]->type
!= cand_node->drive_rr_nodes[inode]->type) {
return false;
}
/* switch type should be the same */
if ( node->drive_switches[inode]
!= cand_node->drive_switches[inode]) {
return false;
}
int src_node_id, des_node_id;
enum e_side src_node_side, des_node_side;
this->get_node_side_and_index(node->drive_rr_nodes[inode], OUT_PORT, &src_node_side, &src_node_id);
cand.get_node_side_and_index(cand_node->drive_rr_nodes[inode], OUT_PORT, &des_node_side, &des_node_id);
if (src_node_id != des_node_id) {
return false;
}
if (src_node_side != des_node_side) {
return false;
}
}
return true;
}
/* check if two ipin_nodes have a similar set of drive_rr_nodes
* for each drive_rr_node:
* 1. CHANX or CHANY: should have the same side and index
* 2. each drive_rr_switch should be the same
*/
bool RRGSB::is_cb_node_mirror(const RRGSB& cand, t_rr_type cb_type,
enum e_side node_side,
size_t node_id) const {
/* Ensure rr_nodes are either the output of short-connection or multiplexer */
t_rr_node* node = this->get_ipin_node(node_side, node_id);
t_rr_node* cand_node = cand.get_ipin_node(node_side, node_id);
if ( node->num_drive_rr_nodes != cand_node->num_drive_rr_nodes ) {
return false;
}
for (size_t inode = 0; inode < size_t(node->num_drive_rr_nodes); ++inode) {
/* node type should be the same */
if ( node->drive_rr_nodes[inode]->type
!= cand_node->drive_rr_nodes[inode]->type) {
return false;
}
/* switch type should be the same */
if ( node->drive_switches[inode]
!= cand_node->drive_switches[inode]) {
return false;
}
int src_node_id, des_node_id;
enum e_side src_node_side, des_node_side;
enum e_side chan_side = get_cb_chan_side(cb_type);
switch (node->drive_rr_nodes[inode]->type) {
case CHANX:
case CHANY:
/* if the drive rr_nodes are routing tracks, find index */
src_node_id = this->get_chan_node_index(chan_side, node->drive_rr_nodes[inode]);
des_node_id = cand.get_chan_node_index(chan_side, cand_node->drive_rr_nodes[inode]);
break;
case OPIN:
this->get_node_side_and_index(node->drive_rr_nodes[inode], OUT_PORT, &src_node_side, &src_node_id);
cand.get_node_side_and_index(cand_node->drive_rr_nodes[inode], OUT_PORT, &des_node_side, &des_node_id);
if (src_node_side != des_node_side) {
return false;
}
break;
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s, [LINE%d])Invalid type of drive_rr_nodes for ipin_node!\n",
__FILE__, __LINE__);
exit(1);
}
if (src_node_id != des_node_id) {
return false;
}
}
return true;
}
size_t RRGSB::get_track_id_first_short_connection(enum e_side node_side) const {
assert(validate_side(node_side));
/* Walk through chan_nodes and find the first short connection */
for (size_t inode = 0; inode < get_chan_width(node_side); ++inode) {
if (true == is_sb_node_passing_wire(node_side, inode)) {
return inode;
}
}
return size_t(-1);
}
/* Validate if the number of sides are consistent among internal data arrays ! */
bool RRGSB::validate_num_sides() const {
size_t num_sides = chan_node_direction_.size();
if ( num_sides != chan_node_.size() ) {
return false;
}
if ( num_sides != ipin_node_.size() ) {
return false;
}
if ( num_sides != ipin_node_grid_side_.size() ) {
return false;
}
if ( num_sides != opin_node_.size() ) {
return false;
}
if ( num_sides != opin_node_grid_side_.size() ) {
return false;
}
return true;
}
/* Check if the side valid in the context: does the switch block have the side? */
bool RRGSB::validate_side(enum e_side side) const {
Side side_manager(side);
if ( side_manager.to_size_t() < get_num_sides() ) {
return true;
}
return false;
}
/* Check the track_id is valid for chan_node_ and chan_node_direction_ */
