add all the test cases considering tileable, carry chain, direct connection and memory blocks
This commit is contained in:
parent
78964ce71c
commit
b09b051249
|
@ -0,0 +1,59 @@
|
|||
# Run VPR for the 'and' design
|
||||
vpr ./test_vpr_arch/k6_frac_N10_tileable_40nm.xml ./test_blif/and.blif --clock_modeling route #--write_rr_graph example_rr_graph.xml
|
||||
|
||||
# Read OpenFPGA architecture definition
|
||||
read_openfpga_arch -f ./test_openfpga_arch/k6_frac_N10_40nm_openfpga.xml
|
||||
|
||||
# Write out the architecture XML as a proof
|
||||
#write_openfpga_arch -f ./arch_echo.xml
|
||||
|
||||
# Annotate the OpenFPGA architecture to VPR data base
|
||||
link_openfpga_arch --activity_file ./test_blif/and.act --sort_gsb_chan_node_in_edges #--verbose
|
||||
|
||||
# Check and correct any naming conflicts in the BLIF netlist
|
||||
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
|
||||
|
||||
# Apply fix-up to clustering nets based on routing results
|
||||
pb_pin_fixup --verbose
|
||||
|
||||
# Apply fix-up to Look-Up Table truth tables based on packing results
|
||||
lut_truth_table_fixup #--verbose
|
||||
|
||||
# Build the module graph
|
||||
# - Enabled compression on routing architecture modules
|
||||
# - Enable pin duplication on grid modules
|
||||
build_fabric --compress_routing --duplicate_grid_pin #--verbose
|
||||
|
||||
# Repack the netlist to physical pbs
|
||||
# This must be done before bitstream generator and testbench generation
|
||||
# Strongly recommend it is done after all the fix-up have been applied
|
||||
repack #--verbose
|
||||
|
||||
# Build the bitstream
|
||||
# - Output the fabric-independent bitstream to a file
|
||||
build_architecture_bitstream --verbose --file /var/tmp/xtang/openfpga_test_src/fabric_indepenent_bitstream.xml
|
||||
|
||||
# Build fabric-dependent bitstream
|
||||
build_fabric_bitstream --verbose
|
||||
|
||||
# Write the Verilog netlist for FPGA fabric
|
||||
# - Enable the use of explicit port mapping in Verilog netlist
|
||||
write_fabric_verilog --file /var/tmp/xtang/openfpga_test_src/SRC --explicit_port_mapping --include_timing --include_signal_init --support_icarus_simulator --print_user_defined_template --verbose
|
||||
|
||||
# Write the Verilog testbench for FPGA fabric
|
||||
# - We suggest the use of same output directory as fabric Verilog netlists
|
||||
# - Must specify the reference benchmark file if you want to output any testbenches
|
||||
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
|
||||
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
|
||||
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
|
||||
write_verilog_testbench --file /var/tmp/xtang/openfpga_test_src/SRC --reference_benchmark_file_path /var/tmp/xtang/and.v --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini /var/tmp/xtang/openfpga_test_src/simulation_deck.ini
|
||||
|
||||
# Write the SDC files for PnR backend
|
||||
# - Turn on every options here
|
||||
write_pnr_sdc --file /var/tmp/xtang/openfpga_test_src/SDC
|
||||
|
||||
# Write the SDC to run timing analysis for a mapped FPGA fabric
|
||||
write_analysis_sdc --file /var/tmp/xtang/openfpga_test_src/SDC_analysis
|
||||
|
||||
# Finish and exit OpenFPGA
|
||||
exit
|
|
@ -0,0 +1,62 @@
|
|||
# Run VPR for the 'and' design
|
||||
vpr ./test_vpr_arch/k6_frac_N10_tileable_adder_chain_40nm.xml ./test_blif/and.blif --route_chan_width 40 --clock_modeling route #--write_rr_graph example_rr_graph.xml
|
||||
|
||||
# Read OpenFPGA architecture definition
|
||||
read_openfpga_arch -f ./test_openfpga_arch/k6_frac_N10_adder_chain_40nm_openfpga.xml
|
||||
|
||||
# Write out the architecture XML as a proof
|
||||
#write_openfpga_arch -f ./arch_echo.xml
|
||||
|
||||
# Annotate the OpenFPGA architecture to VPR data base
|
||||
link_openfpga_arch --activity_file ./test_blif/and.act --sort_gsb_chan_node_in_edges #--verbose
|
||||
|
||||
# Write GSB to XML for debugging
|
||||
write_gsb_to_xml --file /var/tmp/xtang/openfpga_test_src/gsb_xml
|
||||
|
||||
# Check and correct any naming conflicts in the BLIF netlist
|
||||
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
|
||||
|
||||
# Apply fix-up to clustering nets based on routing results
|
||||
pb_pin_fixup --verbose
|
||||
|
||||
# Apply fix-up to Look-Up Table truth tables based on packing results
|
||||
lut_truth_table_fixup #--verbose
|
||||
|
||||
# Build the module graph
|
||||
# - Enabled compression on routing architecture modules
|
||||
# - Enable pin duplication on grid modules
|
||||
build_fabric --compress_routing --duplicate_grid_pin --verbose
|
||||
|
||||
# Repack the netlist to physical pbs
|
||||
# This must be done before bitstream generator and testbench generation
|
||||
# Strongly recommend it is done after all the fix-up have been applied
|
||||
repack #--verbose
|
||||
|
||||
# Build the bitstream
|
||||
# - Output the fabric-independent bitstream to a file
|
||||
build_architecture_bitstream --verbose --file /var/tmp/xtang/openfpga_test_src/fabric_indepenent_bitstream.xml
|
||||
|
||||
# Build fabric-dependent bitstream
|
||||
build_fabric_bitstream --verbose
|
||||
|
||||
# Write the Verilog netlist for FPGA fabric
|
||||
# - Enable the use of explicit port mapping in Verilog netlist
|
||||
write_fabric_verilog --file /var/tmp/xtang/openfpga_test_src/SRC --explicit_port_mapping --include_timing --include_signal_init --support_icarus_simulator --print_user_defined_template --verbose
|
||||
|
||||
# Write the Verilog testbench for FPGA fabric
|
||||
# - We suggest the use of same output directory as fabric Verilog netlists
|
||||
# - Must specify the reference benchmark file if you want to output any testbenches
|
||||
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
|
||||
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
|
||||
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
|
||||
write_verilog_testbench --file /var/tmp/xtang/openfpga_test_src/SRC --reference_benchmark_file_path /var/tmp/xtang/and.v --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini /var/tmp/xtang/openfpga_test_src/simulation_deck.ini
|
||||
|
||||
# Write the SDC files for PnR backend
|
||||
# - Turn on every options here
|
||||
write_pnr_sdc --file /var/tmp/xtang/openfpga_test_src/SDC
|
||||
|
||||
# Write the SDC to run timing analysis for a mapped FPGA fabric
|
||||
write_analysis_sdc --file /var/tmp/xtang/openfpga_test_src/SDC_analysis
|
||||
|
||||
# Finish and exit OpenFPGA
|
||||
exit
|
|
@ -0,0 +1,62 @@
|
|||
# Run VPR for the 'and' design
|
||||
vpr ./test_vpr_arch/k6_frac_N10_tileable_adder_chain_mem16K_40nm.xml ./test_blif/and.blif --route_chan_width 40 --clock_modeling route #--write_rr_graph example_rr_graph.xml
|
||||
|
||||
# Read OpenFPGA architecture definition
|
||||
read_openfpga_arch -f ./test_openfpga_arch/k6_frac_N10_adder_chain_mem16K_40nm_openfpga.xml
|
||||
|
||||
# Write out the architecture XML as a proof
|
||||
#write_openfpga_arch -f ./arch_echo.xml
|
||||
|
||||
# Annotate the OpenFPGA architecture to VPR data base
|
||||
link_openfpga_arch --activity_file ./test_blif/and.act --sort_gsb_chan_node_in_edges #--verbose
|
||||
|
||||
# Write GSB to XML for debugging
|
||||
write_gsb_to_xml --file /var/tmp/xtang/openfpga_test_src/gsb_xml
|
||||
|
||||
# Check and correct any naming conflicts in the BLIF netlist
|
||||
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
|
||||
|
||||
# Apply fix-up to clustering nets based on routing results
|
||||
pb_pin_fixup --verbose
|
||||
|
||||
# Apply fix-up to Look-Up Table truth tables based on packing results
|
||||
lut_truth_table_fixup #--verbose
|
||||
|
||||
# Build the module graph
|
||||
# - Enabled compression on routing architecture modules
|
||||
# - Enable pin duplication on grid modules
|
||||
build_fabric --compress_routing --duplicate_grid_pin --verbose
|
||||
|
||||
# Repack the netlist to physical pbs
|
||||
# This must be done before bitstream generator and testbench generation
|
||||
# Strongly recommend it is done after all the fix-up have been applied
|
||||
repack #--verbose
|
||||
|
||||
# Build the bitstream
|
||||
# - Output the fabric-independent bitstream to a file
|
||||
build_architecture_bitstream --verbose --file /var/tmp/xtang/openfpga_test_src/fabric_indepenent_bitstream.xml
|
||||
|
||||
# Build fabric-dependent bitstream
|
||||
build_fabric_bitstream --verbose
|
||||
|
||||
# Write the Verilog netlist for FPGA fabric
|
||||
# - Enable the use of explicit port mapping in Verilog netlist
|
||||
write_fabric_verilog --file /var/tmp/xtang/openfpga_test_src/SRC --explicit_port_mapping --include_timing --include_signal_init --support_icarus_simulator --print_user_defined_template --verbose
|
||||
|
||||
# Write the Verilog testbench for FPGA fabric
|
||||
# - We suggest the use of same output directory as fabric Verilog netlists
|
||||
# - Must specify the reference benchmark file if you want to output any testbenches
|
||||
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
|
||||
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
|
||||
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
|
||||
write_verilog_testbench --file /var/tmp/xtang/openfpga_test_src/SRC --reference_benchmark_file_path /var/tmp/xtang/and.v --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini /var/tmp/xtang/openfpga_test_src/simulation_deck.ini
|
||||
|
||||
# Write the SDC files for PnR backend
|
||||
# - Turn on every options here
|
||||
write_pnr_sdc --file /var/tmp/xtang/openfpga_test_src/SDC
|
||||
|
||||
# Write the SDC to run timing analysis for a mapped FPGA fabric
|
||||
write_analysis_sdc --file /var/tmp/xtang/openfpga_test_src/SDC_analysis
|
||||
|
||||
# Finish and exit OpenFPGA
|
||||
exit
|
|
@ -0,0 +1,62 @@
|
|||
# Run VPR for the 'and' design
|
||||
vpr ./test_vpr_arch/k6_frac_N10_tileable_thru_channel_adder_chain_mem16K_40nm.xml ./test_blif/and.blif --route_chan_width 40 --clock_modeling route #--write_rr_graph example_rr_graph.xml
|
||||
|
||||
# Read OpenFPGA architecture definition
|
||||
read_openfpga_arch -f ./test_openfpga_arch/k6_frac_N10_adder_chain_mem16K_40nm_openfpga.xml
|
||||
|
||||
# Write out the architecture XML as a proof
|
||||
#write_openfpga_arch -f ./arch_echo.xml
|
||||
|
||||
# Annotate the OpenFPGA architecture to VPR data base
|
||||
link_openfpga_arch --activity_file ./test_blif/and.act --sort_gsb_chan_node_in_edges #--verbose
|
||||
|
||||
# Write GSB to XML for debugging
|
||||
write_gsb_to_xml --file /var/tmp/xtang/openfpga_test_src/gsb_xml
|
||||
|
||||
# Check and correct any naming conflicts in the BLIF netlist
|
||||
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
|
||||
|
||||
# Apply fix-up to clustering nets based on routing results
|
||||
pb_pin_fixup --verbose
|
||||
|
||||
# Apply fix-up to Look-Up Table truth tables based on packing results
|
||||
lut_truth_table_fixup #--verbose
|
||||
|
||||
# Build the module graph
|
||||
# - Enabled compression on routing architecture modules
|
||||
# - Enable pin duplication on grid modules
|
||||
build_fabric --compress_routing --duplicate_grid_pin --verbose
|
||||
|
||||
# Repack the netlist to physical pbs
|
||||
# This must be done before bitstream generator and testbench generation
|
||||
# Strongly recommend it is done after all the fix-up have been applied
|
||||
repack #--verbose
|
||||
|
||||
# Build the bitstream
|
||||
# - Output the fabric-independent bitstream to a file
|
||||
build_architecture_bitstream --verbose --file /var/tmp/xtang/openfpga_test_src/fabric_indepenent_bitstream.xml
|
||||
|
||||
# Build fabric-dependent bitstream
|
||||
build_fabric_bitstream --verbose
|
||||
|
||||
# Write the Verilog netlist for FPGA fabric
|
||||
# - Enable the use of explicit port mapping in Verilog netlist
|
||||
write_fabric_verilog --file /var/tmp/xtang/openfpga_test_src/SRC --explicit_port_mapping --include_timing --include_signal_init --support_icarus_simulator --print_user_defined_template --verbose
|
||||
|
||||
# Write the Verilog testbench for FPGA fabric
|
||||
# - We suggest the use of same output directory as fabric Verilog netlists
|
||||
# - Must specify the reference benchmark file if you want to output any testbenches
|
||||
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
|
||||
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
|
||||
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
|
||||
write_verilog_testbench --file /var/tmp/xtang/openfpga_test_src/SRC --reference_benchmark_file_path /var/tmp/xtang/and.v --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini /var/tmp/xtang/openfpga_test_src/simulation_deck.ini
|
||||
|
||||
# Write the SDC files for PnR backend
|
||||
# - Turn on every options here
|
||||
write_pnr_sdc --file /var/tmp/xtang/openfpga_test_src/SDC
|
||||
|
||||
# Write the SDC to run timing analysis for a mapped FPGA fabric
|
||||
write_analysis_sdc --file /var/tmp/xtang/openfpga_test_src/SDC_analysis
|
||||
|
||||
# Finish and exit OpenFPGA
|
||||
exit
|
|
@ -0,0 +1,59 @@
|
|||
# Run VPR for the 'and_latch' design
|
||||