bool RRGSB::validate_track_id(enum e_side side, size_t track_id) const {
Side side_manager(side);
if (false == validate_side(side)) {
return false;
}
if ( ( track_id < chan_node_[side_manager.to_size_t()].get_chan_width())
&& ( track_id < chan_node_direction_[side_manager.to_size_t()].size()) ) {
return true;
}
return false;
}
/* Check the opin_node_id is valid for opin_node_ and opin_node_grid_side_ */
bool RRGSB::validate_opin_node_id(enum e_side side, size_t node_id) const {
Side side_manager(side);
if (false == validate_side(side)) {
return false;
}
if ( ( node_id < opin_node_[side_manager.to_size_t()].size())
&&( node_id < opin_node_grid_side_[side_manager.to_size_t()].size()) ) {
return true;
}
return false;
}
/* Check the ipin_node_id is valid for opin_node_ and opin_node_grid_side_ */
bool RRGSB::validate_ipin_node_id(enum e_side side, size_t node_id) const {
Side side_manager(side);
if (false == validate_side(side)) {
return false;
}
if ( ( node_id < ipin_node_[side_manager.to_size_t()].size())
&&( node_id < ipin_node_grid_side_[side_manager.to_size_t()].size()) ) {
return true;
}
return false;
}
bool RRGSB::validate_cb_type(t_rr_type cb_type) const {
if ( (CHANX == cb_type) || (CHANY == cb_type) ) {
return true;
}
return false;
}
/* Member Functions of Class RRChan */
/* Accessors */
/* get the max coordinator of the switch block array */
DeviceCoordinator DeviceRRGSB::get_gsb_range() const {
size_t max_y = 0;
/* Get the largest size of sub-arrays */
for (size_t x = 0; x < rr_gsb_.size(); ++x) {
max_y = std::max(max_y, rr_gsb_[x].size());
}
DeviceCoordinator coordinator(rr_gsb_.size(), max_y);
return coordinator;
}
/* Get a rr switch block in the array with a coordinator */
const RRGSB DeviceRRGSB::get_gsb(const DeviceCoordinator& coordinator) const {
assert(validate_coordinator(coordinator));
return rr_gsb_[coordinator.get_x()][coordinator.get_y()];
}
/* Get a rr switch block in the array with a coordinator */
const RRGSB DeviceRRGSB::get_gsb(size_t x, size_t y) const {
DeviceCoordinator coordinator(x, y);
return get_gsb(coordinator);
}
/* get the number of unique side modules of switch blocks */
size_t DeviceRRGSB::get_num_sb_unique_submodule(enum e_side side, size_t seg_index) const {
Side side_manager(side);
assert(validate_side(side));
assert(validate_segment_index(seg_index));
return sb_unique_submodule_[side_manager.to_size_t()][seg_index].size();
}
/* get the number of unique mirrors of switch blocks */
size_t DeviceRRGSB::get_num_cb_unique_module(t_rr_type cb_type) const {
assert (validate_cb_type(cb_type));
switch(cb_type) {
case CHANX:
return cbx_unique_module_.size();
case CHANY:
return cby_unique_module_.size();
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s, [LINE%d])Invalid type of connection block!\n",
__FILE__, __LINE__);
exit(1);
}
}
/* get the number of unique mirrors of switch blocks */
size_t DeviceRRGSB::get_num_sb_unique_module() const {
return sb_unique_module_.size();
}
/* get the number of unique mirrors of switch blocks */
size_t DeviceRRGSB::get_num_gsb_unique_module() const {
return gsb_unique_module_.size();
}
/* Get the submodule id of a SB */
size_t DeviceRRGSB::get_sb_unique_submodule_id(DeviceCoordinator& coordinator, enum e_side side, size_t seg_id) const {
assert (validate_coordinator(coordinator));
Side side_manager(side);
assert (validate_side(side));
assert (validate_segment_index(seg_id));
size_t x = coordinator.get_x();
size_t y = coordinator.get_y();
return sb_unique_submodule_id_[x][y][side][seg_id];
}
/* Get a rr switch block which is a unique module of a side of SB */