vpr ./test_vpr_arch/k6_frac_N10_tileable_40nm.xml ./test_blif/and_latch.blif --clock_modeling route #--write_rr_graph example_rr_graph.xml
|
||||
|
||||
# Read OpenFPGA architecture definition
|
||||
read_openfpga_arch -f ./test_openfpga_arch/k6_frac_N10_40nm_openfpga.xml
|
||||
|
||||
# Write out the architecture XML as a proof
|
||||
#write_openfpga_arch -f ./arch_echo.xml
|
||||
|
||||
# Annotate the OpenFPGA architecture to VPR data base
|
||||
link_openfpga_arch --activity_file ./test_blif/and_latch.act --sort_gsb_chan_node_in_edges #--verbose
|
||||
|
||||
# Check and correct any naming conflicts in the BLIF netlist
|
||||
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
|
||||
|
||||
# Apply fix-up to clustering nets based on routing results
|
||||
pb_pin_fixup --verbose
|
||||
|
||||
# Apply fix-up to Look-Up Table truth tables based on packing results
|
||||
lut_truth_table_fixup #--verbose
|
||||
|
||||
# Build the module graph
|
||||
# - Enabled compression on routing architecture modules
|
||||
# - Enable pin duplication on grid modules
|
||||
build_fabric --compress_routing --duplicate_grid_pin #--verbose
|
||||
|
||||
# Repack the netlist to physical pbs
|
||||
# This must be done before bitstream generator and testbench generation
|
||||
# Strongly recommend it is done after all the fix-up have been applied
|
||||
repack --verbose
|
||||
|
||||
# Build the bitstream
|
||||
# - Output the fabric-independent bitstream to a file
|
||||
build_architecture_bitstream --verbose --file /var/tmp/xtang/openfpga_test_src/fabric_indepenent_bitstream.xml
|
||||
|
||||
# Build fabric-dependent bitstream
|
||||
build_fabric_bitstream --verbose
|
||||
|
||||
# Write the Verilog netlist for FPGA fabric
|
||||
# - Enable the use of explicit port mapping in Verilog netlist
|
||||
write_fabric_verilog --file /var/tmp/xtang/openfpga_test_src/SRC --explicit_port_mapping --include_timing --include_signal_init --support_icarus_simulator --print_user_defined_template --verbose
|
||||
|
||||
# Write the Verilog testbench for FPGA fabric
|
||||
# - We suggest the use of same output directory as fabric Verilog netlists
|
||||
# - Must specify the reference benchmark file if you want to output any testbenches
|
||||
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
|
||||
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
|
||||
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
|
||||
write_verilog_testbench --file /var/tmp/xtang/openfpga_test_src/SRC --reference_benchmark_file_path /var/tmp/xtang/and_latch.v --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini /var/tmp/xtang/openfpga_test_src/simulation_deck.ini
|
||||
|
||||
# Write the SDC files for PnR backend
|
||||
# - Turn on every options here
|
||||
write_pnr_sdc --file /var/tmp/xtang/openfpga_test_src/SDC
|
||||
|
||||
# Write the SDC to run timing analysis for a mapped FPGA fabric
|
||||
write_analysis_sdc --file /var/tmp/xtang/openfpga_test_src/SDC_analysis
|
||||
|
||||
# Finish and exit OpenFPGA
|
||||
exit
|
|
@ -0,0 +1,62 @@
|
|||
# Run VPR for the 'and' design
|
||||
vpr ./test_vpr_arch/k6_frac_N10_tileable_adder_chain_40nm.xml ./test_blif/and_latch.blif --route_chan_width 40 --clock_modeling route #--write_rr_graph example_rr_graph.xml
|
||||
|
||||
# Read OpenFPGA architecture definition
|
||||
read_openfpga_arch -f ./test_openfpga_arch/k6_frac_N10_adder_chain_40nm_openfpga.xml
|
||||
|
||||
# Write out the architecture XML as a proof
|
||||
#write_openfpga_arch -f ./arch_echo.xml
|
||||
|
||||
# Annotate the OpenFPGA architecture to VPR data base
|
||||
link_openfpga_arch --activity_file ./test_blif/and_latch.act --sort_gsb_chan_node_in_edges #--verbose
|
||||
|
||||
# Write GSB to XML for debugging
|
||||
write_gsb_to_xml --file /var/tmp/xtang/openfpga_test_src/gsb_xml
|
||||
|
||||
# Check and correct any naming conflicts in the BLIF netlist
|
||||
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
|
||||
|
||||
# Apply fix-up to clustering nets based on routing results
|
||||
pb_pin_fixup --verbose
|
||||
|
||||
# Apply fix-up to Look-Up Table truth tables based on packing results
|
||||
lut_truth_table_fixup #--verbose
|
||||
|
||||
# Build the module graph
|
||||
# - Enabled compression on routing architecture modules
|
||||
# - Enable pin duplication on grid modules
|
||||
build_fabric --compress_routing --duplicate_grid_pin --verbose
|
||||
|
||||
# Repack the netlist to physical pbs
|
||||
# This must be done before bitstream generator and testbench generation
|
||||
# Strongly recommend it is done after all the fix-up have been applied
|
||||
repack #--verbose
|
||||
|
||||
# Build the bitstream
|
||||
# - Output the fabric-independent bitstream to a file
|
||||
build_architecture_bitstream --verbose --file /var/tmp/xtang/openfpga_test_src/fabric_indepenent_bitstream.xml
|
||||
|
||||
# Build fabric-dependent bitstream
|
||||
build_fabric_bitstream --verbose
|
||||
|
||||
# Write the Verilog netlist for FPGA fabric
|
||||
# - Enable the use of explicit port mapping in Verilog netlist
|
||||
write_fabric_verilog --file /var/tmp/xtang/openfpga_test_src/SRC --explicit_port_mapping --include_timing --include_signal_init --support_icarus_simulator --print_user_defined_template --verbose
|
||||
|
||||
# Write the Verilog testbench for FPGA fabric
|
||||
# - We suggest the use of same output directory as fabric Verilog netlists
|
||||
# - Must specify the reference benchmark file if you want to output any testbenches
|
||||
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
|
||||
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
|
||||
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
|
||||
write_verilog_testbench --file /var/tmp/xtang/openfpga_test_src/SRC --reference_benchmark_file_path /var/tmp/xtang/and_latch.v --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini /var/tmp/xtang/openfpga_test_src/simulation_deck.ini
|
||||
|
||||
# Write the SDC files for PnR backend
|
||||
# - Turn on every options here
|
||||
write_pnr_sdc --file /var/tmp/xtang/openfpga_test_src/SDC
|
||||
|
||||
# Write the SDC to run timing analysis for a mapped FPGA fabric
|
||||
write_analysis_sdc --file /var/tmp/xtang/openfpga_test_src/SDC_analysis
|
||||
|
||||
# Finish and exit OpenFPGA
|
||||
exit
|
|
@ -0,0 +1,62 @@
|
|||
# Run VPR for the 'and' design
|
||||
vpr ./test_vpr_arch/k6_frac_N10_tileable_adder_chain_mem16K_40nm.xml ./test_blif/and_latch.blif --route_chan_width 40 --clock_modeling route #--write_rr_graph example_rr_graph.xml
|
||||
|
||||
# Read OpenFPGA architecture definition
|
||||
read_openfpga_arch -f ./test_openfpga_arch/k6_frac_N10_adder_chain_mem16K_40nm_openfpga.xml
|
||||
|
||||
# Write out the architecture XML as a proof
|
||||
#write_openfpga_arch -f ./arch_echo.xml
|
||||
|
||||
# Annotate the OpenFPGA architecture to VPR data base
|
||||
link_openfpga_arch --activity_file ./test_blif/and_latch.act --sort_gsb_chan_node_in_edges #--verbose
|
||||
|
||||
# Write GSB to XML for debugging
|
||||
write_gsb_to_xml --file /var/tmp/xtang/openfpga_test_src/gsb_xml
|
||||
|
||||
# Check and correct any naming conflicts in the BLIF netlist
|
||||
check_netlist_naming_conflict --fix --report ./netlist_renaming.xml
|
||||
|
||||
# Apply fix-up to clustering nets based on routing results
|
||||
pb_pin_fixup --verbose
|
||||
|
||||
# Apply fix-up to Look-Up Table truth tables based on packing results
|
||||
lut_truth_table_fixup #--verbose
|
||||
|
||||
# Build the module graph
|
||||
# - Enabled compression on routing architecture modules
|
||||
# - Enable pin duplication on grid modules
|
||||
build_fabric --compress_routing --duplicate_grid_pin --verbose
|
||||
|
||||
# Repack the netlist to physical pbs
|
||||
# This must be done before bitstream generator and testbench generation
|
||||
# Strongly recommend it is done after all the fix-up have been applied
|
||||
repack #--verbose
|
||||
|
||||
# Build the bitstream
|
||||
# - Output the fabric-independent bitstream to a file
|
||||
build_architecture_bitstream --verbose --file /var/tmp/xtang/openfpga_test_src/fabric_indepenent_bitstream.xml
|
||||
|
||||
# Build fabric-dependent bitstream
|
||||
build_fabric_bitstream --verbose
|
||||
|
||||
# Write the Verilog netlist for FPGA fabric
|
||||
# - Enable the use of explicit port mapping in Verilog netlist
|
||||
write_fabric_verilog --file /var/tmp/xtang/openfpga_test_src/SRC --explicit_port_mapping --include_timing --include_signal_init --support_icarus_simulator --print_user_defined_template --verbose
|
||||
|
||||
# Write the Verilog testbench for FPGA fabric
|
||||
# - We suggest the use of same output directory as fabric Verilog netlists
|
||||
# - Must specify the reference benchmark file if you want to output any testbenches
|
||||
# - Enable top-level testbench which is a full verification including programming circuit and core logic of FPGA
|
||||
# - Enable pre-configured top-level testbench which is a fast verification skipping programming phase
|
||||
# - Simulation ini file is optional and is needed only when you need to interface different HDL simulators using openfpga flow-run scripts
|
||||
write_verilog_testbench --file /var/tmp/xtang/openfpga_test_src/SRC --reference_benchmark_file_path /var/tmp/xtang/and_latch.v --print_top_testbench --print_preconfig_top_testbench --print_simulation_ini /var/tmp/xtang/openfpga_test_src/simulation_deck.ini
|
||||
|
||||
# Write the SDC files for PnR backend
|
||||
# - Turn on every options here
|
||||
write_pnr_sdc --file /var/tmp/xtang/openfpga_test_src/SDC
|
||||
|
||||
# Write the SDC to run timing analysis for a mapped FPGA fabric
|
||||
write_analysis_sdc --file /var/tmp/xtang/openfpga_test_src/SDC_analysis
|
||||
|
||||
# Finish and exit OpenFPGA
|
||||
exit
|
|
@ -63,7 +63,7 @@
|
|||
</tiles>
|
||||
<!-- ODIN II specific config ends -->
|
||||
<!-- Physical descriptions begin -->
|
||||
<layout>
|
||||
<layout tileable="false">
|
||||
<auto_layout aspect_ratio="1.0">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<perimeter type="io" priority="100"/>
|
||||
|
|
|
@ -0,0 +1,299 @@
|
|||
<!--
|
||||
Architecture with no fracturable LUTs
|
||||
|
||||
- 40 nm technology
|
||||
- General purpose logic block:
|
||||
K = 6, N = 10
|
||||
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
|
||||
|
||||
Details on Modelling:
|
||||
|
||||
Based on flagship k6_frac_N10_mem32K_40nm.xml architecture. This architecture has no fracturable LUTs nor any heterogeneous blocks.
|
||||
|
||||
|
||||
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
|
||||
-->
|
||||
<architecture>
|
||||
<!--
|
||||
ODIN II specific config begins
|
||||
Describes the types of user-specified netlist blocks (in blif, this corresponds to
|
||||
".model [type_of_block]") that this architecture supports.
|
||||
|
||||
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
|
||||
already special structures in blif (.names, .input, .output, and .latch)
|
||||
that describe them.
|
||||
-->
|
||||
<models>
|
||||
<!-- A virtual model for I/O to be used in the physical mode of io block -->
|
||||
<model name="io">
|
||||
<input_ports>
|
||||
<port name="outpad"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="inpad"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
</models>
|
||||
<tiles>
|
||||
<tile name="io" capacity="8" area="0">
|
||||
<equivalent_sites>
|
||||
<site pb_type="io"/>
|
||||
</equivalent_sites>
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
<clock name="clock" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="left">io.outpad io.inpad io.clock</loc>
|
||||
<loc side="top">io.outpad io.inpad io.clock</loc>
|
||||
<loc side="right">io.outpad io.inpad io.clock</loc>
|
||||
<loc side="bottom">io.outpad io.inpad io.clock</loc>
|
||||
</pinlocations>
|
||||
</tile>
|
||||
<tile name="clb" area="53894">
|
||||
<equivalent_sites>
|
||||
<site pb_type="clb"/>
|
||||
</equivalent_sites>
|
||||
<input name="I" num_pins="40" equivalent="full"/>
|
||||
<output name="O" num_pins="10" equivalent="instance"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
|
||||
<pinlocations pattern="spread"/>
|
||||
</tile>
|
||||
</tiles>
|
||||
<!-- ODIN II specific config ends -->
|
||||
<!-- Physical descriptions begin -->
|
||||
<layout tileable="true">
|
||||
<auto_layout aspect_ratio="1.0">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<perimeter type="io" priority="100"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!--Fill with 'clb'-->
|
||||
<fill type="clb" priority="10"/>
|
||||
</auto_layout>
|
||||
</layout>
|
||||
<device>
|
||||
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
|
||||
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
|
||||
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
|
||||
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
|
||||
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
|
||||
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
|
||||
lined up with Stratix IV.
|
||||
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
|
||||
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
|
||||
by 2.5x when looking up in Jeff's tables.