const RRGSB DeviceRRGSB::get_sb_unique_submodule(size_t index, enum e_side side, size_t seg_id) const {
assert (validate_sb_unique_submodule_index(index, side, seg_id));
Side side_manager(side);
assert (validate_side(side));
size_t x = sb_unique_submodule_[side_manager.to_size_t()][seg_id][index].get_x();
size_t y = sb_unique_submodule_[side_manager.to_size_t()][seg_id][index].get_y();
return rr_gsb_[x][y];
}
/* Get a rr switch block which is a unique module of a side of SB */
const RRGSB DeviceRRGSB::get_sb_unique_submodule(DeviceCoordinator& coordinator, enum e_side side, size_t seg_id) const {
assert (validate_coordinator(coordinator));
Side side_manager(side);
assert (validate_side(side));
size_t module_id = get_sb_unique_submodule_id(coordinator, side, seg_id);
return get_sb_unique_submodule(module_id, side, seg_id);
}
/* Get a rr switch block which a unique mirror */
const RRGSB DeviceRRGSB::get_sb_unique_module(size_t index) const {
assert (validate_sb_unique_module_index(index));
return rr_gsb_[sb_unique_module_[index].get_x()][sb_unique_module_[index].get_y()];
}
/* Get a rr switch block which a unique mirror */
const RRGSB& DeviceRRGSB::get_cb_unique_module(t_rr_type cb_type, size_t index) const {
assert (validate_cb_unique_module_index(cb_type, index));
assert (validate_cb_type(cb_type));
switch(cb_type) {
case CHANX:
return rr_gsb_[cbx_unique_module_[index].get_x()][cbx_unique_module_[index].get_y()];
case CHANY:
return rr_gsb_[cby_unique_module_[index].get_x()][cby_unique_module_[index].get_y()];
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s, [LINE%d])Invalid type of connection block!\n",
__FILE__, __LINE__);
exit(1);
}
}
/* Give a coordinator of a rr switch block, and return its unique mirror */
const RRGSB& DeviceRRGSB::get_cb_unique_module(t_rr_type cb_type, const DeviceCoordinator& coordinator) const {
assert (validate_cb_type(cb_type));
assert(validate_coordinator(coordinator));
size_t cb_unique_module_id;
switch(cb_type) {
case CHANX:
cb_unique_module_id = cbx_unique_module_id_[coordinator.get_x()][coordinator.get_y()];
break;
case CHANY:
cb_unique_module_id = cby_unique_module_id_[coordinator.get_x()][coordinator.get_y()];
break;
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s, [LINE%d])Invalid type of connection block!\n",
__FILE__, __LINE__);
exit(1);
}
return get_cb_unique_module(cb_type, cb_unique_module_id);
}
/* Give a coordinator of a rr switch block, and return its unique mirror */
const RRGSB DeviceRRGSB::get_sb_unique_module(const DeviceCoordinator& coordinator) const {
assert(validate_coordinator(coordinator));
size_t sb_unique_module_id = sb_unique_module_id_[coordinator.get_x()][coordinator.get_y()];
return get_sb_unique_module(sb_unique_module_id);
}
/* Get the maximum number of sides across the switch blocks */
size_t DeviceRRGSB::get_max_num_sides() const {
size_t max_num_sides = 0;
for (size_t ix = 0; ix < rr_gsb_.size(); ++ix) {
for (size_t iy = 0; iy < rr_gsb_[ix].size(); ++iy) {
max_num_sides = std::max(max_num_sides, rr_gsb_[ix][iy].get_num_sides());
}
}
return max_num_sides;
}
/* Get the size of segment_ids */
size_t DeviceRRGSB::get_num_segments() const {
return segment_ids_.size();
}
/* Get a segment id */
size_t DeviceRRGSB::get_segment_id(size_t index) const {
assert(validate_segment_index(index));
return segment_ids_[index];
}
/* Evaluate if the Switch Blocks of two GSBs share exactly the same submodule */
bool DeviceRRGSB::is_two_sb_share_same_submodules(DeviceCoordinator& src, DeviceCoordinator& des) const {
/* check the numbers of sides */
if (get_gsb(src).get_num_sides() != get_gsb(des).get_num_sides()) {
return false;
}
/* check the numbers/directionality of channel rr_nodes */
for (size_t side = 0; side < get_gsb(src).get_num_sides(); ++side) {
Side side_manager(side);
for (size_t iseg = 0; iseg < get_num_segments(); ++iseg) {
if ( get_sb_unique_submodule_id(src, side_manager.get_side(), iseg)
!= get_sb_unique_submodule_id(des, side_manager.get_side(), iseg)) {
return false;
}
}
}
return true;
}
/* Public Mutators */
/* TODO: TOBE DEPRECATED!!! conf_bits should be initialized when creating a switch block!!! */
void DeviceRRGSB::set_cb_num_reserved_conf_bits(DeviceCoordinator& coordinator, t_rr_type cb_type, size_t num_reserved_conf_bits) {
assert(validate_coordinator(coordinator));
rr_gsb_[coordinator.get_x()][coordinator.get_y()].set_cb_num_reserved_conf_bits(cb_type, num_reserved_conf_bits);
return;
}
/* TODO: TOBE DEPRECATED!!! conf_bits should be initialized when creating a switch block!!! */
void DeviceRRGSB::set_cb_conf_bits_lsb(DeviceCoordinator& coordinator, t_rr_type cb_type, size_t conf_bits_lsb) {
assert(validate_coordinator(coordinator));
rr_gsb_[coordinator.get_x()][coordinator.get_y()].set_cb_conf_bits_lsb(cb_type, conf_bits_lsb);
return;
}
/* TODO: TOBE DEPRECATED!!! conf_bits should be initialized when creating a switch block!!! */
void DeviceRRGSB::set_cb_conf_bits_msb(DeviceCoordinator& coordinator, t_rr_type cb_type, size_t conf_bits_msb) {
assert(validate_coordinator(coordinator));
rr_gsb_[coordinator.get_x()][coordinator.get_y()].set_cb_conf_bits_msb(cb_type, conf_bits_msb);
return;
}
/* TODO: TOBE DEPRECATED!!! conf_bits should be initialized when creating a switch block!!! */
void DeviceRRGSB::set_sb_num_reserved_conf_bits(DeviceCoordinator& coordinator, size_t num_reserved_conf_bits) {
assert(validate_coordinator(coordinator));
rr_gsb_[coordinator.get_x()][coordinator.get_y()].set_sb_num_reserved_conf_bits(num_reserved_conf_bits);
return;
}
/* TODO: TOBE DEPRECATED!!! conf_bits should be initialized when creating a switch block!!! */
void DeviceRRGSB::set_sb_conf_bits_lsb(DeviceCoordinator& coordinator, size_t conf_bits_lsb) {
assert(validate_coordinator(coordinator));
rr_gsb_[coordinator.get_x()][coordinator.get_y()].set_sb_conf_bits_lsb(conf_bits_lsb);
return;
}
/* TODO: TOBE DEPRECATED!!! conf_bits should be initialized when creating a switch block!!! */
void DeviceRRGSB::set_sb_conf_bits_msb(DeviceCoordinator& coordinator, size_t conf_bits_msb) {
assert(validate_coordinator(coordinator));
rr_gsb_[coordinator.get_x()][coordinator.get_y()].set_sb_conf_bits_msb(conf_bits_msb);
return;
}
/* Pre-allocate the rr_switch_block array that the device requires */
void DeviceRRGSB::reserve(DeviceCoordinator& coordinator) {
rr_gsb_.resize(coordinator.get_x());
gsb_unique_module_id_.resize(coordinator.get_x());
sb_unique_submodule_id_.resize(coordinator.get_x());
sb_unique_module_id_.resize(coordinator.get_x());
cbx_unique_module_id_.resize(coordinator.get_x());
cby_unique_module_id_.resize(coordinator.get_x());
for (size_t x = 0; x < coordinator.get_x(); ++x) {
rr_gsb_[x].resize(coordinator.get_y());
gsb_unique_module_id_[x].resize(coordinator.get_y());
sb_unique_submodule_id_[x].resize(coordinator.get_y());
sb_unique_module_id_[x].resize(coordinator.get_y());
cbx_unique_module_id_[x].resize(coordinator.get_y());
cby_unique_module_id_[x].resize(coordinator.get_y());
}
return;
}
/* Pre-allocate the rr_sb_unique_module_id matrix that the device requires */
void DeviceRRGSB::reserve_sb_unique_submodule_id(DeviceCoordinator& coordinator) {
const RRGSB& rr_sb = get_gsb(coordinator);