|
||||
The delay values are lined up with Stratix IV, which has an architecture similar to this
|
||||
proposed FPGA, and which is also 40 nm
|
||||
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
|
||||
4x minimum drive strength buffer. -->
|
||||
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
|
||||
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
|
||||
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
|
||||
-->
|
||||
<area grid_logic_tile_area="0"/>
|
||||
<chan_width_distr>
|
||||
<x distr="uniform" peak="1.000000"/>
|
||||
<y distr="uniform" peak="1.000000"/>
|
||||
</chan_width_distr>
|
||||
<switch_block type="wilton" fs="3"/>
|
||||
<connection_block input_switch_name="ipin_cblock"/>
|
||||
</device>
|
||||
<switchlist>
|
||||
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
|
||||
book area formula. This means the mux transistors are about 5x minimum drive strength.
|
||||
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
|
||||
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
|
||||
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
|
||||
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
|
||||
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
|
||||
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
|
||||
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
|
||||
2.5x when looking up in Jeff's tables.
|
||||
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
|
||||
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
|
||||
<switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
|
||||
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
|
||||
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
|
||||
</switchlist>
|
||||
<segmentlist>
|
||||
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
|
||||
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
|
||||
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
|
||||
<segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
|
||||
<mux name="0"/>
|
||||
<sb type="pattern">1 1 1 1 1</sb>
|
||||
<cb type="pattern">1 1 1 1</cb>
|
||||
</segment>
|
||||
</segmentlist>
|
||||
<complexblocklist>
|
||||
<!-- Define I/O pads begin -->
|
||||
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
|
||||
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
|
||||
<pb_type name="io">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
<clock name="clock" num_pins="1"/>
|
||||
<!-- A mode denotes the physical implementation of an I/O
|
||||
This mode will be not packable but is mainly used for fabric verilog generation
|
||||
-->
|
||||
<mode name="physical" disabled_in_pack="true">
|
||||
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="outpad" input="io.outpad" output="iopad.outpad">
|
||||
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
|
||||
</direct>
|
||||
<direct name="inpad" input="iopad.inpad" output="io.inpad">
|
||||
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- IOs can operate as either inputs or outputs.
|
||||
Delays below come from Ian Kuon. They are small, so they should be interpreted as
|
||||
the delays to and from registers in the I/O (and generally I/Os are registered
|
||||
today and that is when you timing analyze them.
|
||||
-->
|
||||
<mode name="inpad">
|
||||
<pb_type name="inpad" blif_model=".input" num_pb="1">
|
||||
<output name="inpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="inpad" input="inpad.inpad" output="io.inpad">
|
||||
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<mode name="outpad">
|
||||
<pb_type name="outpad" blif_model=".output" num_pb="1">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="outpad" input="io.outpad" output="outpad.outpad">
|
||||
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
|
||||
<!-- IOs go on the periphery of the FPGA, for consistency,
|
||||
make it physically equivalent on all sides so that only one definition of I/Os is needed.
|
||||
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
|
||||
-->
|
||||
<!-- Place I/Os on the sides of the FPGA -->
|
||||
<power method="ignore"/>
|
||||
</pb_type>
|
||||
<!-- Define I/O pads ends -->
|
||||
<!-- Define general purpose logic block (CLB) begin -->
|
||||
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
|
||||
area is 60 L^2 yields a tile area of 84375 MWTAs.
|
||||
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
|
||||
This means that only 37% of our area is in the general routing, and 63% is inside the logic
|
||||
block. Note that the crossbar / local interconnect is considered part of the logic block
|
||||
area in this analysis. That is a lower proportion of of routing area than most academics
|
||||
assume, but note that the total routing area really includes the crossbar, which would push
|
||||
routing area up significantly, we estimate into the ~70% range.
|
||||
-->
|
||||
<pb_type name="clb">
|
||||
<input name="I" num_pins="40" equivalent="full"/>
|
||||
<output name="O" num_pins="10" equivalent="instance"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Describe basic logic element.
|
||||
Each basic logic element has a 6-LUT that can be optionally registered
|
||||
-->
|
||||
<pb_type name="fle" num_pb="10">
|
||||
<input name="in" num_pins="6"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- 6-LUT mode definition begin -->
|
||||
<mode name="n1_lut6">
|
||||
<!-- Define 6-LUT mode -->
|
||||
<pb_type name="ble6" num_pb="1">
|
||||
<input name="in" num_pins="6"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Define LUT -->
|
||||
<pb_type name="lut6" blif_model=".names" num_pb="1" class="lut">
|
||||
<input name="in" num_pins="6" port_class="lut_in"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out"/>
|
||||
<!-- LUT timing using delay matrix -->
|
||||
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
|
||||
we instead take the average of these numbers to get more stable results
|
||||
82e-12
|
||||
173e-12
|
||||
261e-12
|
||||
263e-12
|
||||
398e-12
|
||||
397e-12
|
||||
-->
|
||||
<delay_matrix type="max" in_port="lut6.in" out_port="lut6.out">
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
<!-- Define flip-flop -->
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ble6.in" output="lut6[0:0].in"/>
|
||||
<direct name="direct2" input="lut6.out" output="ff.D">
|
||||
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
|
||||
<pack_pattern name="ble6" in_port="lut6.out" out_port="ff.D"/>
|
||||
</direct>
|
||||
<direct name="direct3" input="ble6.clk" output="ff.clk"/>
|
||||
<mux name="mux1" input="ff.Q lut6.out" output="ble6.out">
|
||||
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||
<delay_constant max="25e-12" in_port="lut6.out" out_port="ble6.out"/>
|
||||
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble6.out"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in" output="ble6.in"/>
|
||||
<direct name="direct2" input="ble6.out" output="fle.out[0:0]"/>
|
||||
<direct name="direct3" input="fle.clk" output="ble6.clk"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- 6-LUT mode definition end -->
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<!-- We use a full crossbar to get logical equivalence at inputs of CLB
|
||||
The delays below come from Stratix IV. the delay through a connection block
|
||||
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
|
||||
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
|
||||
delay within the crossbar is 95 ps.
|
||||
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
|
||||
Since all our outputs LUT outputs go to a BLE output, and have a delay of
|
||||
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
|
||||
to get the part that should be marked on the crossbar. -->
|
||||
<complete name="crossbar" input="clb.I fle[9:0].out" output="fle[9:0].in">
|
||||
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[9:0].in"/>
|
||||
<delay_constant max="75e-12" in_port="fle[9:0].out" out_port="fle[9:0].in"/>
|
||||
</complete>
|
||||
<complete name="clks" input="clb.clk" output="fle[9:0].clk">
|
||||
</complete>
|
||||
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
|
||||
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
|
||||
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
|
||||
naive specification).
|
||||
-->
|
||||
<direct name="clbouts1" input="fle[9:0].out" output="clb.O"/>
|
||||
</interconnect>
|
||||
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
|
||||
<!-- Place this general purpose logic block in any unspecified column -->
|
||||
</pb_type>
|
||||
<!-- Define general purpose logic block (CLB) ends -->
|
||||
</complexblocklist>
|
||||
</architecture>
|
|
@ -76,7 +76,7 @@
|
|||
</tiles>
|
||||
<!-- ODIN II specific config ends -->
|
||||
<!-- Physical descriptions begin -->
|
||||
<layout tileable="true">
|
||||
<layout tileable="false">
|
||||
<!--auto_layout aspect_ratio="1.0"-->
|
||||
<fixed_layout name="2x2" width="4" height="4">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
|
|
|
@ -159,7 +159,7 @@
|
|||
</tiles>
|
||||
<!-- ODIN II specific config ends -->
|
||||
<!-- Physical descriptions begin -->
|
||||
<layout tileable="true">
|
||||
<layout tileable="false">
|
||||
<!--auto_layout aspect_ratio="1.0"-->
|
||||
<fixed_layout name="4x4" width="6" height="6">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
|
|
|
@ -193,7 +193,7 @@
|
|||
</tiles>
|
||||
<!-- ODIN II specific config ends -->
|
||||
<!-- Physical descriptions begin -->
|
||||
<layout tileable="true" through_channel="false">
|
||||
<layout tileable="false">
|
||||
<!--auto_layout aspect_ratio="1.0"-->
|
||||
<fixed_layout name="4x4" width="5" height="4">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,441 @@
|
|||
<!--
|
||||
Flagship Heterogeneous Architecture (No Carry Chains) for VTR 7.0.
|
||||
|
||||
- 40 nm technology
|
||||
- General purpose logic block:
|
||||
K = 6, N = 10, fracturable 6 LUTs (can operate as one 6-LUT or two 5-LUTs with all 5 inputs shared)
|
||||
with optionally registered outputs
|
||||
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
|
||||
|
||||
Details on Modelling:
|
||||
|
||||
Based on flagship k6_frac_N10_mem32K_40nm.xml architecture.
|
||||
|
||||
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
|
||||
-->
|
||||
<architecture>
|
||||
<!--
|
||||
ODIN II specific config begins
|
||||
Describes the types of user-specified netlist blocks (in blif, this corresponds to
|
||||
".model [type_of_block]") that this architecture supports.
|
||||
|
||||
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
|
||||
already special structures in blif (.names, .input, .output, and .latch)
|
||||
that describe them.
|
||||
-->
|
||||
<models>
|
||||
<!-- A virtual model for I/O to be used in the physical mode of io block -->
|
||||
<model name="io">
|
||||
<input_ports>
|
||||
<port name="outpad"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="inpad"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
<!-- A virtual model for I/O to be used in the physical mode of io block -->
|
||||
<model name="frac_lut6">
|
||||
<input_ports>
|
||||
<port name="in"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="lut5_out"/>
|
||||
<port name="lut6_out"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
</models>
|
||||
<tiles>
|
||||
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
|
||||
If you need to register the I/O, define clocks in the circuit models
|
||||
These clocks can be handled in back-end
|
||||
-->
|
||||
<tile name="io" capacity="8" area="0">
|
||||
<equivalent_sites>
|
||||
<site pb_type="io"/>
|
||||
</equivalent_sites>
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="left">io.outpad io.inpad</loc>
|
||||
<loc side="top">io.outpad io.inpad</loc>
|
||||
<loc side="right">io.outpad io.inpad</loc>
|
||||
<loc side="bottom">io.outpad io.inpad</loc>
|
||||
</pinlocations>
|
||||
</tile>
|
||||
<tile name="clb" area="53894">
|
||||
<equivalent_sites>
|
||||
<site pb_type="clb"/>
|
||||
</equivalent_sites>
|
||||
<input name="I" num_pins="40" equivalent="full"/>
|
||||
<output name="O" num_pins="20" equivalent="none"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
|
||||
<pinlocations pattern="spread"/>
|
||||
</tile>
|
||||
</tiles>
|
||||
<!-- ODIN II specific config ends -->
|
||||
<!-- Physical descriptions begin -->
|
||||
<layout tileable="true">
|
||||
<!--auto_layout aspect_ratio="1.0"-->
|
||||
<fixed_layout name="2x2" width="4" height="4">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<perimeter type="io" priority="100"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!--Fill with 'clb'-->
|
||||
<fill type="clb" priority="10"/>
|
||||
</fixed_layout>
|
||||
<!-- /auto_layout -->
|
||||
</layout>
|
||||
<device>
|
||||
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
|
||||
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
|
||||
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
|
||||
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
|
||||
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
|
||||
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
|
||||
lined up with Stratix IV.
|
||||
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
|
||||
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
|
||||
by 2.5x when looking up in Jeff's tables.
|
||||
The delay values are lined up with Stratix IV, which has an architecture similar to this
|
||||
proposed FPGA, and which is also 40 nm
|
||||
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
|
||||
4x minimum drive strength buffer. -->
|
||||
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
|
||||
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
|
||||
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
|
||||
-->
|
||||
<area grid_logic_tile_area="0"/>
|
||||
<chan_width_distr>
|
||||
<x distr="uniform" peak="1.000000"/>
|
||||
<y distr="uniform" peak="1.000000"/>
|
||||
</chan_width_distr>
|
||||
<switch_block type="wilton" fs="3" sub_type="subset" sub_fs="3"/>
|
||||
<connection_block input_switch_name="ipin_cblock"/>
|
||||
</device>
|
||||
<switchlist>
|
||||
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
|
||||
book area formula. This means the mux transistors are about 5x minimum drive strength.
|
||||
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
|
||||
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
|
||||
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
|
||||
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
|
||||
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
|
||||
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
|
||||
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
|
||||
2.5x when looking up in Jeff's tables.
|
||||
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
|
||||
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
|
||||
<switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
|
||||
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
|
||||
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
|
||||
</switchlist>
|
||||
<segmentlist>
|
||||
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
|
||||
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
|
||||
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
|
||||
<!-- GIVE a specific name for the segment! OpenFPGA appreciate that! -->
|
||||
<segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
|
||||
<mux name="0"/>
|
||||
<sb type="pattern">1 1 1 1 1</sb>
|
||||
<cb type="pattern">1 1 1 1</cb>
|
||||
</segment>
|
||||
</segmentlist>
|
||||
<complexblocklist>
|
||||
<!-- Define I/O pads begin -->
|
||||
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
|
||||
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
|
||||
<pb_type name="io">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
|
||||
If you need to register the I/O, define clocks in the circuit models
|
||||
These clocks can be handled in back-end
|
||||
-->
|
||||
<!-- A mode denotes the physical implementation of an I/O
|
||||
This mode will be not packable but is mainly used for fabric verilog generation
|
||||
-->
|
||||
<mode name="physical" disabled_in_pack="true">
|
||||
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="outpad" input="io.outpad" output="iopad.outpad">
|
||||
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
|
||||
</direct>
|
||||
<direct name="inpad" input="iopad.inpad" output="io.inpad">
|
||||
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
|
||||
<!-- IOs can operate as either inputs or outputs.
|
||||
Delays below come from Ian Kuon. They are small, so they should be interpreted as
|
||||
the delays to and from registers in the I/O (and generally I/Os are registered
|
||||
today and that is when you timing analyze them.
|
||||
-->
|
||||
<mode name="inpad">
|
||||
<pb_type name="inpad" blif_model=".input" num_pb="1">
|
||||
<output name="inpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="inpad" input="inpad.inpad" output="io.inpad">
|
||||
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<mode name="outpad">
|
||||
<pb_type name="outpad" blif_model=".output" num_pb="1">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="outpad" input="io.outpad" output="outpad.outpad">
|
||||
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
|
||||
<!-- IOs go on the periphery of the FPGA, for consistency,
|
||||
make it physically equivalent on all sides so that only one definition of I/Os is needed.
|
||||
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
|
||||
-->
|
||||
<!-- Place I/Os on the sides of the FPGA -->
|
||||
<power method="ignore"/>
|
||||
</pb_type>
|
||||
<!-- Define I/O pads ends -->
|
||||
<!-- Define general purpose logic block (CLB) begin -->
|
||||
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
|
||||
area is 60 L^2 yields a tile area of 84375 MWTAs.
|
||||
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
|
||||
This means that only 37% of our area is in the general routing, and 63% is inside the logic
|
||||
block. Note that the crossbar / local interconnect is considered part of the logic block
|
||||
area in this analysis. That is a lower proportion of of routing area than most academics
|
||||
assume, but note that the total routing area really includes the crossbar, which would push
|
||||
routing area up significantly, we estimate into the ~70% range.
|
||||
-->
|
||||
<pb_type name="clb">
|
||||
<input name="I" num_pins="40" equivalent="full"/>
|
||||
<output name="O" num_pins="20" equivalent="none"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Describe fracturable logic element.
|
||||
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
|
||||
The outputs of the fracturable logic element can be optionally registered
|
||||
-->
|
||||
<pb_type name="fle" num_pb="10">
|
||||
<input name="in" num_pins="6"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Physical mode definition begin (physical implementation of the fle) -->
|
||||
<mode name="physical" disabled_in_pack="true">
|
||||
<pb_type name="fabric" num_pb="1">
|
||||
<input name="in" num_pins="6"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<pb_type name="frac_logic" num_pb="1">
|
||||
<input name="in" num_pins="6"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<!-- Define LUT -->
|
||||
<pb_type name="frac_lut6" blif_model=".subckt frac_lut6" num_pb="1">
|
||||
<input name="in" num_pins="6"/>
|
||||
<output name="lut5_out" num_pins="2"/>
|
||||
<output name="lut6_out" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="frac_logic.in" output="frac_lut6.in"/>
|
||||
<direct name="direct2" input="frac_lut6.lut5_out[1]" output="frac_logic.out[1]"/>
|
||||
<!-- Xifan Tang: I use out[0] because the output of lut6 in lut6 mode is wired to the out[0] -->
|
||||
<mux name="mux1" input="frac_lut6.lut6_out frac_lut6.lut5_out[0]" output="frac_logic.out[0]"/>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<!-- Define flip-flop -->
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="2" class="flipflop">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fabric.in" output="frac_logic.in"/>
|
||||
<direct name="direct2" input="frac_logic.out[1:0]" output="ff[1:0].D"/>
|
||||
<complete name="direct3" input="fabric.clk" output="ff[1:0].clk"/>
|
||||
<mux name="mux1" input="ff[0].Q frac_logic.out[0]" output="fabric.out[0]">
|
||||
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||
<delay_constant max="25e-12" in_port="frac_logic.out[0]" out_port="fabric.out[0]"/>
|
||||
<delay_constant max="45e-12" in_port="ff[0].Q" out_port="fabric.out[0]"/>
|
||||
</mux>
|
||||
<mux name="mux2" input="ff[1].Q frac_logic.out[1]" output="fabric.out[1]">
|
||||
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||
<delay_constant max="25e-12" in_port="frac_logic.out[1]" out_port="fabric.out[1]"/>
|
||||
<delay_constant max="45e-12" in_port="ff[1].Q" out_port="fabric.out[1]"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in" output="fabric.in"/>
|
||||
<direct name="direct2" input="fabric.out" output="fle.out"/>
|
||||
<direct name="direct3" input="fle.clk" output="fabric.clk"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- Physical mode definition end (physical implementation of the fle) -->
|
||||
<!-- Dual 5-LUT mode definition begin -->
|
||||
<mode name="n2_lut5">
|
||||
<pb_type name="lut5inter" num_pb="1">
|
||||
<input name="in" num_pins="5"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<pb_type name="ble5" num_pb="2">
|
||||
<input name="in" num_pins="5"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Define the LUT -->
|
||||
<pb_type name="lut5" blif_model=".names" num_pb="1" class="lut">
|
||||
<input name="in" num_pins="5" port_class="lut_in"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out"/>
|
||||
<!-- LUT timing using delay matrix -->
|
||||
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
|
||||
we instead take the average of these numbers to get more stable results
|
||||
82e-12
|
||||
173e-12
|
||||
261e-12
|
||||
263e-12
|
||||
398e-12
|
||||
-->
|
||||
<delay_matrix type="max" in_port="lut5.in" out_port="lut5.out">
|
||||
235e-12
|
||||
235e-12
|
||||
235e-12
|
||||
235e-12
|
||||
235e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
<!-- Define the flip-flop -->
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ble5.in[4:0]" output="lut5[0:0].in[4:0]"/>
|
||||
<direct name="direct2" input="lut5[0:0].out" output="ff[0:0].D">
|
||||
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
|
||||
<pack_pattern name="ble5" in_port="lut5[0:0].out" out_port="ff[0:0].D"/>
|
||||
</direct>
|
||||
<direct name="direct3" input="ble5.clk" output="ff[0:0].clk"/>
|
||||
<mux name="mux1" input="ff[0:0].Q lut5.out[0:0]" output="ble5.out[0:0]">
|
||||
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||
<delay_constant max="25e-12" in_port="lut5.out[0:0]" out_port="ble5.out[0:0]"/>
|
||||
<delay_constant max="45e-12" in_port="ff[0:0].Q" out_port="ble5.out[0:0]"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="lut5inter.in" output="ble5[0:0].in"/>
|
||||
<direct name="direct2" input="lut5inter.in" output="ble5[1:1].in"/>
|
||||
<direct name="direct3" input="ble5[1:0].out" output="lut5inter.out"/>
|
||||
<complete name="complete1" input="lut5inter.clk" output="ble5[1:0].clk"/>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in[4:0]" output="lut5inter.in"/>
|
||||
<direct name="direct2" input="lut5inter.out" output="fle.out"/>
|
||||
<direct name="direct3" input="fle.clk" output="lut5inter.clk"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- Dual 5-LUT mode definition end -->
|
||||
<!-- 6-LUT mode definition begin -->
|
||||
<mode name="n1_lut6">
|
||||
<!-- Define 6-LUT mode -->
|
||||
<pb_type name="ble6" num_pb="1">
|
||||
<input name="in" num_pins="6"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Define LUT -->
|
||||
<pb_type name="lut6" blif_model=".names" num_pb="1" class="lut">
|
||||
<input name="in" num_pins="6" port_class="lut_in"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out"/>
|
||||
<!-- LUT timing using delay matrix -->
|
||||
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
|
||||
we instead take the average of these numbers to get more stable results
|
||||
82e-12
|
||||
173e-12
|
||||
261e-12
|
||||
263e-12
|
||||
398e-12
|
||||
397e-12
|
||||
-->
|
||||
<delay_matrix type="max" in_port="lut6.in" out_port="lut6.out">
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
<!-- Define flip-flop -->
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ble6.in" output="lut6[0:0].in"/>
|
||||
<direct name="direct2" input="lut6.out" output="ff.D">
|
||||
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
|
||||
<pack_pattern name="ble6" in_port="lut6.out" out_port="ff.D"/>
|
||||
</direct>
|
||||
<direct name="direct3" input="ble6.clk" output="ff.clk"/>
|
||||
<mux name="mux1" input="ff.Q lut6.out" output="ble6.out">
|
||||
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||
<delay_constant max="25e-12" in_port="lut6.out" out_port="ble6.out"/>
|
||||
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble6.out"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in" output="ble6.in"/>
|
||||
<direct name="direct2" input="ble6.out" output="fle.out[0:0]"/>
|
||||
<direct name="direct3" input="fle.clk" output="ble6.clk"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- 6-LUT mode definition end -->
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<!-- We use a full crossbar to get logical equivalence at inputs of CLB
|
||||
The delays below come from Stratix IV. the delay through a connection block
|
||||
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
|
||||
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
|
||||
delay within the crossbar is 95 ps.
|
||||
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
|
||||
Since all our outputs LUT outputs go to a BLE output, and have a delay of
|
||||
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
|
||||
to get the part that should be marked on the crossbar. -->
|
||||
<complete name="crossbar" input="clb.I fle[9:0].out" output="fle[9:0].in">
|
||||
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[9:0].in"/>
|
||||
<delay_constant max="75e-12" in_port="fle[9:0].out" out_port="fle[9:0].in"/>
|
||||
</complete>
|
||||
<complete name="clks" input="clb.clk" output="fle[9:0].clk">
|
||||
</complete>
|
||||
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
|
||||
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
|
||||
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
|
||||
naive specification).
|
||||
-->
|
||||
<direct name="clbouts1" input="fle[9:0].out[0:0]" output="clb.O[9:0]"/>
|
||||
<direct name="clbouts2" input="fle[9:0].out[1:1]" output="clb.O[19:10]"/>
|
||||
</interconnect>
|
||||
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
|
||||
<!-- Place this general purpose logic block in any unspecified column -->
|
||||
</pb_type>
|
||||
<!-- Define general purpose logic block (CLB) ends -->
|
||||
</complexblocklist>
|
||||
</architecture>
|
|
@ -0,0 +1,639 @@
|
|||
<!--
|
||||
Flagship Heterogeneous Architecture with Carry Chains for VTR 7.0.
|
||||
|
||||
- 40 nm technology
|
||||
- General purpose logic block:
|
||||
K = 6, N = 10, fracturable 6 LUTs (can operate as one 6-LUT or two 5-LUTs with 8 total FLE inputs (2 inputs of which are shared by the 5-LUTs)
|
||||
with optionally registered outputs
|
||||
Each 5-LUT has an arithemtic mode that converts it to a single-bit adder with both inputs driven by 4-LUTs (both 4-LUTs share all 4 inputs)
|
||||
Carry chain links to vertically adjacent logic blocks
|
||||
- Memory size 32 Kbits, memory aspect ratios vary from a data width of 1 to data width of 64.
|
||||
Height = 6, found on every (8n+2)th column
|
||||
- Multiplier modes: one 36x36, two 18x18, each 18x18 can also operate as two 9x9.
|
||||
Height = 4, found on every (8n+6)th column
|
||||
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
|
||||
|
||||
Details on Modelling:
|
||||
|
||||
The electrical design of the architecture described here is NOT from an
|
||||
optimized, SPICED architecture. Instead, we attempt to create a reasonable
|
||||
architecture file by using an existing commercial FPGA to approximate the area,
|
||||
delay, and power of the underlying components. This is combined with a reasonable 40 nm
|
||||
model of wiring and circuit design for low-level routing components, where available.
|
||||
The resulting architecture has delays that roughly match a commercial 40 nm FPGA, but also
|
||||
has wiring electrical parameters that allow the wire lengths and switch patterns to be
|
||||
modified and you will still get reasonable delay results for the new architecture.
|
||||
The following describes, in detail, how we obtained the various electrical values for this
|
||||
architecture.
|
||||
|
||||
Rmin for nmos and pmos, routing buffer sizes, and I/O pad delays are from the ifar
|
||||
architecture created by Ian Kuon: K06 N10 45nm fc 0.15 area-delay optimized architecture.
|
||||
(n10k06l04.fc15.area1delay1.cmos45nm.bptm.cmos45nm.xml)
|
||||
This routing architecture was optimized for 45 nm, and we have scaled it linearly to 40 nm to
|
||||
match the overall target (a 40 nm FPGA).
|
||||
|
||||
We obtain delay numbers by measuring delays of routing, soft logic blocks,
|
||||
memories, and multipliers from test circuits on a Stratix IV GX device
|
||||
(EP4SGX230DF29C2X, i.e. fastest speed grade). For routing, we took the average delay of H4 and V4
|
||||
wires. Rmetal and Cmetal values for the routing wires were obtained from work done by Charles
|
||||
Chiasson. We use a 96 nm half-pitch (corresponding to mid-level metal stack 40 nm routing) and
|
||||
take the R and C data from the ITRS roadmap.
|
||||
|
||||
For the general purpose logic block, we assume that the area and delays of the Stratix IV
|
||||
crossbar is close enough to the crossbar modelled here.
|
||||
Stratix IV uses 52 inputs and 20 feedback lines, but only a half-populated crossbar, leading to
|
||||
36:1 multiplexers. We match these parameters in this architecture.
|
||||
|
||||
For LUTs, we include LUT
|
||||
delays measured from Stratix IV which is dependant on the input used (ie. some
|
||||
LUT inputs are faster than others). The CAD tools at the time of VTR 7 does
|
||||
not consider differences in LUT input delays.
|
||||
|
||||
Adder delays obtained as approximate values from a Stratix IV EP4SE230F29C3 device.
|
||||
Delay obtained by compiling a 256 bit adder (registered inputs and outputs,
|
||||
all pins except clock virtual) then measuring the delays in chip-planner,
|
||||
sumout delay = 0.271ns to 0.348 ns, intra-block carry delay = 0.011 ns,
|
||||
inter-block carry delay = 0.327 ns. Given this data, I will approximate
|
||||
sumout 0.3 ns, intra-block carry-delay = 0.01 ns, and
|
||||
inter-block carry-delay = 0.16 ns (since Altera inter-block carry delay has
|
||||
overhead that we don't have, I'll approximate the delay of a simpler chain at
|
||||
one half what they have. This is very rough, anything from 0.01ns to 0.327ns
|
||||
can be justified).
|
||||
|
||||
Logic block area numbers obtained by scaling overall tile area of a 65nm
|
||||
Stratix III device, (as given in Wong, Betz and Rose, FPGA 2011) to 40 nm, then subtracting out
|
||||
routing area at a channel width of 300. We use a channel width of 300 because it can route
|
||||
all the VTR 6.0 benchmark circuits with an approximately 20% safety margin, and is also close to the
|
||||
total channel width of Stratix IV. Hence this channel width is close to the commercial practice of
|
||||
choosing a width that provides high routability. The architecture can be routed at different channel
|
||||
widths, but we estimate the tile size and hence the physical length of routing wires assuming
|
||||
a channel width of 300.