sb_unique_submodule_id_[coordinator.get_x()][coordinator.get_y()].resize(rr_sb.get_num_sides());
for (size_t side = 0; side < rr_sb.get_num_sides(); ++side) {
Side side_manager(side);
sb_unique_submodule_id_[coordinator.get_x()][coordinator.get_y()][side_manager.to_size_t()].resize(segment_ids_.size());
}
return;
}
/* Resize rr_switch_block array is needed*/
void DeviceRRGSB::resize_upon_need(const DeviceCoordinator& coordinator) {
if (coordinator.get_x() + 1 > rr_gsb_.size()) {
rr_gsb_.resize(coordinator.get_x() + 1);
sb_unique_submodule_id_.resize(coordinator.get_x() + 1);
sb_unique_module_id_.resize(coordinator.get_x() + 1);
cbx_unique_module_id_.resize(coordinator.get_x() + 1);
cby_unique_module_id_.resize(coordinator.get_x() + 1);
}
if (coordinator.get_y() + 1 > rr_gsb_[coordinator.get_x()].size()) {
rr_gsb_[coordinator.get_x()].resize(coordinator.get_y() + 1);
sb_unique_submodule_id_[coordinator.get_x()].resize(coordinator.get_y() + 1);
sb_unique_module_id_[coordinator.get_x()].resize(coordinator.get_y() + 1);
cbx_unique_module_id_[coordinator.get_x()].resize(coordinator.get_y() + 1);
cby_unique_module_id_[coordinator.get_x()].resize(coordinator.get_y() + 1);
}
return;
}
/* Add a switch block to the array, which will automatically identify and update the lists of unique mirrors and rotatable mirrors */
void DeviceRRGSB::add_rr_gsb(const DeviceCoordinator& coordinator,
const RRGSB& rr_gsb) {
/* Resize upon needs*/
resize_upon_need(coordinator);
/* Add the switch block into array */
rr_gsb_[coordinator.get_x()][coordinator.get_y()] = rr_gsb;
return;
}
/* Add a switch block to the array, which will automatically identify and update the lists of unique mirrors and rotatable mirrors */
void DeviceRRGSB::build_cb_unique_module(t_rr_type cb_type) {
/* Make sure a clean start */
clear_cb_unique_module(cb_type);
for (size_t ix = 0; ix < rr_gsb_.size(); ++ix) {
for (size_t iy = 0; iy < rr_gsb_[ix].size(); ++iy) {
bool is_unique_module = true;
DeviceCoordinator gsb_coordinator(ix, iy);
/* Bypass non-exist CB */
if ( false == rr_gsb_[ix][iy].is_cb_exist(cb_type) ) {
continue;
}
/* Traverse the unique_mirror list and check it is an mirror of another */
for (size_t id = 0; id < get_num_cb_unique_module(cb_type); ++id) {
const RRGSB& unique_module = get_cb_unique_module(cb_type, id);
if (true == rr_gsb_[ix][iy].is_cb_mirror(unique_module, cb_type)) {
/* This is a mirror, raise the flag and we finish */
is_unique_module = false;
/* Record the id of unique mirror */
set_cb_unique_module_id(cb_type, gsb_coordinator, id);
break;
}
}
/* Add to list if this is a unique mirror*/
if (true == is_unique_module) {
add_cb_unique_module(cb_type, gsb_coordinator);
/* Record the id of unique mirror */
set_cb_unique_module_id(cb_type, gsb_coordinator, get_num_cb_unique_module(cb_type) - 1);
}
}
}
return;
}
/* Add a switch block to the array, which will automatically identify and update the lists of unique mirrors and rotatable mirrors */
void DeviceRRGSB::build_sb_unique_module() {
/* Make sure a clean start */
clear_sb_unique_module();
/* Build the unique submodule */
build_sb_unique_submodule();
for (size_t ix = 0; ix < rr_gsb_.size(); ++ix) {
for (size_t iy = 0; iy < rr_gsb_[ix].size(); ++iy) {
bool is_unique_module = true;
DeviceCoordinator sb_coordinator(ix, iy);
/* Traverse the unique_mirror list and check it is an mirror of another */
for (size_t id = 0; id < get_num_sb_unique_module(); ++id) {
/* Check if the two modules have the same submodules,
* if so, these two modules are the same, indicating the sb is not unique.