|
||||
|
||||
Sanity checks employed:
|
||||
1. We confirmed the routing buffer delay is ~1/3rd of total routing delay at L = 4. This matches
|
||||
common electrical design.
|
||||
|
||||
|
||||
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
|
||||
-->
|
||||
<architecture>
|
||||
<!--
|
||||
ODIN II specific config begins
|
||||
Describes the types of user-specified netlist blocks (in blif, this corresponds to
|
||||
".model [type_of_block]") that this architecture supports.
|
||||
|
||||
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
|
||||
already special structures in blif (.names, .input, .output, and .latch)
|
||||
that describe them.
|
||||
-->
|
||||
<models>
|
||||
<model name="adder">
|
||||
<input_ports>
|
||||
<port name="a" combinational_sink_ports="sumout cout"/>
|
||||
<port name="b" combinational_sink_ports="sumout cout"/>
|
||||
<port name="cin" combinational_sink_ports="sumout cout"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="cout"/>
|
||||
<port name="sumout"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
<!-- A virtual model for I/O to be used in the physical mode of io block -->
|
||||
<model name="io">
|
||||
<input_ports>
|
||||
<port name="outpad"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="inpad"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
<!-- A virtual model for I/O to be used in the physical mode of io block -->
|
||||
<model name="frac_lut6">
|
||||
<input_ports>
|
||||
<port name="in"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="lut4_out"/>
|
||||
<port name="lut5_out"/>
|
||||
<port name="lut6_out"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
</models>
|
||||
<tiles>
|
||||
<tile name="io" capacity="8" area="0">
|
||||
<equivalent_sites>
|
||||
<site pb_type="io"/>
|
||||
</equivalent_sites>
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="left">io.outpad io.inpad</loc>
|
||||
<loc side="top">io.outpad io.inpad</loc>
|
||||
<loc side="right">io.outpad io.inpad</loc>
|
||||
<loc side="bottom">io.outpad io.inpad</loc>
|
||||
</pinlocations>
|
||||
</tile>
|
||||
<tile name="clb" area="53894">
|
||||
<equivalent_sites>
|
||||
<site pb_type="clb"/>
|
||||
</equivalent_sites>
|
||||
<input name="I" num_pins="40" equivalent="full"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<output name="O" num_pins="20" equivalent="none"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10">
|
||||
<fc_override port_name="cin" fc_type="frac" fc_val="0"/>
|
||||
<fc_override port_name="cout" fc_type="frac" fc_val="0"/>
|
||||
</fc>
|
||||
<!-- Highly recommand to customize pin location when direct connection is used!!! -->
|
||||
<!--pinlocations pattern="spread"/-->
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="left">clb.clk</loc>
|
||||
<loc side="top">clb.cin</loc>
|
||||
<loc side="right">clb.O[9:0] clb.I[19:0]</loc>
|
||||
<loc side="bottom">clb.cout clb.O[19:10] clb.I[39:20]</loc>
|
||||
</pinlocations>
|
||||
</tile>
|
||||
</tiles>
|
||||
<!-- ODIN II specific config ends -->
|
||||
<!-- Physical descriptions begin -->
|
||||
<layout tileable="true">
|
||||
<!--auto_layout aspect_ratio="1.0"-->
|
||||
<fixed_layout name="4x4" width="6" height="6">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<perimeter type="io" priority="100"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!--Fill with 'clb'-->
|
||||
<fill type="clb" priority="10"/>
|
||||
</fixed_layout>
|
||||
<!-- /auto_layout -->
|
||||
</layout>
|
||||
<device>
|
||||
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
|
||||
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
|
||||
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
|
||||
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
|
||||
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
|
||||
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
|
||||
lined up with Stratix IV.
|
||||
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
|
||||
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
|
||||
by 2.5x when looking up in Jeff's tables.
|
||||
The delay values are lined up with Stratix IV, which has an architecture similar to this
|
||||
proposed FPGA, and which is also 40 nm
|
||||
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
|
||||
4x minimum drive strength buffer. -->
|
||||
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
|
||||
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
|
||||
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
|
||||
-->
|
||||
<area grid_logic_tile_area="0"/>
|
||||
<chan_width_distr>
|
||||
<x distr="uniform" peak="1.000000"/>
|
||||
<y distr="uniform" peak="1.000000"/>
|
||||
</chan_width_distr>
|
||||
<switch_block type="wilton" fs="3"/>
|
||||
<connection_block input_switch_name="ipin_cblock"/>
|
||||
</device>
|
||||
<switchlist>
|
||||
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
|
||||
book area formula. This means the mux transistors are about 5x minimum drive strength.
|
||||
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
|
||||
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
|
||||
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
|
||||
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
|
||||
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
|
||||
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
|
||||
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
|
||||
2.5x when looking up in Jeff's tables.
|
||||
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
|
||||
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
|
||||
<switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
|
||||
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
|
||||
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
|
||||
</switchlist>
|
||||
<segmentlist>
|
||||
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
|
||||
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
|
||||
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
|
||||
<!-- GIVE a specific name for the segment! OpenFPGA appreciate that! -->
|
||||
<segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
|
||||
<mux name="0"/>
|
||||
<sb type="pattern">1 1 1 1 1</sb>
|
||||
<cb type="pattern">1 1 1 1</cb>
|
||||
</segment>
|
||||
</segmentlist>
|
||||
<directlist>
|
||||
<direct name="adder_carry" from_pin="clb.cout" to_pin="clb.cin" x_offset="0" y_offset="-1" z_offset="0"/>
|
||||
</directlist>
|
||||
<complexblocklist>
|
||||
<!-- Define I/O pads begin -->
|
||||
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
|
||||
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
|
||||
<pb_type name="io">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
|
||||
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
|
||||
If you need to register the I/O, define clocks in the circuit models
|
||||
These clocks can be handled in back-end
|
||||
-->
|
||||
<!-- A mode denotes the physical implementation of an I/O
|
||||
This mode will be not packable but is mainly used for fabric verilog generation
|
||||
-->
|
||||
<mode name="physical" disabled_in_pack="true">
|
||||
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="outpad" input="io.outpad" output="iopad.outpad">
|
||||
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
|
||||
</direct>
|
||||
<direct name="inpad" input="iopad.inpad" output="io.inpad">
|
||||
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
|
||||
<!-- IOs can operate as either inputs or outputs.
|
||||
Delays below come from Ian Kuon. They are small, so they should be interpreted as
|
||||
the delays to and from registers in the I/O (and generally I/Os are registered
|
||||
today and that is when you timing analyze them.
|
||||
-->
|
||||
<mode name="inpad">
|
||||
<pb_type name="inpad" blif_model=".input" num_pb="1">
|
||||
<output name="inpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="inpad" input="inpad.inpad" output="io.inpad">
|
||||
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<mode name="outpad">
|
||||
<pb_type name="outpad" blif_model=".output" num_pb="1">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="outpad" input="io.outpad" output="outpad.outpad">
|
||||
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
|
||||
<!-- IOs go on the periphery of the FPGA, for consistency,
|
||||
make it physically equivalent on all sides so that only one definition of I/Os is needed.
|
||||
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
|
||||
-->
|
||||
<!-- Place I/Os on the sides of the FPGA -->
|
||||
<power method="ignore"/>
|
||||
</pb_type>
|
||||
<!-- Define I/O pads ends -->
|
||||
<!-- Define general purpose logic block (CLB) begin -->
|
||||
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
|
||||
area is 60 L^2 yields a tile area of 84375 MWTAs.
|
||||
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
|
||||
This means that only 37% of our area is in the general routing, and 63% is inside the logic
|
||||
block. Note that the crossbar / local interconnect is considered part of the logic block
|
||||
area in this analysis. That is a lower proportion of of routing area than most academics
|
||||
assume, but note that the total routing area really includes the crossbar, which would push
|
||||
routing area up significantly, we estimate into the ~70% range.
|
||||
-->
|
||||
<pb_type name="clb">
|
||||
<input name="I" num_pins="40" equivalent="full"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<output name="O" num_pins="20" equivalent="none"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Describe fracturable logic element.
|
||||
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
|
||||
The outputs of the fracturable logic element can be optionally registered
|
||||
-->
|
||||
<pb_type name="fle" num_pb="10">
|
||||
<input name="in" num_pins="6"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Physical mode definition begin (physical implementation of the fle) -->
|
||||
<mode name="physical" disabled_in_pack="true">
|
||||
<pb_type name="fabric" num_pb="1">
|
||||
<input name="in" num_pins="6"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<pb_type name="frac_logic" num_pb="1">
|
||||
<input name="in" num_pins="6"/>
|
||||
<output name="lut4_out" num_pins="4"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<!-- Define LUT -->
|
||||
<pb_type name="frac_lut6" blif_model=".subckt frac_lut6" num_pb="1">
|
||||
<input name="in" num_pins="6"/>
|
||||
<output name="lut4_out" num_pins="4"/>
|
||||
<output name="lut5_out" num_pins="2"/>
|
||||
<output name="lut6_out" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="frac_logic.in" output="frac_lut6.in"/>
|
||||
<direct name="direct2" input="frac_lut6.lut4_out" output="frac_logic.lut4_out"/>
|
||||
<direct name="direct3" input="frac_lut6.lut5_out[1]" output="frac_logic.out[1]"/>
|
||||
<!-- Xifan Tang: I use out[0] because the output of lut6 in lut6 mode is wired to the out[0] -->
|
||||
<mux name="mux1" input="frac_lut6.lut6_out frac_lut6.lut5_out[0]" output="frac_logic.out[0]"/>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<!-- Define flip-flop -->
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="2" class="flipflop">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<!-- Define adders -->
|
||||
<pb_type name="adder" blif_model=".subckt adder" num_pb="2">
|
||||
<input name="a" num_pins="1"/>
|
||||
<input name="b" num_pins="1"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<output name="sumout" num_pins="1"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
|
||||
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fabric.in" output="frac_logic.in"/>
|
||||
<direct name="direct2" input="frac_logic.out[1:0]" output="ff[1:0].D"/>
|
||||
<direct name="direct3" input="fabric.cin" output="adder[0:0].cin"/>
|
||||
<direct name="direct4" input="adder[0:0].cout" output="adder[1:1].cin"/>
|
||||
<direct name="direct5" input="adder[1:1].cout" output="fabric.cout"/>
|
||||
<direct name="direct6" input="frac_logic.lut4_out[0:0]" output="adder[0:0].a"/>
|
||||
<direct name="direct7" input="frac_logic.lut4_out[1:1]" output="adder[0:0].b"/>
|
||||
<direct name="direct8" input="frac_logic.lut4_out[2:2]" output="adder[1:1].a"/>
|
||||
<direct name="direct9" input="frac_logic.lut4_out[3:3]" output="adder[1:1].b"/>
|
||||
<complete name="direct10" input="fabric.clk" output="ff[1:0].clk"/>
|
||||
<mux name="mux1" input="adder[0].sumout ff[0].Q frac_logic.out[0]" output="fabric.out[0]">
|
||||
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||
<delay_constant max="25e-12" in_port="frac_logic.out[0]" out_port="fabric.out[0]"/>
|
||||
<delay_constant max="45e-12" in_port="ff[0].Q" out_port="fabric.out[0]"/>
|
||||
</mux>
|
||||
<mux name="mux2" input="adder[1].sumout ff[1].Q frac_logic.out[1]" output="fabric.out[1]">
|
||||
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||
<delay_constant max="25e-12" in_port="frac_logic.out[1]" out_port="fabric.out[1]"/>
|
||||
<delay_constant max="45e-12" in_port="ff[1].Q" out_port="fabric.out[1]"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in" output="fabric.in"/>
|
||||
<direct name="direct2" input="fle.cin" output="fabric.cin"/>
|
||||
<direct name="direct3" input="fabric.out" output="fle.out"/>
|
||||
<direct name="direct4" input="fabric.cout" output="fle.cout"/>
|
||||
<direct name="direct5" input="fle.clk" output="fabric.clk"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- Physical mode definition end (physical implementation of the fle) -->
|
||||
<!-- BEGIN fle mode of dual lut5 -->
|
||||
<mode name="n2_lut5">
|
||||
<pb_type name="ble5" num_pb="2">
|
||||
<input name="in" num_pins="5"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Regular LUT mode -->
|
||||
<pb_type name="lut5" blif_model=".names" num_pb="1" class="lut">
|
||||
<input name="in" num_pins="5" port_class="lut_in"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out"/>
|
||||
<!-- LUT timing using delay matrix -->
|
||||
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
|
||||
we instead take the average of these numbers to get more stable results
|
||||
82e-12
|
||||
173e-12
|
||||
261e-12
|
||||
263e-12
|
||||
398e-12
|
||||
-->
|
||||
<delay_matrix type="max" in_port="lut5.in" out_port="lut5.out">
|
||||
235e-12
|
||||
235e-12
|
||||
235e-12
|
||||
235e-12
|
||||
235e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ble5.in" output="lut5.in"/>
|
||||
<direct name="direct2" input="lut5.out" output="ff.D">
|
||||
<pack_pattern name="ble5" in_port="lut5.out" out_port="ff.D"/>
|
||||
</direct>
|
||||
<direct name="direct3" input="ble5.clk" output="ff.clk"/>
|
||||
<mux name="mux1" input="ff.Q lut5.out" output="ble5.out">
|
||||
<delay_constant max="25e-12" in_port="lut5.out" out_port="ble5.out"/>
|
||||
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble5.out"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in[4:0]" output="ble5[0:0].in"/>
|
||||
<direct name="direct2" input="fle.in[4:0]" output="ble5[1:1].in"/>
|
||||
<complete name="direct3" input="fle.clk" output="ble5.clk"/>
|
||||
<direct name="direct4" input="ble5.out" output="fle.out"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- END fle mode of dual lut5 -->
|
||||
<!-- BEGIN arithmetic mode of dual lut4 + adders -->
|
||||
<mode name="arithmetic">
|
||||
<pb_type name="arithmetic" num_pb="2">
|
||||
<input name="in" num_pins="4"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Special dual-LUT mode that drives adder only -->
|
||||
<pb_type name="lut4" blif_model=".names" num_pb="2" class="lut">
|
||||
<input name="in" num_pins="4" port_class="lut_in"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out"/>
|
||||
<!-- LUT timing using delay matrix -->
|
||||
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
|
||||
we instead take the average of these numbers to get more stable results
|
||||
82e-12
|
||||
173e-12
|
||||
261e-12
|
||||
263e-12
|
||||
-->
|
||||
<delay_matrix type="max" in_port="lut4.in" out_port="lut4.out">
|
||||
195e-12
|
||||
195e-12
|
||||
195e-12
|
||||
195e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
<pb_type name="adder" blif_model=".subckt adder" num_pb="1">
|
||||
<input name="a" num_pins="1"/>
|
||||
<input name="b" num_pins="1"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<output name="sumout" num_pins="1"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
|
||||
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
|
||||
</pb_type>
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="clock" input="arithmetic.clk" output="ff.clk"/>
|
||||
<direct name="lut_in1" input="arithmetic.in[3:0]" output="lut4[0:0].in[3:0]"/>
|
||||
<direct name="lut_in2" input="arithmetic.in[3:0]" output="lut4[1:1].in[3:0]"/>
|
||||
<direct name="lut_to_add1" input="lut4[0:0].out" output="adder.a">
|
||||
</direct>
|
||||
<direct name="lut_to_add2" input="lut4[1:1].out" output="adder.b">
|
||||
</direct>
|
||||
<direct name="add_to_ff" input="adder.sumout" output="ff.D">
|
||||
<pack_pattern name="chain" in_port="adder.sumout" out_port="ff.D"/>
|
||||
</direct>
|
||||
<direct name="carry_in" input="arithmetic.cin" output="adder.cin">
|
||||
<pack_pattern name="chain" in_port="arithmetic.cin" out_port="adder.cin"/>
|
||||
</direct>
|
||||
<direct name="carry_out" input="adder.cout" output="arithmetic.cout">
|
||||
<pack_pattern name="chain" in_port="adder.cout" out_port="arithmetic.cout"/>
|
||||
</direct>
|
||||
<mux name="sumout" input="ff.Q adder.sumout" output="arithmetic.out">
|
||||
<delay_constant max="25e-12" in_port="adder.sumout" out_port="arithmetic.out"/>
|
||||
<delay_constant max="45e-12" in_port="ff.Q" out_port="arithmetic.out"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in[3:0]" output="arithmetic[0:0].in"/>
|
||||
<direct name="direct2" input="fle.in[3:0]" output="arithmetic[1:1].in"/>
|
||||
<direct name="carry_in" input="fle.cin" output="arithmetic[0:0].cin">
|
||||
<pack_pattern name="chain" in_port="fle.cin" out_port="arithmetic[0:0].cin"/>
|
||||
</direct>
|
||||
<direct name="carry_inter" input="arithmetic[0:0].cout" output="arithmetic[1:1].cin">
|
||||
<pack_pattern name="chain" in_port="arithmetic[0:0].cout" out_port="arithmetic[1:1].cin"/>
|
||||
</direct>
|
||||
<direct name="carry_out" input="arithmetic[1:1].cout" output="fle.cout">
|
||||
<pack_pattern name="chain" in_port="arithmetic.cout" out_port="fle.cout"/>
|
||||
</direct>
|
||||
<complete name="direct3" input="fle.clk" output="arithmetic.clk"/>
|
||||
<direct name="direct4" input="arithmetic.out" output="fle.out"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- n2_lut5 -->
|
||||
<mode name="n1_lut6">
|
||||
<pb_type name="ble6" num_pb="1">
|
||||
<input name="in" num_pins="6"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<pb_type name="lut6" blif_model=".names" num_pb="1" class="lut">
|
||||
<input name="in" num_pins="6" port_class="lut_in"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out"/>
|
||||
<!-- LUT timing using delay matrix -->
|
||||
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
|
||||
we instead take the average of these numbers to get more stable results
|
||||
82e-12
|
||||
173e-12
|
||||
261e-12
|
||||
263e-12
|
||||
398e-12
|
||||
397e-12
|
||||
-->
|
||||
<delay_matrix type="max" in_port="lut6.in" out_port="lut6.out">
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ble6.in" output="lut6[0:0].in"/>
|
||||
<direct name="direct2" input="lut6.out" output="ff.D">
|
||||
<pack_pattern name="ble6" in_port="lut6.out" out_port="ff.D"/>
|
||||
</direct>
|
||||
<direct name="direct3" input="ble6.clk" output="ff.clk"/>
|
||||
<mux name="mux1" input="ff.Q lut6.out" output="ble6.out">
|
||||
<delay_constant max="25e-12" in_port="lut6.out" out_port="ble6.out"/>
|
||||
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble6.out"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in[5:0]" output="ble6.in"/>
|
||||
<direct name="direct2" input="ble6.out" output="fle.out[0:0]"/>
|
||||
<direct name="direct3" input="fle.clk" output="ble6.clk"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- n1_lut6 -->
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<!-- We use a 50% depop crossbar built using small full xbars to get sets of logically equivalent pins at inputs of CLB
|
||||
The delays below come from Stratix IV. the delay through a connection block
|
||||
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
|
||||
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
|
||||
delay within the crossbar is 95 ps.
|
||||
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
|
||||
Since all our outputs LUT outputs go to a BLE output, and have a delay of
|
||||
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
|
||||
to get the part that should be marked on the crossbar. -->
|
||||
<complete name="crossbar" input="clb.I fle[9:0].out" output="fle[9:0].in">
|
||||
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[9:0].in"/>
|
||||
<delay_constant max="75e-12" in_port="fle[9:0].out" out_port="fle[9:0].in"/>
|
||||
</complete>
|
||||
|
||||
<complete name="clks" input="clb.clk" output="fle[9:0].clk">
|
||||
</complete>
|
||||
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
|
||||
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
|
||||
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
|
||||
naive specification).
|
||||
-->
|
||||
<direct name="clbouts1" input="fle[9:0].out[0:0]" output="clb.O[9:0]"/>
|
||||
<direct name="clbouts2" input="fle[9:0].out[1:1]" output="clb.O[19:10]"/>
|
||||
<!-- Carry chain links -->
|
||||
<direct name="carry_in" input="clb.cin" output="fle[0:0].cin">
|
||||
<!-- Put all inter-block carry chain delay on this one edge -->
|
||||
<delay_constant max="0.16e-9" in_port="clb.cin" out_port="fle[0:0].cin"/>
|
||||
<pack_pattern name="chain" in_port="clb.cin" out_port="fle[0:0].cin"/>
|
||||
</direct>
|
||||
<direct name="carry_out" input="fle[9:9].cout" output="clb.cout">
|
||||
<pack_pattern name="chain" in_port="fle[9:9].cout" out_port="clb.cout"/>
|
||||
</direct>
|
||||
<direct name="carry_link" input="fle[8:0].cout" output="fle[9:1].cin">
|
||||
<pack_pattern name="chain" in_port="fle[8:0].cout" out_port="fle[9:1].cin"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<!-- Define general purpose logic block (CLB) ends -->
|
||||
</complexblocklist>
|
||||
</architecture>
|
|
@ -0,0 +1,734 @@
|
|||
<!--
|
||||
Flagship Heterogeneous Architecture with Carry Chains for VTR 7.0.
|
||||
|
||||
- 40 nm technology
|
||||
- General purpose logic block:
|
||||
K = 6, N = 10, fracturable 6 LUTs (can operate as one 6-LUT or two 5-LUTs with 8 total FLE inputs (2 inputs of which are shared by the 5-LUTs)
|
||||
with optionally registered outputs
|
||||
Each 5-LUT has an arithemtic mode that converts it to a single-bit adder with both inputs driven by 4-LUTs (both 4-LUTs share all 4 inputs)
|
||||
Carry chain links to vertically adjacent logic blocks
|
||||
- Memory size 32 Kbits, memory aspect ratios vary from a data width of 1 to data width of 64.
|
||||
Height = 6, found on every (8n+2)th column
|
||||
- Multiplier modes: one 36x36, two 18x18, each 18x18 can also operate as two 9x9.
|
||||
Height = 4, found on every (8n+6)th column
|
||||
- Routing architecture: L = 4, fc_in = 0.15, Fc_out = 0.1
|
||||
|
||||
Details on Modelling:
|
||||
|
||||
The electrical design of the architecture described here is NOT from an
|
||||
optimized, SPICED architecture. Instead, we attempt to create a reasonable
|
||||
architecture file by using an existing commercial FPGA to approximate the area,
|
||||
delay, and power of the underlying components. This is combined with a reasonable 40 nm
|
||||
model of wiring and circuit design for low-level routing components, where available.
|
||||
The resulting architecture has delays that roughly match a commercial 40 nm FPGA, but also
|
||||
has wiring electrical parameters that allow the wire lengths and switch patterns to be
|
||||
modified and you will still get reasonable delay results for the new architecture.
|
||||
The following describes, in detail, how we obtained the various electrical values for this
|
||||
architecture.
|
||||
|
||||
Rmin for nmos and pmos, routing buffer sizes, and I/O pad delays are from the ifar
|
||||
architecture created by Ian Kuon: K06 N10 45nm fc 0.15 area-delay optimized architecture.
|
||||
(n10k06l04.fc15.area1delay1.cmos45nm.bptm.cmos45nm.xml)
|
||||
This routing architecture was optimized for 45 nm, and we have scaled it linearly to 40 nm to
|
||||
match the overall target (a 40 nm FPGA).
|
||||
|
||||
We obtain delay numbers by measuring delays of routing, soft logic blocks,
|
||||
memories, and multipliers from test circuits on a Stratix IV GX device
|
||||
(EP4SGX230DF29C2X, i.e. fastest speed grade). For routing, we took the average delay of H4 and V4
|
||||
wires. Rmetal and Cmetal values for the routing wires were obtained from work done by Charles
|
||||
Chiasson. We use a 96 nm half-pitch (corresponding to mid-level metal stack 40 nm routing) and
|
||||
take the R and C data from the ITRS roadmap.
|
||||
|
||||
For the general purpose logic block, we assume that the area and delays of the Stratix IV
|
||||
crossbar is close enough to the crossbar modelled here.
|
||||
Stratix IV uses 52 inputs and 20 feedback lines, but only a half-populated crossbar, leading to
|
||||
36:1 multiplexers. We match these parameters in this architecture.
|
||||
|
||||
For LUTs, we include LUT
|
||||
delays measured from Stratix IV which is dependant on the input used (ie. some
|
||||
LUT inputs are faster than others). The CAD tools at the time of VTR 7 does
|
||||
not consider differences in LUT input delays.
|
||||
|
||||
Adder delays obtained as approximate values from a Stratix IV EP4SE230F29C3 device.
|
||||
Delay obtained by compiling a 256 bit adder (registered inputs and outputs,
|
||||
all pins except clock virtual) then measuring the delays in chip-planner,
|
||||
sumout delay = 0.271ns to 0.348 ns, intra-block carry delay = 0.011 ns,
|
||||
inter-block carry delay = 0.327 ns. Given this data, I will approximate
|
||||
sumout 0.3 ns, intra-block carry-delay = 0.01 ns, and
|
||||
inter-block carry-delay = 0.16 ns (since Altera inter-block carry delay has
|
||||
overhead that we don't have, I'll approximate the delay of a simpler chain at
|
||||
one half what they have. This is very rough, anything from 0.01ns to 0.327ns
|
||||
can be justified).
|
||||
|
||||
Logic block area numbers obtained by scaling overall tile area of a 65nm
|
||||
Stratix III device, (as given in Wong, Betz and Rose, FPGA 2011) to 40 nm, then subtracting out
|
||||
routing area at a channel width of 300. We use a channel width of 300 because it can route
|
||||
all the VTR 6.0 benchmark circuits with an approximately 20% safety margin, and is also close to the
|
||||
total channel width of Stratix IV. Hence this channel width is close to the commercial practice of
|
||||
choosing a width that provides high routability. The architecture can be routed at different channel
|
||||
widths, but we estimate the tile size and hence the physical length of routing wires assuming
|
||||
a channel width of 300.
|
||||
|
||||
Sanity checks employed:
|
||||
1. We confirmed the routing buffer delay is ~1/3rd of total routing delay at L = 4. This matches
|
||||
common electrical design.
|
||||
|
||||
|
||||
Authors: Jason Luu, Jeff Goeders, Vaughn Betz
|
||||
-->
|
||||
<architecture>
|
||||
<!--
|
||||
ODIN II specific config begins
|
||||
Describes the types of user-specified netlist blocks (in blif, this corresponds to
|
||||
".model [type_of_block]") that this architecture supports.
|
||||
|
||||
Note: Basic LUTs, I/Os, and flip-flops are not included here as there are
|
||||
already special structures in blif (.names, .input, .output, and .latch)
|
||||
that describe them.