* else the sb is unique
*/
if (true == is_two_sb_share_same_submodules(sb_unique_module_[id], sb_coordinator)) {
/* This is a mirror, raise the flag and we finish */
is_unique_module = false;
/* Record the id of unique mirror */
sb_unique_module_id_[ix][iy] = id;
break;
}
}
/* Add to list if this is a unique mirror*/
if (true == is_unique_module) {
sb_unique_module_.push_back(sb_coordinator);
/* Record the id of unique mirror */
sb_unique_module_id_[ix][iy] = sb_unique_module_.size() - 1;
}
}
}
return;
}
/* Add a switch block to the array, which will automatically identify and update the lists of unique mirrors and rotatable mirrors */
void DeviceRRGSB::build_sb_unique_submodule() {
/* Make sure a clean start */
clear_sb_unique_submodule();
/* Allocate the unique_side_module_ */
sb_unique_submodule_.resize(get_max_num_sides());
for (size_t side = 0; side < sb_unique_submodule_.size(); ++side) {
sb_unique_submodule_[side].resize(segment_ids_.size());
}
for (size_t ix = 0; ix < rr_gsb_.size(); ++ix) {
for (size_t iy = 0; iy < rr_gsb_[ix].size(); ++iy) {
DeviceCoordinator coordinator(ix, iy);
const RRGSB& rr_sb = rr_gsb_[ix][iy];
/* reserve the rr_sb_unique_module_id */
reserve_sb_unique_submodule_id(coordinator);
for (size_t side = 0; side < rr_sb.get_num_sides(); ++side) {
Side side_manager(side);
/* Try to add it to the list */
add_sb_unique_side_submodule(coordinator, rr_sb, side_manager.get_side());
}
}
}
return;
}
void DeviceRRGSB::add_sb_unique_side_segment_submodule(DeviceCoordinator& coordinator,
const RRGSB& rr_sb,
enum e_side side,
size_t seg_id) {
bool is_unique_side_module = true;
Side side_manager(side);
/* add rotatable mirror support */
for (size_t id = 0; id < get_num_sb_unique_submodule(side, seg_id); ++id) {
/* Skip if these may never match as a mirror (violation in basic requirements */
if (true == get_gsb(sb_unique_submodule_[side_manager.to_size_t()][seg_id][id]).is_sb_side_segment_mirror(rr_sb, side, segment_ids_[seg_id])) {
/* This is a mirror, raise the flag and we finish */
is_unique_side_module = false;
/* Record the id of unique mirror */
sb_unique_submodule_id_[coordinator.get_x()][coordinator.get_y()][side_manager.to_size_t()][seg_id] = id;
break;
}
}
/* Add to list if this is a unique mirror*/
if (true == is_unique_side_module) {
sb_unique_submodule_[side_manager.to_size_t()][seg_id].push_back(coordinator);
/* Record the id of unique mirror */
sb_unique_submodule_id_[coordinator.get_x()][coordinator.get_y()][side_manager.to_size_t()][seg_id] = sb_unique_submodule_[side_manager.to_size_t()][seg_id].size() - 1;
/*
printf("Detect a rotatable mirror: SB[%lu][%lu]\n", coordinator.get_x(), coordinator.get_y());
*/
}
return;
}
/* Find repeatable GSB block in the array */
void DeviceRRGSB::build_gsb_unique_module() {
/* Make sure a clean start */
clear_gsb_unique_module();
for (size_t ix = 0; ix < rr_gsb_.size(); ++ix) {
for (size_t iy = 0; iy < rr_gsb_[ix].size(); ++iy) {
bool is_unique_module = true;
DeviceCoordinator gsb_coordinator(ix, iy);
/* Traverse the unique_mirror list and check it is an mirror of another */
for (size_t id = 0; id < get_num_gsb_unique_module(); ++id) {
/* We have alreay built sb and cb unique module list
* We just need to check if the unique module id of SBs, CBX and CBY are the same or not
*/
const DeviceCoordinator& gsb_unique_module_coordinator = gsb_unique_module_[id];
if ((sb_unique_module_id_[ix][iy] == sb_unique_module_id_[gsb_unique_module_coordinator.get_x()][gsb_unique_module_coordinator.get_y()])
&& (cbx_unique_module_id_[ix][iy] == cbx_unique_module_id_[gsb_unique_module_coordinator.get_x()][gsb_unique_module_coordinator.get_y()])
&& (cby_unique_module_id_[ix][iy] == cby_unique_module_id_[gsb_unique_module_coordinator.get_x()][gsb_unique_module_coordinator.get_y()])) {
/* This is a mirror, raise the flag and we finish */
is_unique_module = false;
/* Record the id of unique mirror */
gsb_unique_module_id_[ix][iy] = id;
break;
}
}
/* Add to list if this is a unique mirror*/
if (true == is_unique_module) {
add_gsb_unique_module(gsb_coordinator);
/* Record the id of unique mirror */