|
||||
-->
|
||||
<models>
|
||||
<model name="adder">
|
||||
<input_ports>
|
||||
<port name="a" combinational_sink_ports="sumout cout"/>
|
||||
<port name="b" combinational_sink_ports="sumout cout"/>
|
||||
<port name="cin" combinational_sink_ports="sumout cout"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="cout"/>
|
||||
<port name="sumout"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
<!-- A virtual model for I/O to be used in the physical mode of io block -->
|
||||
<model name="io">
|
||||
<input_ports>
|
||||
<port name="outpad"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="inpad"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
<!-- A virtual model for I/O to be used in the physical mode of io block -->
|
||||
<model name="frac_lut6">
|
||||
<input_ports>
|
||||
<port name="in"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<port name="lut4_out"/>
|
||||
<port name="lut5_out"/>
|
||||
<port name="lut6_out"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
<model name="dual_port_ram">
|
||||
<input_ports>
|
||||
<!-- write address lines -->
|
||||
<port name="waddr" clock="clk"/>
|
||||
<!-- read address lines -->
|
||||
<port name="raddr" clock="clk"/>
|
||||
<!-- data lines can be broken down into smaller bit widths minimum size 1 -->
|
||||
<port name="d_in" clock="clk"/>
|
||||
<!-- write enable -->
|
||||
<port name="wen" clock="clk"/>
|
||||
<!-- read enable -->
|
||||
<port name="ren" clock="clk"/>
|
||||
<!-- memories are often clocked -->
|
||||
<port name="clk" is_clock="1"/>
|
||||
</input_ports>
|
||||
<output_ports>
|
||||
<!-- output can be broken down into smaller bit widths minimum size 1 -->
|
||||
<port name="d_out" clock="clk"/>
|
||||
</output_ports>
|
||||
</model>
|
||||
</models>
|
||||
<tiles>
|
||||
<tile name="io" capacity="8" area="0">
|
||||
<equivalent_sites>
|
||||
<site pb_type="io"/>
|
||||
</equivalent_sites>
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="left">io.outpad io.inpad</loc>
|
||||
<loc side="top">io.outpad io.inpad</loc>
|
||||
<loc side="right">io.outpad io.inpad</loc>
|
||||
<loc side="bottom">io.outpad io.inpad</loc>
|
||||
</pinlocations>
|
||||
</tile>
|
||||
<tile name="clb" area="53894">
|
||||
<equivalent_sites>
|
||||
<site pb_type="clb"/>
|
||||
</equivalent_sites>
|
||||
<input name="I" num_pins="40" equivalent="full"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<output name="O" num_pins="20" equivalent="none"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10">
|
||||
<fc_override port_name="cin" fc_type="frac" fc_val="0"/>
|
||||
<fc_override port_name="cout" fc_type="frac" fc_val="0"/>
|
||||
</fc>
|
||||
<!-- Highly recommand to customize pin location when direct connection is used!!! -->
|
||||
<!--pinlocations pattern="spread"/-->
|
||||
<pinlocations pattern="custom">
|
||||
<loc side="left">clb.clk</loc>
|
||||
<loc side="top">clb.cin</loc>
|
||||
<loc side="right">clb.O[9:0] clb.I[19:0]</loc>
|
||||
<loc side="bottom">clb.cout clb.O[19:10] clb.I[39:20]</loc>
|
||||
</pinlocations>
|
||||
</tile>
|
||||
<tile name="memory" height="2" area="548000">
|
||||
<equivalent_sites>
|
||||
<site pb_type="memory"/>
|
||||
</equivalent_sites>
|
||||
<input name="waddr" num_pins="10"/>
|
||||
<input name="raddr" num_pins="10"/>
|
||||
<input name="d_in" num_pins="32"/>
|
||||
<input name="wen" num_pins="1"/>
|
||||
<input name="ren" num_pins="1"/>
|
||||
<output name="d_out" num_pins="32"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
|
||||
<pinlocations pattern="spread"/>
|
||||
</tile>
|
||||
</tiles>
|
||||
<!-- ODIN II specific config ends -->
|
||||
<!-- Physical descriptions begin -->
|
||||
<layout tileable="true" through_channel="false">
|
||||
<!--auto_layout aspect_ratio="1.0"-->
|
||||
<fixed_layout name="4x4" width="5" height="4">
|
||||
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
|
||||
<perimeter type="io" priority="100"/>
|
||||
<corners type="EMPTY" priority="101"/>
|
||||
<!--Fill with 'clb'-->
|
||||
<fill type="clb" priority="10"/>
|
||||
<!--Column of 'memory' with 'EMPTY' blocks wherever a 'memory' does not fit. Vertical offset by 1 for perimeter.-->
|
||||
<col type="memory" startx="2" starty="1" repeatx="8" priority="20"/>
|
||||
<col type="EMPTY" startx="2" repeatx="8" starty="1" priority="19"/>
|
||||
</fixed_layout>
|
||||
<!-- /auto_layout -->
|
||||
</layout>
|
||||
<device>
|
||||
<!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM
|
||||
models. We are modifying the delay values however, to include metal C and R, which allows more architecture
|
||||
experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS
|
||||
(vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of
|
||||
45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping
|
||||
RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately
|
||||
lined up with Stratix IV.
|
||||
We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm).
|
||||
Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm).
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file
|
||||
by 2.5x when looking up in Jeff's tables.
|
||||
The delay values are lined up with Stratix IV, which has an architecture similar to this
|
||||
proposed FPGA, and which is also 40 nm
|
||||
C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage
|
||||
4x minimum drive strength buffer. -->
|
||||
<sizing R_minW_nmos="8926" R_minW_pmos="16067"/>
|
||||
<!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing)
|
||||
area; set to 0 since we explicitly set the area of all blocks currently in this architecture file.
|
||||
-->
|
||||
<area grid_logic_tile_area="0"/>
|
||||
<chan_width_distr>
|
||||
<x distr="uniform" peak="1.000000"/>
|
||||
<y distr="uniform" peak="1.000000"/>
|
||||
</chan_width_distr>
|
||||
<switch_block type="wilton" fs="3"/>
|
||||
<connection_block input_switch_name="ipin_cblock"/>
|
||||
</device>
|
||||
<switchlist>
|
||||
<!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple
|
||||
book area formula. This means the mux transistors are about 5x minimum drive strength.
|
||||
We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large
|
||||
mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume
|
||||
the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed
|
||||
by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified
|
||||
buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive.
|
||||
I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout
|
||||
(diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples.
|
||||
The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by
|
||||
2.5x when looking up in Jeff's tables.
|
||||
Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps.
|
||||
This also leads to the switch being 46% of the total wire delay, which is reasonable. -->
|
||||
<switch type="mux" name="0" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>
|
||||
<!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
|
||||
<switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
|
||||
</switchlist>
|
||||
<segmentlist>
|
||||
<!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space.
|
||||
With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems
|
||||
reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. -->
|
||||
<!-- GIVE a specific name for the segment! OpenFPGA appreciate that! -->
|
||||
<segment name="L4" freq="1.000000" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15">
|
||||
<mux name="0"/>
|
||||
<sb type="pattern">1 1 1 1 1</sb>
|
||||
<cb type="pattern">1 1 1 1</cb>
|
||||
</segment>
|
||||
</segmentlist>
|
||||
<directlist>
|
||||
<direct name="adder_carry" from_pin="clb.cout" to_pin="clb.cin" x_offset="0" y_offset="-1" z_offset="0"/>
|
||||
</directlist>
|
||||
<complexblocklist>
|
||||
<!-- Define I/O pads begin -->
|
||||
<!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
|
||||
<!-- Not sure of the area of an I/O (varies widely), and it's not relevant to the design of the FPGA core, so we're setting it to 0. -->
|
||||
<pb_type name="io">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
|
||||
<!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support
|
||||
If you need to register the I/O, define clocks in the circuit models
|
||||
These clocks can be handled in back-end
|
||||
-->
|
||||
<!-- A mode denotes the physical implementation of an I/O
|
||||
This mode will be not packable but is mainly used for fabric verilog generation
|
||||
-->
|
||||
<mode name="physical" disabled_in_pack="true">
|
||||
<pb_type name="iopad" blif_model=".subckt io" num_pb="1">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
<output name="inpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="outpad" input="io.outpad" output="iopad.outpad">
|
||||
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/>
|
||||
</direct>
|
||||
<direct name="inpad" input="iopad.inpad" output="io.inpad">
|
||||
<delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
|
||||
<!-- IOs can operate as either inputs or outputs.
|
||||
Delays below come from Ian Kuon. They are small, so they should be interpreted as
|
||||
the delays to and from registers in the I/O (and generally I/Os are registered
|
||||
today and that is when you timing analyze them.
|
||||
-->
|
||||
<mode name="inpad">
|
||||
<pb_type name="inpad" blif_model=".input" num_pb="1">
|
||||
<output name="inpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="inpad" input="inpad.inpad" output="io.inpad">
|
||||
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<mode name="outpad">
|
||||
<pb_type name="outpad" blif_model=".output" num_pb="1">
|
||||
<input name="outpad" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="outpad" input="io.outpad" output="outpad.outpad">
|
||||
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel -->
|
||||
<!-- IOs go on the periphery of the FPGA, for consistency,
|
||||
make it physically equivalent on all sides so that only one definition of I/Os is needed.
|
||||
If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
|
||||
-->
|
||||
<!-- Place I/Os on the sides of the FPGA -->
|
||||
<power method="ignore"/>
|
||||
</pb_type>
|
||||
<!-- Define I/O pads ends -->
|
||||
<!-- Define general purpose logic block (CLB) begin -->
|
||||
<!--- Area calculation: Total Stratix IV tile area is about 8100 um^2, and a minimum width transistor
|
||||
area is 60 L^2 yields a tile area of 84375 MWTAs.
|
||||
Routing at W=300 is 30481 MWTAs, leaving us with a total of 53000 MWTAs for logic block area
|
||||
This means that only 37% of our area is in the general routing, and 63% is inside the logic
|
||||
block. Note that the crossbar / local interconnect is considered part of the logic block
|
||||
area in this analysis. That is a lower proportion of of routing area than most academics
|
||||
assume, but note that the total routing area really includes the crossbar, which would push
|
||||
routing area up significantly, we estimate into the ~70% range.
|
||||
-->
|
||||
<pb_type name="clb">
|
||||
<input name="I" num_pins="40" equivalent="full"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<output name="O" num_pins="20" equivalent="none"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Describe fracturable logic element.
|
||||
Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs.
|
||||
The outputs of the fracturable logic element can be optionally registered
|
||||
-->
|
||||
<pb_type name="fle" num_pb="10">
|
||||
<input name="in" num_pins="6"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Physical mode definition begin (physical implementation of the fle) -->
|
||||
<mode name="physical" disabled_in_pack="true">
|
||||
<pb_type name="fabric" num_pb="1">
|
||||
<input name="in" num_pins="6"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<pb_type name="frac_logic" num_pb="1">
|
||||
<input name="in" num_pins="6"/>
|
||||
<output name="lut4_out" num_pins="4"/>
|
||||
<output name="out" num_pins="2"/>
|
||||
<!-- Define LUT -->
|
||||
<pb_type name="frac_lut6" blif_model=".subckt frac_lut6" num_pb="1">
|
||||
<input name="in" num_pins="6"/>
|
||||
<output name="lut4_out" num_pins="4"/>
|
||||
<output name="lut5_out" num_pins="2"/>
|
||||
<output name="lut6_out" num_pins="1"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="frac_logic.in" output="frac_lut6.in"/>
|
||||
<direct name="direct2" input="frac_lut6.lut4_out" output="frac_logic.lut4_out"/>
|
||||
<direct name="direct3" input="frac_lut6.lut5_out[1]" output="frac_logic.out[1]"/>
|
||||
<!-- Xifan Tang: I use out[0] because the output of lut6 in lut6 mode is wired to the out[0] -->
|
||||
<mux name="mux1" input="frac_lut6.lut6_out frac_lut6.lut5_out[0]" output="frac_logic.out[0]"/>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<!-- Define flip-flop -->
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="2" class="flipflop">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<!-- Define adders -->
|
||||
<pb_type name="adder" blif_model=".subckt adder" num_pb="2">
|
||||
<input name="a" num_pins="1"/>
|
||||
<input name="b" num_pins="1"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<output name="sumout" num_pins="1"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
|
||||
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fabric.in" output="frac_logic.in"/>
|
||||
<direct name="direct2" input="frac_logic.out[1:0]" output="ff[1:0].D"/>
|
||||
<direct name="direct3" input="fabric.cin" output="adder[0:0].cin"/>
|
||||
<direct name="direct4" input="adder[0:0].cout" output="adder[1:1].cin"/>
|
||||
<direct name="direct5" input="adder[1:1].cout" output="fabric.cout"/>
|
||||
<direct name="direct6" input="frac_logic.lut4_out[0:0]" output="adder[0:0].a"/>
|
||||
<direct name="direct7" input="frac_logic.lut4_out[1:1]" output="adder[0:0].b"/>
|
||||
<direct name="direct8" input="frac_logic.lut4_out[2:2]" output="adder[1:1].a"/>
|
||||
<direct name="direct9" input="frac_logic.lut4_out[3:3]" output="adder[1:1].b"/>
|
||||
<complete name="direct10" input="fabric.clk" output="ff[1:0].clk"/>
|
||||
<mux name="mux1" input="adder[0].sumout ff[0].Q frac_logic.out[0]" output="fabric.out[0]">
|
||||
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||
<delay_constant max="25e-12" in_port="frac_logic.out[0]" out_port="fabric.out[0]"/>
|
||||
<delay_constant max="45e-12" in_port="ff[0].Q" out_port="fabric.out[0]"/>
|
||||
</mux>
|
||||
<mux name="mux2" input="adder[1].sumout ff[1].Q frac_logic.out[1]" output="fabric.out[1]">
|
||||
<!-- LUT to output is faster than FF to output on a Stratix IV -->
|
||||
<delay_constant max="25e-12" in_port="frac_logic.out[1]" out_port="fabric.out[1]"/>
|
||||
<delay_constant max="45e-12" in_port="ff[1].Q" out_port="fabric.out[1]"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in" output="fabric.in"/>
|
||||
<direct name="direct2" input="fle.cin" output="fabric.cin"/>
|
||||
<direct name="direct3" input="fabric.out" output="fle.out"/>
|
||||
<direct name="direct4" input="fabric.cout" output="fle.cout"/>
|
||||
<direct name="direct5" input="fle.clk" output="fabric.clk"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- Physical mode definition end (physical implementation of the fle) -->
|
||||
<!-- BEGIN fle mode of dual lut5 -->
|
||||
<mode name="n2_lut5">
|
||||
<pb_type name="ble5" num_pb="2">
|
||||
<input name="in" num_pins="5"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Regular LUT mode -->
|
||||
<pb_type name="lut5" blif_model=".names" num_pb="1" class="lut">
|
||||
<input name="in" num_pins="5" port_class="lut_in"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out"/>
|
||||
<!-- LUT timing using delay matrix -->
|
||||
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
|
||||
we instead take the average of these numbers to get more stable results
|
||||
82e-12
|
||||
173e-12
|
||||
261e-12
|
||||
263e-12
|
||||
398e-12
|
||||
-->
|
||||
<delay_matrix type="max" in_port="lut5.in" out_port="lut5.out">
|
||||
235e-12
|
||||
235e-12
|
||||
235e-12
|
||||
235e-12
|
||||
235e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ble5.in" output="lut5.in"/>
|
||||
<direct name="direct2" input="lut5.out" output="ff.D">
|
||||
<pack_pattern name="ble5" in_port="lut5.out" out_port="ff.D"/>
|
||||
</direct>
|
||||
<direct name="direct3" input="ble5.clk" output="ff.clk"/>
|
||||
<mux name="mux1" input="ff.Q lut5.out" output="ble5.out">
|
||||
<delay_constant max="25e-12" in_port="lut5.out" out_port="ble5.out"/>
|
||||
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble5.out"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in[4:0]" output="ble5[0:0].in"/>
|
||||
<direct name="direct2" input="fle.in[4:0]" output="ble5[1:1].in"/>
|
||||
<complete name="direct3" input="fle.clk" output="ble5.clk"/>
|
||||
<direct name="direct4" input="ble5.out" output="fle.out"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- END fle mode of dual lut5 -->
|
||||
<!-- BEGIN arithmetic mode of dual lut4 + adders -->
|
||||
<mode name="arithmetic">
|
||||
<pb_type name="arithmetic" num_pb="2">
|
||||
<input name="in" num_pins="4"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Special dual-LUT mode that drives adder only -->
|
||||
<pb_type name="lut4" blif_model=".names" num_pb="2" class="lut">
|
||||
<input name="in" num_pins="4" port_class="lut_in"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out"/>
|
||||
<!-- LUT timing using delay matrix -->
|
||||
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
|
||||
we instead take the average of these numbers to get more stable results
|
||||
82e-12
|
||||
173e-12
|
||||
261e-12
|
||||
263e-12
|
||||
-->
|
||||
<delay_matrix type="max" in_port="lut4.in" out_port="lut4.out">
|
||||
195e-12
|
||||
195e-12
|
||||
195e-12
|
||||
195e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
<pb_type name="adder" blif_model=".subckt adder" num_pb="1">
|
||||
<input name="a" num_pins="1"/>
|
||||
<input name="b" num_pins="1"/>
|
||||
<input name="cin" num_pins="1"/>
|
||||
<output name="cout" num_pins="1"/>
|
||||
<output name="sumout" num_pins="1"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.sumout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.sumout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.cin" out_port="adder.sumout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.a" out_port="adder.cout"/>
|
||||
<delay_constant max="0.3e-9" in_port="adder.b" out_port="adder.cout"/>
|
||||
<delay_constant max="0.01e-9" in_port="adder.cin" out_port="adder.cout"/>
|
||||
</pb_type>
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="clock" input="arithmetic.clk" output="ff.clk"/>
|
||||
<direct name="lut_in1" input="arithmetic.in[3:0]" output="lut4[0:0].in[3:0]"/>
|
||||
<direct name="lut_in2" input="arithmetic.in[3:0]" output="lut4[1:1].in[3:0]"/>
|
||||
<direct name="lut_to_add1" input="lut4[0:0].out" output="adder.a">
|
||||
</direct>
|
||||
<direct name="lut_to_add2" input="lut4[1:1].out" output="adder.b">
|
||||
</direct>
|
||||
<direct name="add_to_ff" input="adder.sumout" output="ff.D">
|
||||
<pack_pattern name="chain" in_port="adder.sumout" out_port="ff.D"/>
|
||||
</direct>
|
||||
<direct name="carry_in" input="arithmetic.cin" output="adder.cin">
|
||||
<pack_pattern name="chain" in_port="arithmetic.cin" out_port="adder.cin"/>
|
||||
</direct>
|
||||
<direct name="carry_out" input="adder.cout" output="arithmetic.cout">
|
||||
<pack_pattern name="chain" in_port="adder.cout" out_port="arithmetic.cout"/>
|
||||
</direct>
|
||||
<mux name="sumout" input="ff.Q adder.sumout" output="arithmetic.out">
|
||||
<delay_constant max="25e-12" in_port="adder.sumout" out_port="arithmetic.out"/>
|
||||
<delay_constant max="45e-12" in_port="ff.Q" out_port="arithmetic.out"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in[3:0]" output="arithmetic[0:0].in"/>
|
||||
<direct name="direct2" input="fle.in[3:0]" output="arithmetic[1:1].in"/>
|
||||
<direct name="carry_in" input="fle.cin" output="arithmetic[0:0].cin">
|
||||
<pack_pattern name="chain" in_port="fle.cin" out_port="arithmetic[0:0].cin"/>
|
||||
</direct>
|
||||
<direct name="carry_inter" input="arithmetic[0:0].cout" output="arithmetic[1:1].cin">
|
||||
<pack_pattern name="chain" in_port="arithmetic[0:0].cout" out_port="arithmetic[1:1].cin"/>
|
||||
</direct>
|
||||
<direct name="carry_out" input="arithmetic[1:1].cout" output="fle.cout">
|
||||
<pack_pattern name="chain" in_port="arithmetic.cout" out_port="fle.cout"/>
|
||||
</direct>
|
||||
<complete name="direct3" input="fle.clk" output="arithmetic.clk"/>
|
||||
<direct name="direct4" input="arithmetic.out" output="fle.out"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- n2_lut5 -->
|
||||
<mode name="n1_lut6">
|
||||
<pb_type name="ble6" num_pb="1">
|
||||
<input name="in" num_pins="6"/>
|
||||
<output name="out" num_pins="1"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<pb_type name="lut6" blif_model=".names" num_pb="1" class="lut">
|
||||
<input name="in" num_pins="6" port_class="lut_in"/>
|
||||
<output name="out" num_pins="1" port_class="lut_out"/>
|
||||
<!-- LUT timing using delay matrix -->
|
||||
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
|
||||
we instead take the average of these numbers to get more stable results
|
||||
82e-12
|
||||
173e-12
|
||||
261e-12
|
||||
263e-12
|
||||
398e-12
|
||||
397e-12
|
||||
-->
|
||||
<delay_matrix type="max" in_port="lut6.in" out_port="lut6.out">
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
261e-12
|
||||
</delay_matrix>
|
||||
</pb_type>
|
||||
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
|
||||
<input name="D" num_pins="1" port_class="D"/>
|
||||
<output name="Q" num_pins="1" port_class="Q"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="66e-12" port="ff.D" clock="clk"/>
|
||||
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="ble6.in" output="lut6[0:0].in"/>
|
||||
<direct name="direct2" input="lut6.out" output="ff.D">
|
||||
<pack_pattern name="ble6" in_port="lut6.out" out_port="ff.D"/>
|
||||
</direct>
|
||||
<direct name="direct3" input="ble6.clk" output="ff.clk"/>
|
||||
<mux name="mux1" input="ff.Q lut6.out" output="ble6.out">
|
||||
<delay_constant max="25e-12" in_port="lut6.out" out_port="ble6.out"/>
|
||||
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble6.out"/>
|
||||
</mux>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="direct1" input="fle.in[5:0]" output="ble6.in"/>
|
||||
<direct name="direct2" input="ble6.out" output="fle.out[0:0]"/>
|
||||
<direct name="direct3" input="fle.clk" output="ble6.clk"/>
|
||||
</interconnect>
|
||||
</mode>
|
||||
<!-- n1_lut6 -->
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<!-- We use a 50% depop crossbar built using small full xbars to get sets of logically equivalent pins at inputs of CLB
|
||||
The delays below come from Stratix IV. the delay through a connection block
|
||||
input mux + the crossbar in Stratix IV is 167 ps. We already have a 72 ps
|
||||
delay on the connection block input mux (modeled by Ian Kuon), so the remaining
|
||||
delay within the crossbar is 95 ps.
|
||||
The delays of cluster feedbacks in Stratix IV is 100 ps, when driven by a LUT.
|
||||
Since all our outputs LUT outputs go to a BLE output, and have a delay of
|
||||
25 ps to do so, we subtract 25 ps from the 100 ps delay of a feedback
|
||||
to get the part that should be marked on the crossbar. -->
|
||||
<complete name="crossbar" input="clb.I fle[9:0].out" output="fle[9:0].in">
|
||||
<delay_constant max="95e-12" in_port="clb.I" out_port="fle[9:0].in"/>
|
||||
<delay_constant max="75e-12" in_port="fle[9:0].out" out_port="fle[9:0].in"/>
|
||||
</complete>
|
||||
|
||||
<complete name="clks" input="clb.clk" output="fle[9:0].clk">
|
||||
</complete>
|
||||
<!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins.
|
||||
By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs,
|
||||
then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more
|
||||
naive specification).
|
||||
-->
|
||||
<direct name="clbouts1" input="fle[9:0].out[0:0]" output="clb.O[9:0]"/>
|
||||
<direct name="clbouts2" input="fle[9:0].out[1:1]" output="clb.O[19:10]"/>
|
||||
<!-- Carry chain links -->
|
||||
<direct name="carry_in" input="clb.cin" output="fle[0:0].cin">
|
||||
<!-- Put all inter-block carry chain delay on this one edge -->
|
||||
<delay_constant max="0.16e-9" in_port="clb.cin" out_port="fle[0:0].cin"/>
|
||||
<pack_pattern name="chain" in_port="clb.cin" out_port="fle[0:0].cin"/>
|
||||
</direct>
|
||||
<direct name="carry_out" input="fle[9:9].cout" output="clb.cout">
|
||||
<pack_pattern name="chain" in_port="fle[9:9].cout" out_port="clb.cout"/>
|
||||
</direct>
|
||||
<direct name="carry_link" input="fle[8:0].cout" output="fle[9:1].cin">
|
||||
<pack_pattern name="chain" in_port="fle[8:0].cout" out_port="fle[9:1].cin"/>
|
||||
</direct>
|
||||
</interconnect>
|
||||
</pb_type>
|
||||
<!-- Define general purpose logic block (CLB) ends -->
|
||||
<!-- Define single-mode dual-port memory begin -->
|
||||
<pb_type name="memory">
|
||||
<input name="waddr" num_pins="10"/>
|
||||
<input name="raddr" num_pins="10"/>
|
||||
<input name="d_in" num_pins="32"/>
|
||||
<input name="wen" num_pins="1"/>
|
||||
<input name="ren" num_pins="1"/>
|
||||
<output name="d_out" num_pins="32"/>
|
||||
<clock name="clk" num_pins="1"/>
|
||||
<!-- Specify the 512x32=16Kbit memory block
|
||||
Note: the delay numbers are extracted from VPR flagship XML without modification
|
||||
Should align to the process technology we using to create the 16K dual-port RAM
|
||||
-->
|
||||
<mode name="mem_512x32_dp">
|
||||
<pb_type name="mem_512x32_dp" blif_model=".subckt dual_port_ram" class="memory" num_pb="1">
|
||||
<input name="waddr" num_pins="10" port_class="address"/>
|
||||
<input name="raddr" num_pins="10" port_class="address"/>
|
||||
<input name="d_in" num_pins="32" port_class="data_in"/>
|
||||
<input name="wen" num_pins="1" port_class="write_en"/>
|
||||
<input name="ren" num_pins="1" port_class="write_en"/>
|
||||
<output name="d_out" num_pins="32" port_class="data_out"/>
|
||||
<clock name="clk" num_pins="1" port_class="clock"/>
|
||||
<T_setup value="509e-12" port="mem_512x32_dp.waddr" clock="clk"/>
|
||||
<T_setup value="509e-12" port="mem_512x32_dp.raddr" clock="clk"/>
|
||||
<T_setup value="509e-12" port="mem_512x32_dp.d_in" clock="clk"/>
|
||||
<T_setup value="509e-12" port="mem_512x32_dp.wen" clock="clk"/>
|
||||
<T_setup value="509e-12" port="mem_512x32_dp.ren" clock="clk"/>
|
||||
<T_clock_to_Q max="1.234e-9" port="mem_512x32_dp.d_out" clock="clk"/>
|
||||
<power method="pin-toggle">
|
||||
<port name="clk" energy_per_toggle="17.9e-12"/>
|
||||
<static_power power_per_instance="0.0"/>
|
||||
</power>
|
||||
</pb_type>
|
||||
<interconnect>
|
||||
<direct name="waddress" input="memory.waddr" output="mem_512x32_dp.waddr">
|
||||
<delay_constant max="132e-12" in_port="memory.waddr" out_port="mem_512x32_dp.waddr"/>
|
||||
</direct>
|
||||
<direct name="raddress" input="memory.raddr" output="mem_512x32_dp.raddr">
|
||||
<delay_constant max="132e-12" in_port="memory.raddr" out_port="mem_512x32_dp.raddr"/>
|
||||
</direct>
|
||||
<direct name="data_input" input="memory.d_in" output="mem_512x32_dp.d_in">
|
||||
<delay_constant max="132e-12" in_port="memory.d_in" out_port="mem_512x32_dp.d_in"/>
|
||||
</direct>
|
||||
<direct name="writeen" input="memory.wen" output="mem_512x32_dp.wen">
|
||||
<delay_constant max="132e-12" in_port="memory.wen" out_port="mem_512x32_dp.wen"/>
|
||||
</direct>
|
||||
<direct name="readen" input="memory.ren" output="mem_512x32_dp.ren">
|
||||
<delay_constant max="132e-12" in_port="memory.ren" out_port="mem_512x32_dp.ren"/>
|
||||
</direct>
|
||||
<direct name="dataout" input="mem_512x32_dp.d_out" output="memory.d_out">
|
||||
<delay_constant max="40e-12" in_port="mem_512x32_dp.d_out" out_port="memory.d_out"/>
|
||||
</direct>
|
||||
<direct name="clk" input="memory.clk" output="mem_512x32_dp.clk">
|
||||
</direct>
|
||||
</interconnect>
|
||||
</mode>
|
||||
</pb_type>
|
||||
<!-- Define single-mode dual-port memory end -->
|
||||
</complexblocklist>
|
||||
</architecture>
|
Loading…
Reference in New Issue