gsb_unique_module_id_[ix][iy] = get_num_gsb_unique_module() - 1;
}
}
}
return;
}
void DeviceRRGSB::build_unique_module() {
build_segment_ids();
build_sb_unique_module();
build_cb_unique_module(CHANX);
build_cb_unique_module(CHANY);
build_gsb_unique_module();
return;
}
/* Add a unique side module to the list:
* Check if the connections and nodes on the specified side of the rr_sb
* If it is similar to any module[side][i] in the list, we build a link from the rr_sb to the unique_module
* Otherwise, we add the module to the unique_module list
*/
void DeviceRRGSB::add_sb_unique_side_submodule(DeviceCoordinator& coordinator,
const RRGSB& rr_sb,
enum e_side side) {
Side side_manager(side);
for (size_t iseg = 0; iseg < segment_ids_.size(); ++iseg) {
add_sb_unique_side_segment_submodule(coordinator, rr_sb, side, iseg);
}
return;
}
void DeviceRRGSB::add_gsb_unique_module(const DeviceCoordinator& coordinator) {
gsb_unique_module_.push_back(coordinator);
return;
}
void DeviceRRGSB::add_cb_unique_module(t_rr_type cb_type, const DeviceCoordinator& coordinator) {
assert (validate_cb_type(cb_type));
switch(cb_type) {
case CHANX:
cbx_unique_module_.push_back(coordinator);
return;
case CHANY:
cby_unique_module_.push_back(coordinator);
return;
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s, [LINE%d])Invalid type of connection block!\n",
__FILE__, __LINE__);
exit(1);
}
}
void DeviceRRGSB::set_cb_unique_module_id(t_rr_type cb_type, const DeviceCoordinator& coordinator, size_t id) {
assert (validate_cb_type(cb_type));
size_t x = coordinator.get_x();
size_t y = coordinator.get_y();
switch(cb_type) {
case CHANX:
cbx_unique_module_id_[x][y] = id;
return;
case CHANY:
cby_unique_module_id_[x][y] = id;
return;
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s, [LINE%d])Invalid type of connection block!\n",
__FILE__, __LINE__);
exit(1);
}
}
/* build a map of segment_ids */
void DeviceRRGSB::build_segment_ids() {
/* Make sure a clean start */
clear_segment_ids();
/* go through each rr_sb, each side and find the segment_ids */
for (size_t ix = 0; ix < rr_gsb_.size(); ++ix) {
for (size_t iy = 0; iy < rr_gsb_[ix].size(); ++iy) {
RRGSB* rr_sb = &(rr_gsb_[ix][iy]);
for (size_t side = 0 ; side < rr_sb->get_num_sides(); ++side) {
Side side_manager(side);
/* get a list of segment_ids in this side */
std::vector<size_t> cur_seg_ids = rr_sb->get_chan(side_manager.get_side()).get_segment_ids();
/* add to the segment_id_ if exist */
for (size_t iseg = 0; iseg < cur_seg_ids.size(); ++iseg) {
std::vector<size_t>::iterator it = std::find(segment_ids_.begin(), segment_ids_.end(), cur_seg_ids[iseg]);
/* find if it exists in the list */
if (it != segment_ids_.end()) {
/* exist: continue */
continue;
}
/* does not exist, push into the vector */
segment_ids_.push_back(cur_seg_ids[iseg]);
}
}
}
}
return;
}
/* clean the content */
void DeviceRRGSB::clear() {
clear_gsb();
clear_gsb_unique_module();
clear_gsb_unique_module_id();
/* clean unique module lists */
clear_cb_unique_module(CHANX);
clear_cb_unique_module_id(CHANX);
clear_cb_unique_module(CHANY);
clear_cb_unique_module_id(CHANY);
clear_sb_unique_module();
clear_sb_unique_module_id();
clear_sb_unique_submodule();
clear_sb_unique_submodule_id();
return;
}
void DeviceRRGSB::clear_gsb() {
/* clean gsb array */
for (size_t x = 0; x < rr_gsb_.size(); ++x) {
rr_gsb_[x].clear();
}
rr_gsb_.clear();
return;
}
void DeviceRRGSB::clear_gsb_unique_module_id() {
/* clean rr_switch_block array */
for (size_t x = 0; x < rr_gsb_.size(); ++x) {
gsb_unique_module_id_[x].clear();
}
return;
}
void DeviceRRGSB::clear_sb_unique_module_id() {
/* clean rr_switch_block array */
for (size_t x = 0; x < rr_gsb_.size(); ++x) {
sb_unique_module_id_[x].clear();
}
return;
}
void DeviceRRGSB::clear_cb_unique_module_id(t_rr_type cb_type) {
assert (validate_cb_type(cb_type));
switch(cb_type) {
case CHANX:
for (size_t x = 0; x < rr_gsb_.size(); ++x) {
cbx_unique_module_id_[x].clear();
}
return;
case CHANY:
for (size_t x = 0; x < rr_gsb_.size(); ++x) {
cby_unique_module_id_[x].clear();
}
return;
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s, [LINE%d])Invalid type of connection block!\n",
__FILE__, __LINE__);
exit(1);
}
}
void DeviceRRGSB::clear_sb_unique_submodule_id() {
/* clean rr_sb_unique_side_module_id */
for (size_t x = 0; x < sb_unique_submodule_id_.size(); ++x) {
for (size_t y = 0; y < sb_unique_submodule_id_[x].size(); ++y) {
for (size_t side = 0; side < sb_unique_submodule_.size(); ++side) {
sb_unique_submodule_id_[x][y][side].clear();
}
sb_unique_submodule_id_[x][y].clear();
}
sb_unique_submodule_id_[x].clear();
}
sb_unique_submodule_id_.clear();
return;
}
/* clean the content related to unique_mirrors */
void DeviceRRGSB::clear_sb_unique_submodule() {
/* clean unique_side_module_ */
for (size_t side = 0; side < sb_unique_submodule_.size(); ++side) {
for (size_t iseg = 0; iseg < segment_ids_.size(); ++iseg) {
sb_unique_submodule_[side][iseg].clear();
}
sb_unique_submodule_[side].clear();
}
return;
}
/* clean the content related to unique_mirrors */
void DeviceRRGSB::clear_gsb_unique_module() {
/* clean unique mirror */
gsb_unique_module_.clear();
return;
}
/* clean the content related to unique_mirrors */
void DeviceRRGSB::clear_sb_unique_module() {
/* clean unique mirror */
sb_unique_module_.clear();
return;
}
void DeviceRRGSB::clear_cb_unique_module(t_rr_type cb_type) {
assert (validate_cb_type(cb_type));
switch(cb_type) {
case CHANX:
cbx_unique_module_.clear();
return;
case CHANY:
cby_unique_module_.clear();
return;
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s, [LINE%d])Invalid type of connection block!\n",
__FILE__, __LINE__);
exit(1);
}
}
/* clean the content related to segment_ids */
void DeviceRRGSB::clear_segment_ids() {
/* clean segment_ids_ */
segment_ids_.clear();
return;
}
/* Validate if the (x,y) is the range of this device */
bool DeviceRRGSB::validate_coordinator(const DeviceCoordinator& coordinator) const {
if (coordinator.get_x() >= rr_gsb_.capacity()) {
return false;
}
if (coordinator.get_y() >= rr_gsb_[coordinator.get_x()].capacity()) {
return false;
}
return true;
}
/* Validate if the (x,y) is the range of this device, but takes into consideration that edges are 1 off */
bool DeviceRRGSB::validate_coordinator_edge(DeviceCoordinator& coordinator) const {
if (coordinator.get_x() >= rr_gsb_.capacity() + 1) {
return false;
}
if (coordinator.get_y() >= rr_gsb_[coordinator.get_x()].capacity() + 1) {
return false;
}
return true;
}
/* Validate if the index in the range of unique_mirror vector*/
bool DeviceRRGSB::validate_side(enum e_side side) const {
Side side_manager(side);
if (side_manager.to_size_t() >= sb_unique_submodule_.size()) {
return false;
}
return true;
}
/* Validate if the index in the range of unique_mirror vector*/
bool DeviceRRGSB::validate_sb_unique_module_index(size_t index) const {
if (index >= sb_unique_module_.size()) {
return false;
}
return true;
}
/* Validate if the index in the range of unique_mirror vector*/
bool DeviceRRGSB::validate_sb_unique_submodule_index(size_t index, enum e_side side, size_t seg_index) const {
assert( validate_side(side));
assert( validate_segment_index(seg_index));
Side side_manager(side);
if (index >= sb_unique_submodule_[side_manager.get_side()][seg_index].size()) {
return false;
}
return true;
}
bool DeviceRRGSB::validate_cb_unique_module_index(t_rr_type cb_type, size_t index) const {
assert (validate_cb_type(cb_type));
switch(cb_type) {
case CHANX:
if (index >= cbx_unique_module_.size()) {
return false;
}
return true;
case CHANY:
if (index >= cby_unique_module_.size()) {
return false;
}
return true;
default:
vpr_printf(TIO_MESSAGE_ERROR,
"(File:%s, [LINE%d])Invalid type of connection block!\n",
__FILE__, __LINE__);
exit(1);
}
}
bool DeviceRRGSB::validate_segment_index(size_t index) const {
if (index >= segment_ids_.size()) {
return false;
}
return true;
}
bool DeviceRRGSB::validate_cb_type(t_rr_type cb_type) const {
if ( (CHANX == cb_type) || (CHANY == cb_type) ) {
return true;
}
return false;
}
/************************************************************************
* End of file : rr_blocks.cpp
***********************************************************************/